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Abstract
We introduce the notion of N -reflection equation which provides a generalization
of the usual classical reflection equation describing integrable boundary conditions.
The latter is recovered as a special example of the N = 2 case. The basic theory
is established and illustrated with several examples of solutions of the N -reflection
equation associated with the rational and trigonometric r -matrices. A central result
is the construction of a Poisson algebra associated with a non-skew-symmetric r -
matrix whose form is specified by a solution of the N -reflection equation. Generating
functions of quantities in involution can be identified within this Poisson algebra. As
an application, we construct new classical Gaudin-type Hamiltonians, particular cases
of which are Gaudin Hamiltonians of BCL -type.

Keywords Classical Yang–Baxter equation · Classical reflection equation · Gaudin
models · Non-skew-symmetric r -matrices
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1 Introduction

Classical integrable systems have been formulated in terms of the classical r-matrix
in [1–3] for which the central equation is called the classical Yang–Baxter equation

[rab(λ, μ), rac(λ, ν)] + [rab(λ, μ), rbc(μ, ν)] − [rac(λ, ν), rcb(ν, μ)] = 0.
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Then, the study of boundary conditions which preserve the integrability of the model
leads to the classical reflection equation [4]

rab(λ, ν) ka(λ)kb(ν) + ka(λ) rba(ν,−λ) kb(ν) − kb(ν) rab(λ,−ν) ka(λ)

−ka(λ)kb(ν) rba(−ν,−λ) = 0. (2)

This equation appears naturally in classical integrable systems based on the BCL root
system and can be interpreted via a Z2 action on the A2L root system. This point of
viewon integrable boundary conditions, sometimes called “folding” for short, has been
used extensively, for example, in [5–7]. The search for integrable systems associated
with the action of more complicated finite groups, and in particular of the cyclic group
ZN , has attracted a lot of attention recently (see, e.g., [8–16]).

In this paper, we introduce a new equation which generalizes the classical reflection
equation (2) as well as algebraic structures related to ZN (cyclotomic) models. In
Sect. 2, we define the N -reflection equation and prove that it allows one to construct
new solutions of the classicalYang–Baxter equation fromold ones. Then, in Sect. 3, we
show on some examples that this equation has interesting solutions and, in particular,
solutions where the action on the spectral parameters is a Mobiüs transformation. In
Sect. 4, we show how the N -reflection equation allows one to define a certain Poisson
subalgebra of a linear Poisson algebra defined by a classical r -matrix and use this to
obtain new integrable Gaudin models. We also show that the Hamiltonian equations
of motion generated by the elements in involution in the Poisson subalgebra can be
written in Lax form and give an explicit formula for the second matrix of the Lax pair.

2 Classical N-reflection equation

In this paper, we consider a solution rab(λ, μ) of the classical Yang–Baxter equation
(1) acting on C

n ⊗ C
n ⊗ C

n . We now introduce the following generalization of the
classical reflection equation associated with r .

Definition 2.1 Let τ and g( j), j = 0, . . . , N−1 be functions of the spectral parameter,
τ j be defined recursively by τ j (ν) = τ(τ j−1(ν)) with τ 0(ν) = ν and

k( j)(ν) = k( j−1)(ν)k(τ j−1(ν)) with k(0) = In . (3)

The classical N -reflection equation for τ , g( j) and the matrix k is defined by

N−1∑

j=0

g( j)(ν) k( j)
b (ν) rab(λ, τ j (ν))

(
k( j)
b (ν)

)−1
ka(λ)

= ka(λ)

N−1∑

j=0

g( j)(ν) k( j)
b (ν) rab(τ (λ), τ j (ν))

(
k( j)
b (ν)

)−1
. (4)

Without loss of generality, we can set g(0)(ν) = 1.
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Classical N-reflection equation and Gaudin models 845

For the sake of comparison with the usual reflection equation, let us write explicitly
the classical 2-reflection equation by multiplying by kb(ν) on the right-hand side:

rab(λ, ν) ka(λ)kb(ν) + g(1)(ν) kb(ν) rab(λ, τ (ν)) ka(λ)

= ka(λ) rab(τ (λ), ν) kb(ν) + g(1)(ν) ka(λ)kb(ν) rab(τ (λ), τ (ν)). (5)

Then, we have the following results establishing the connection with the usual reflec-
tion equation.

Proposition 2.1 Suppose the r-matrix depends only on the difference of the spectral
parameters and is skew-symmetric, taking g(1)(ν) = −1 and τ(ν) = −ν, the classical
2-reflection Eq. (5) becomes the usual classical reflection equation

rab(λ − ν) ka(λ)kb(ν) − kb(ν) rab(λ + ν) ka(λ) = ka(λ) rab(−λ − ν) kb(ν)

−ka(λ)kb(ν) rab(−λ + ν). (6)

In the other well-known case where the r-matrix depends only on the quotient of the
spectral parameters and is skew-symmetric, the choice g(1)(ν) = −1 and τ(ν) = 1/ν
gives the multiplicative version of the classical reflection equation.

However, let us emphasize that the classical 2-reflection equation introduced here
generalizes the usual ones because of the introduction of the functions g(1) and τ .
We will see on the examples below that we can get new interesting solutions from
this generalized form. One remarkable feature is the possibility to act with Möbius
transformations on the spectral parameter using τ .

Proposition 2.2 Let r be a solution of the classical Yang–Baxter equation (1) and k(ν)

a solution of the classical N-reflection Eq. (4). Let us define

rab(λ, ν) =
N−1∑

j=0

g( j)(ν) k( j)
b (ν) rab

(
λ, τ j (ν)

) (
k( j)
b (ν)

)−1
. (7)

Then, r satisfies the classical Yang–Baxter equation (1).

Proof For convenience, for a given r -matrix, let us introduce the notation

CY BE(r)abc(λ, μ, ν) = [ rab(λ, μ), rac(λ, ν) ]
+[rab(λ, μ), rbc(μ, ν)] − [rac(λ, ν), rcb(ν, μ)]. (8)

Note that with our definition of r , the classical N -reflection Eq. (4) may be rewritten
compactly as

rab(λ, ν)ka(λ) = ka(λ)rab(τ (λ), ν). (9)

In turn, replacing λ by τ(λ) in (9), we see that (9) implies,

rab(λ, ν)k(n)
a (λ) = k(n)

a (λ)rab(τ
n(λ), ν), n = 1, 2, . . . . (10)
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Now, using (10) in the form

(k(n)
b (μ))−1 rbc(μ, ν) = rbc(τ

n(μ), ν) (k(n)
b (μ))−1 (11)

and its counterpart under the exchange b ↔ c, μ ↔ ν, we can write

CY BE(r)abc(λ, μ, ν)

=
N−1∑

n,m=0

g(n)(μ)g(m)(ν) k(n)
b (μ)k(m)

c (ν)CY BE(r)abc

(λ, τ n(μ), τm(ν)) (k(m)
c (ν))−1(k(n)

b (μ))−1. (12)

The proposition follows from the fact that CY BE(r)abc(λ, μ, ν) = 0. ��
This proposition allows us to construct a new solution r of the classical reflection

equation for each solution k of the N -reflection equation and each solution r of the
classical Yang–Baxter equation. It generalizes the results of [17], stated for the usual
reflection equation. In general, the r-matrices r obtained by this construction are not
skew-symmetric even if the starting r -matrix r is. However, they still allow for the
construction of interesting algebraic structures and integrable models as shown in
Sect. 4.

Remark 1 In the course of the proof, we used a compact form of the N -reflection
equation which is worth pointing out separately

rab(λ, ν)ka(λ) = ka(λ)rab(τ (λ), ν). (13)

It is convenient to introduce the notion of N-unitary relation which generalizes the
so-called unitary relation (k(λ)k(−λ) ∝ In or k(λ)k(1/λ) ∝ In) often required for
the usual reflection equation.

Definition 2.2 The matrix k is said to satisfy the N -unitary relation if

k(N )(ν) = f (ν)In i.e. k(ν) k(τ (ν)) k(τ (τ (ν))) . . . k(τ N−1(ν))

= f (ν)In, (14)

where f (ν) is a scalar function.

Remark 2 If τ N (ν) = ν, then Eq. (10) for j = N becomes rab(λ, ν)k(N )
a (λ) =

k(N )
a (λ)rab(λ, ν). This equation is automatically satisfied if the k-matrix satisfies the
N-unitary relation.

Remark 3 If τ N (ν) = ν and g( j)(ν) = ω j with ωN = 1, then a solution k satisfying
the N-unitary relation (14) and the following symmetry relation

rab(λ, ν) = ω ka(λ) kb(ν) rab(τ (λ), τ (ν)) kb(ν)−1 ka(λ)−1 (15)
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Classical N-reflection equation and Gaudin models 847

is a solution of the N -reflection equation. This is a case of a reduction by a ZN action
on the r -matrix. Equation (15) underlies the results obtained in [10] and is a particular
case of the N -reflection equation.

3 Some solutions of the N-reflection equation

In this section, we present some solutions of the N -reflection equation for various
values of N and for the standard rational and trigonometric r -matrices. Even in the
case N = 2, some of these solutions are new compared to the usual reflection equation
and, in fact, cannot be accommodated by it. As explained previously, all these solutions
allow us to obtain new solutions of the nonstandard classical Yang–Baxter equation.

3.1 Rational r-matrix

In this subsection, we provide some solutions of the N -reflection equation associated
with the rational r-matrix

r(λ, μ) = r(λ − μ) = P

λ − μ
, (16)

where P is the permutation operator of Cn ⊗ C
n . In this case, the following matrices

are solutions of the usual reflection Eq. (2)

k(λ) = θIn + λG, (17)

where θ is a free parameter and G is a n × n-matrix satisfying G2 = In . This result
generalizes to the case of the N -reflection equation as follows:

Proposition 3.1 The matrix

k(λ) = θIn + λG, (18)

where G is an n×n-matrix satisfying GN = In, which is a solution of the N-reflection
equation with g( j)(ν) = ω j , τ j (ν) = ω jν and ω = exp(2iπ/N ). This solution also
satisfies the N-unitary relation (14) with f (λ) = θN + λN exp(iπ(N − 1)).

Proof We start by proving the N -unitary relation:

k(λ)k(ωλ) . . . k(ωN−1λ) =
N−1∏

j=0

(θ + ω jλG) = θN + λNGN
N−1∏

j=0

ω j . (19)

We have used well-known relations for the roots of unity, such as
∑N−1

j=0
ω j = 0 or

∑
0≤ j<k≤N−1

ω j+k = 0. The result follows from GN = In .
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Next, multiplying the N -reflection equation by k(N−1)
b (ν) on the right and using

the property of the permutation operator, the N -reflection equation is equivalent to

N−1∑

p=0

ωp Pab
λ − ωpν

ka(ν) . . . ka(ω
p−1ν) ka(λ) kb(ω

pν) . . . kb(ω
N−2ν)

=
N−1∑

p=0

ωp Pab
ωλ − ωpν

ka(ν) . . . ka(ω
p−1ν) kb(λ) kb(ω

pν) . . . kb(ω
N−2ν). (20)

By multiplying on the left by Pab and rearranging the sum, one gets equivalently

N−2∑

p=0

ωp

λ − ωpν
ka(ν) . . . ka(ω

p−1ν)
[
ka(λ)kb(ω

pν)

−ka(νωp)kb(λ)
]
kb(ω

p+1ν) . . . kb(ω
N−2ν)

= ωN−1

λ − ωN−1ν

(
kb(λ) kb(ν) . . . kb(ω

N−2ν) − ka(ν) . . . ka(ω
N−2ν) ka(λ)

)
.

(21)

We remark that the expression inside the square bracket in the L.H.S. of the previous
relation can be written as follows by using the explicit form (18) of k

ka(λ)kb(ω
pν) − ka(νωp)kb(λ) = θ(λ − ωpν)

ωpν

(
ka(ω

pν) − kb(ω
pν)

)
. (22)

Then,we recognize a telescopic sum in theL.H.S. of (21) and the N -reflection equation
reduces to

θ

ν
(ka(ν) . . . ka(ω

N−2ν) − kb(ν) . . . kb(ω
N−2ν))

= ωN−1

λ − ωN−1ν

(
kb(λ) kb(ν) . . . kb(ω

N−2ν) − ka(ν) . . . ka(ω
N−2ν) ka(λ)

)
.

(23)

By considering separately the terms in the space a and the ones in the space b and
by using the N -unitary relation proved previously, we obtain that relation (23) holds,
which proves that the N -reflection equation is satisfied. ��

For θ = 0, the k-matrix (18) satisfies the stronger relation (15) and has been studied
previously (see, e.g., [10]).

The importance of the functions τ and g can be seen from the existence of the
following solutions of the N -reflection equation.
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Classical N-reflection equation and Gaudin models 849

Proposition 3.2 The identity matrix is a solution of the 2-reflection equation with

τ(ν) = aν + b

cν − a
and g(1)(ν) = − a2 + bc

(a − cν)2
, (24)

where a, b and c are free parameters such that τ �= 0,∞ identically. In particular,
τ 2(ν) = ν.

The identity matrix is a solution of the 3-reflection equation with

τ(ν) = aν + b

cν + d
, g(1)(ν) = ad − bc

(d + cν)2
and g(2)(ν) = ad − bc

(a − cν)2
, (25)

where a, b, c and d are parameters constrained by a2 + ad + bc + d2 = 0 and such
that τ �= 0,∞ identically. In particular, τ 3(ν) = ν.

Proof The N -reflection equation for the rational r -matrix and for a k-matrix equal to
the identity matrix reduces to one functional equation

N−1∑

j=0

g( j)(ν)
1

λ − τ j (ν)
=

N−1∑

j=0

g( j)(ν)
1

τ(λ) − τ j (ν)
. (26)

One can show by direct computation that for choices (24) and (25), the last equation
holds. This finishes the proof. ��

Again, this proposition allows for the construction of new solutions of the non-
standard classical Yang–Baxter equation where the poles of the r -matrix are governed
by the parameters of the function τ . For b = c = 0 and in the case N = 2, we
recover the map τ(ν) = −ν usually used for the reflection equation in the rational
case. Despite some effort, we have not been able to produce a solution where τ is a
Möbius transformation and k is not the identity matrix in the rational case. However,
below we present examples where this is possible in the trigonometric case.

3.2 Trigonometric r-matrix

In this subsection, we study the N -reflection equation in the case of the 4× 4 trigono-
metric solution of the classical Yang–Baxter equation (1) defined by

r(λ, ν) = r(λ/ν) = 1

2(λ − ν)

⎛

⎜⎜⎝

−λ − ν 0 0 0
0 λ + ν −4ν 0
0 −4λ λ + ν 0
0 0 0 −λ − ν

⎞

⎟⎟⎠ . (27)

Proposition 3.3 The 2-reflection equation with

τ(ν) = aν + b

cν − a
, g(1)(ν) = − (a2 − bc)ν

(cν − a)(aν + b)
(28)
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has two solutions: the identity matrix and the following diagonal matrix

k(ν) =
(

τ(ν) 0
0 ν

)
. (29)

The 3-reflection equation with

τ(ν) = aν + b

cν + d
, g(1)(ν) = (a + d)2ν

(aν + b)(cν + d)
, g(2)(ν) = (a + d)2ν

(dν − b)(−cν + a)

(30)

and the constraint a2 + bc + ad + d2 = 0 has five solutions: the identity matrix and
the following diagonal matrices

k(ν) =
(

τ(ν) 0
0 ν

)
, k(ν) =

(
τ 2(ν) 0
0 ν

)
, k(ν) =

(
τ(ν) 0
0 τ 2(ν)

)
, (31)

k(ν) =
(

(a + d)(aν + b) 0
0 (cν − a)(dν − b)

)
,

k(ν) =
(

(cν − a)(dν − b) 0
0 (a + d)(cν + d)

)
. (32)

Proof The proposition is proven by direct computation. ��
In the particular case a = 0 and b = c, the 2-reflection equation becomes the usual

one in the case of the trigonometric r -matrix since τ(ν) = 1/ν.

4 Integrable models based on the N-reflection equation

4.1 Poisson subalgebra and Lax pair of the equations of motion

Let us consider the following Poisson algebra,

{La(λ), Lb(μ)} = [rab(λ, μ), La(λ) + Lb(μ)] , (33)

associated with a skew-symmetric matrix r solution of the classical Yang–Baxter
equation and define

Ba(λ) =
N−1∑

j=0

g( j)(λ)k( j)
a (λ)La(τ

j (λ))
(
k( j)
a (λ)

)−1
. (34)

Proposition 4.1 The elements B(λ) form a Poisson subalgebra of the form

{Ba(λ), Bb(μ)} = [rab(λ, μ), Ba(λ)] − [rba(μ, λ), Bb(ν)] , (35)

where r is given by (7) and k is a solution of the N-reflection equation.
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Proof This is shownbydirect computation starting from (33) andusing thedefinitionof
B(λ) (34). If one uses the N -reflection equation, one can bring all the terms produced
in the right-hand side into the simple form given in (35). The skew-symmetry of
the Poisson bracket (35) is evident, and the Jacobi identity is a consequence of the
classical Yang–Baxter equation (1) satisfied by r . The latter fact is another motivation
for introducing the N -reflection equation in the first place. ��

The Poisson algebra (35) provides an example of a linear Poisson structure based
on a non-skew-symmetry r -matrix, as discussed in [18] (see also [19]).

Remark 4 If the hypotheses of Remark 3 hold, then

φ : L(λ) 
→ ω k(λ)L(τ (λ))k(λ)−1 (36)

is a ZN action on the Poisson algebra (33) and Ba(λ) contains the generators of the
fixed-point subalgebra of this action.

Remark 5 Relation (34) looks similar to the reduction group scheme for the Lax oper-
ator considered in [20–25] in which k and τ provide a representation of the reduction
group. In our case, the approach is different in that we do not assume a priori that k
and τ are associated with a group. Instead, we look for conditions on them ensuring
that the Poisson algebra for B(λ) closes. This leads to our N-reflection equation (4).
It is an open and interesting problem to study the interplay between the N-reflection
equation and the reduction group approach.

It is well known [18] that the Poisson algebra (35) allows for the construction of
Poisson commuting elements since, for p, q = 1, 2, . . . , one gets

{tr B(λ)p, tr B(ν)q} = 0. (37)

If we choose as Hamiltonian1 tr B(λ)p, then the equations of motion have a Lax
representation

{tr B(λ)p, B(ν)} = Ḃ(ν) = [B(ν), M(λ, ν)] (38)

with

Mb(λ, ν) = p tra
(
Ba(λ)p−1rba(ν, λ)

)
. (39)

The matrix M(λ, ν) satisfies the important relation

M(λ, ν)k(ν) = k(ν)M(λ, τ (ν)). (40)

This relation is a straightforward consequence of the N -reflection equation written
as in (9). It is a generalization of the relation introduced in the context of the usual

1 Here, our terminology is rather general and by “Hamiltonian,” we mean any element that lives in the
abelian subalgebra generated by tr B(λ)p .
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classical reflection equation [4] (which is recovered as explained after (5)). We recall
that in that standard context, relation (40) can be taken as a definition of integrable
boundary conditions. In [26], the Hamiltonian interpretation of this relation (and its
generalization to the dynamical case)was presented in the case of the quadratic Poisson
bracket and the usual reflection equation. It is an open problem to generalize the results
of [26] to the present case of the N -reflection equation.

4.2 Gaudinmodels

In this section, we apply the previous results to the construction of new integrable
models which are generalizations of the Gaudin models [27]. The general procedure
goes as follows. Suppose we are given a local representation of (33) in the form,2 for
m, p = 1, 2, . . . , L ,

{	a(m, λ), 	b(p, μ)} = δmp [rab(λ − μ), 	a(m, λ) + 	b(p, μ)] . (41)

Given a solution k of the N -reflection equation, we obtain a representation of relation
(35) by setting

Ba(λ) =
L∑

m=1

N−1∑

j=0

g( j)(λ)k( j)
a (λ)	a(m, τ j (λ) − zm)

(
k( j)
a (λ)

)−1
, (42)

where zm are free, mutually distinct, parameters. The Gaudin-type Hamiltonians are
then defined by,

Hm = 1

2
resλ=zm tra (Ba(λ))2 , m = 1, 2, . . . , L. (43)

These Hamiltonians are in involution due to relation (37) and allow us to define an
integrable model. Therefore, each solution of the N -reflection equation allows us to
get integrable Gaudin-type models based on a non-skew r -matrix r̄ . In that sense, our
construction produces explicit classes of models falling into the general scheme of
[28] and generalizes the method used in [17].

4.3 Explicit example

We now present an explicit example associated with the 2-reflection equation in the
rational case for n = 2. Let us introduce L copies of the su(2) Poisson algebra with
generators {s+

j , s−
j , szj } satisfying

{s+
j , s−

k } = δ jks
z
j , {szj , s±

k } = ±2δ jks
±
j and

1

2
(szj )

2 + 2s+
j s

−
j = s2j ,

(44)

2 We restrict ourselves here to the case of additive spectral parameters.
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Classical N-reflection equation and Gaudin models 853

where s j are some parameters. Then,

	( j, ν) = 1

ν

(
1
2 s

z
j s+

j

s−
j − 1

2 s
z
j

)
(45)

satisfies (41) with the rational r-matrix (16). From the solution of the 2-reflection
equation given in Propositions 2.2, and 3.2 provides the following r-matrix

r(λ, μ) = P

(
1

λ − μ
− (a2 + bc)

(a − cμ)(b + a(λ + μ) − cλμ)

)
. (46)

Note that the r-matrix (46) is related to the rational r-matrix (16) via the transformation

r(λ, μ) = b + 2aμ − cμ2

2(a − cμ)2
r(p(λ) − p(μ)) (47)

where p(μ) = b+cμ2

2c(a−cμ)
. This is an example of the equivalence relations discussed

for instance in [29]. The Gaudin-type Hamiltonians (43) associated with this r-matrix
read

Hi =
L∑

k=1
k �=i

Sik

(
1

zi − zk
+ a2 + bc

(a − czi )(b + a(zi + zk) − czi zk)

)

+ (a2 + bc)s2i
(a − czi )(b + 2azi − cz2i )

, (48)

where Sik = ( 1
2 s

z
i s

z
k + s+

i s
−
k + s−

i s
+
k

)
. Note that in the case b = c = 0, we find the

Gaudin Hamiltonians based on the BCL root system [30], consistently with the remark
at the end of Sect. 3.1.

Similarly, from the solution of the 3-reflection equation given in Proposition 3.2,
we obtain the following r-matrix with Proposition 2.2 (we recall that in this case
a2 + bc + ad + d2 = 0)

r(λ, μ) = P

(
1

λ − μ
− ad − bc

(d + cμ)(b + aμ − dλ − cμλ)

+ ad − bc

(a − cμ)(b + aλ − dμ − cμλ)

)
. (49)

This r-matrix (49) can be also obtained from the following transformation of the
rational r-matrix (16)

r(λ, μ) = b2(cμ − a)2(cμ + d)2

(cμ2 − (a − d)μ − b)2
r(p(λ) − p(μ)) (50)
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where p(μ) = c3μ3−(a−d)2c2μ2−c(a+2d)(2a+d)μ+(a−d)(a+d)2

c3b2(cμ−a)(cμ+d)
. In this case, the Gaudin-

type Hamiltonians (43) read

Hi =
L∑

k=1
k �=i

Sik

(
1

zi − zk
+ ad − bc

(d + czi )(b + azi − dzk − czi zk)

− ad − bc

(a − czi )(b + azk − dzi − czi zk)

)

+ (ad − bc)s2i
b + (a − d)zi − cz2i )

(
1

d + czi
− 1

a − czi

)
, (51)

In the case b = c = 0 and a
d = ω = e

2iπ
3 , this reduces to a Z3-cyclotomic classical

Gaudin Hamiltonians

Hi =
L∑

k=1
k �=i

Sik

(
1

zi − zk
+ 1

zi − ωzk
+ 1

zi − ω2zk

)
+ s2i

zi
, (52)

whose quantum counterparts were introduced in [10] and further developed in [14].

5 Conclusions and outlook

We introduced the N -reflection equation as a generalization of the usual reflection
equation [4]. An important motivation is the possibility to define a consistent Poisson
algebra (35) when one applies the following map:

La(λ) 
→
N−1∑

j=0

g( j)(λ)k( j)
a (λ)La(τ

j (λ))
(
k( j)
a (λ)

)−1
(53)

on the Poisson algebra

{La(λ), Lb(μ)} = [rab(λ, μ), La(λ) + Lb(μ)] . (54)

The map (53) appears as a generalization of the maps

La(λ) 
→ La(λ) ± ka(λ)La(σ (λ))ka(λ)−1 (55)

producing the eigenspaces of the involution

La(λ) 
→ ka(λ)La(σ (λ))ka(λ)−1 (56)

where k(λ) k(σ (λ)) = I and σ(λ) = −λ or σ(λ) = 1/λ. These are known to be related
to the usual classical reflection equation (6) (or its multiplicative form). But in our
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case, we do not necessarily require a priori that there is an underlying map of order
N which would be the generalization of the involution (56). Several consequences
of this construction are noteworthy. Firstly, it gives a systematic way to construct
many examples of non-skew-symmetry r -matrices. In this respect, we note that once
such an r -matrix has been obtained, it can be taken as the starting point to repeat
the procedure. It is an interesting question whether this process terminates or not and
under which conditions on g( j), τ and k. The relationship between all the solutions
of the classical Yang–Baxter equation that can be obtained in this way and the entire
set of such solutions is also an open problem which would require an understanding
of the full classification of non-skew-symmetric solutions of that equation. Such a
classification is not known so far. Secondly, one can define new Gaudin models in a
systematic way. Despite the possibility to relate the r -matrix of the new models to
the standard rational r -matrix via rescaling and reparametrization, the nature of these
models is quite different from the standard Gaudin models. Indeed, rescaling and
reparametrization of an r -matrix are known to have consequences on the model, one
of which is that reparametrization affects the skew-symmetry of the r -matrix, hence
the (non) ultralocality of the model (in field theoretical language). In our case, these
operations depend on theMöbius transformations acting on the spectral parameters and
it is the first time that such transformations are used in this context to our knowledge.
Thirdly, our results give a natural context for (40) in cases where τ is not of order 2.
Such examples have appeared before in the context of linearizable boundary conditions
[31]. However, there is no hint of an underlying Hamiltonian description of (40) in
that context. We have provided such a Hamiltonian formulation in what we could call
a time-independent setting. We hope that our results can be incorporated into a larger
theory which would contain (40) as a special case, along the same lines as the results
obtained in [26] in the standard reflection equation case. A major step in achieving
this would be to find the appropriate dynamical generalization of our N -reflection
equation. This is a completely open problem.

A related open question is the problem of quantization of the N -reflection equation
in the spirit of the quantization of the classical reflection equation [32,33]. In that
context, it is known that the semiclassical limit of the quantum structure gives the
appropriate Poisson algebra on the matrices k.
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