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Background: Measuring the extent to which renal artery stenosis (RAS) alters

renal haemodynamics may permit precision medicine by physiologically guided

revascularization. This currently requires invasive intra-arterial pressure measurement

with associated risks and is rarely performed. The present proof-of-concept study

investigates an in silico approach that uses computational fluid dynamic (CFD) modeling

to non-invasively estimate renal artery haemodynamics from routine anatomical

computed tomography (CT) imaging of RAS.

Methods: We evaluated 10 patients with RAS by CT angiography. Intra-arterial renal

haemodynamics were invasively measured by a transducing catheter under resting and

hyperaemic conditions, calculating the translesional ratio of distal to proximal pressure

(Pd/Pa). The diagnostic and quantitative accuracy of the CFD-derived virtual Pd/Pa ratio

(vPd/Pa) was evaluated against the invasively measured Pd/Pa ratio (mPd/Pa).

Results: Hyperaemic haemodynamics was infeasible and CT angiography in 4 patients

had insufficient image resolution. Resting flow data is thus reported for 7 stenosed

arteries from 6 patients (one patient had bilateral RAS). The comparison showed a

mean difference of 0.015 (95% confidence intervals of ± 0.08), mean absolute error

of 0.064, and a Pearson correlation coefficient of 0.6, with diagnostic accuracy for a

physiologically significant Pd/Pa of ≤ 0.9 at 86%.

Conclusion: We describe the first in silico estimation of renal artery haemodynamics

from CT angiography in patients with RAS, showing it is feasible and diagnostically

accurate. This provides a methodological framework for larger prospective studies

to ultimately develop non-invasive precision medicine approaches for studies and

interventions of RAS and resistant hypertension.

Keywords: computational fluid dynamics, fractional flow reserve, precision medicine, cardiovascular modeling,

non-invasive diagnosis, renal artery haemodynamics, in silico medicine
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INTRODUCTION

Renovascular disease is characterized by unilateral or bilateral
renal artery stenosis (RAS). In Western populations 90% of RAS
is caused by atherosclerotic renal artery stenosis (ARAS), and
10% by fibromuscular dysplasia (FMD) (Textor, 2017). ARAS
affects 7% of North Americans aged over 65 years (Hansen
et al., 2002), and the incidence is rising due to aging, obesity,
diabetes, and hypertension (Kalra et al., 2005). FMD affects 0.4%
of the population and is seen in younger patients (Slovut and
Olin, 2004). Reduced renal perfusion causes progressive chronic
kidney disease (CKD) and drives neurohormonal activation with
subsequent resistant hypertension, end-stage kidney disease, and
death (Textor, 2017). Major trials testing efficacy of reperfusion
by angioplasty and stenting demonstrated no benefit beyond drug
therapy (antihypertensives and statins) (Wheatley et al., 2009;
Riaz et al., 2014). However, those trials recruited patients with
physiologically mild ARAS and less severe CKD. This group are
less likely to derive benefit from revascularisation compared with
those with more severe ARAA and CKD (Hagemann et al., 2017).
There is therefore a need for less invasive method to determine
the physiological significance of ARAS. Moreover, neutral
outcomes might have been exemplified due to patients with:
median stenoses of no less than 70%, preserved renal function,
and low annual mortality (Ritchie et al., 2014). It is acknowledged
that a visually measured RAS diameter for the assessment of the
lesion’s severity has a poor correlation to quantitative methods
(Kadziela et al., 2016). Moreover, multiplanar angiographic
assessment has a poor correlation with physiological assessment
of the pressure and flow dynamics (Drieghe et al., 2008). The
dissociation is attributed to two-dimensional angiographic views
that ignore: complex vessel geometry, lesion length, radiolucent
atherosclerotic plaques, collateral circulation, microvascular
remodeling, and renal parenchymal injury both distal to the
stenosis and in the contralateral kidney (Johnson et al., 2013).

The Cardiovascular Outcomes in Renal Atherosclerotic
Lesions (CORAL) trial was initially designed to select
haemodynamically severe ARAS cases, but eligibility criteria
were expanded due to slow recruitment (Clinical Trials Identifier:
NCT00817311). This was related to the added complexity, risk,
and cost of invasive haemodynamic measurements in ARAS
which are not routine clinical practice. Recent subgroup analysis
of the CORAL trial found no benefit of revascularization amongst
those with more haemodynamically severe ARAS (Murphy et al.,
2015). Hence the potential of RAS haemodynamics to permit
precision medicine through physiologically guided trials of
revascularization remains uncertain and further studies are
hampered by the need for invasive measurements with associated
risks.

The same haemodynamic and clinical considerations are
apparent in the context of coronary artery disease. In 2007,
the landmark COURAGE trial failed to demonstrate prognostic
benefit from percutaneous coronary intervention (PCI) in stable
coronary artery disease (Boden et al., 2007), whereas subsequent
studies did demonstrate prognostic benefit when patients with

1https://clinicaltrials.gov/

demonstrable ischaemia, i.e., physiologically significant lesions
were specifically targeted (Shaw et al., 2008). More recently,
a number of studies have demonstrated the superiority of
physiological over anatomical assessment of CAD (De Bruyne
et al., 2014).

In silico medicine describes the use of computational
simulations in the diagnosis, treatment or prevention of
disease. A robust in silico technique for the non-invasive
assessment of the haemodynamic severity of RAS would enable
targeted trial recruitment and therapeutic intervention, to those
most likely to derive benefit. Better characterisation of RAS
lesion severity could also reduce the sample size required
for trials of novel interventions. An in silico application,
called VIRTUheart, has been developed at the University
of Sheffield to compute the physiological significance of
coronary artery disease from angiography using CFD modeling
(Morris et al., 2013). The aim of this proof-of-concept
study was to develop and validate a similar CFD model to
predict RAS haemodynamics from computed tomography (CT)
imaging.

MATERIALS AND METHODS

Patients
Demographic, imaging and haemodynamic data from 10 patients
with 11 stenoses (one patient had bilateral RAS) were provided
by the Department of Interventional Cardiology and Angiology
(Warsaw, Poland). The patients were both female and male,
aged between 40 and 79 years of age. Table 1 presents the
clinical profiles for the anonymised patient data set. Ethics
approval for sharing and analyzing retrospective anonymised
patient data was obtained from the local Bioethics Committee
at the Institute of Cardiology in Warsaw. Patient data was
fully anonymised prior to data sharing and analysis. We
collected CT and invasive angiographic imaging data from
consenting patients with hypertension and RAS. Patients with
prior contrast nephropathy, severe valvular disease, New York
Heart Association (NYHA) III-IV heart failure or estimated
Glomerular Filtration Rate (eGFR) below 30 mL/min were
excluded. Serum creatinine was measured and eGFR was
calculated by the modification of diet in renal disease (MDRD)
4-variable equation for each patient (Levey et al., 2006).
eGFR reflects kidney function and may also reflect distal
vascular resistance which is important for the computational
model.

CT Renal Angiography
Computed tomography renal angiography was performed with
a 64-detector CT scanner (Somatom Sensation Cardiac 64;
Siemens, Erlangen, Germany). ARAS patients had CT images
acquired as a part of the PREFFER study (Kadziela et al., 2011).
The two FMD patients underwent imaging as per standard
clinical practice. A minimum of 100 CT slices in axial, coronal,
and sagittal orientations were acquired with in-plane resolution
by pixel spacing of 0.59 to 0.83 mm. A typical example is shown
in Figure 1.
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TABLE 1 | Patient Characteristics.

Patient no. Age (yrs) Gender Stenotic Side Condition Diameter stenosis (%) eGFR (mL/min/1.73m2)

1 74 Female Left ARAS 72 62

2 65 Female Left ARAS 46 46

3 64 Male Left ARAS 72 72

4 79 Male Right ARAS 20 43

5 58 Male Left ARAS 42 86

6 57 Female Right FMD 43 87

7 49 Female Left ARAS 53 125

8 74 Male Left ARAS 76 33

9 72 Female Right ARAS 67 65

10 40 Female Both FMD n.a. 102

Age was at the time of the CT image acquisition. ARAS, atherosclerotic renal artery stenosis; FMD, fibromuscular dysplasia; eGFR, estimated Glomerular Filtration Rate.

Diameter stenosis values were calculated using the formula DS = 100-(MLD/RLD)∗100, where DS is diameter stenosis, MLD is minimum lumen diameter, RLD is reference

lumen diameter.

FIGURE 1 | Example of patient-specific CT images. Example CT images of each anatomical orientation for Patient 2: axial (i), coronal (ii), and sagittal (iii). The

arrows in the axial and coronal slices, and the box in the sagittal slice indicate the approximate location of the renal stenosis for the specific case.

Invasive Haemodynamic Measurements
Heparin (4000–5000 IU) was administered to maintain adequate
anticoagulation during the procedure. Distal pressure (Pd) was
measured with a 0.014˝ Pressure Wire 5 (Radi Medical Systems,
Sweden) and proximal pressure (Pa) was measured from the
guiding catheter tip. During pressure measurements, the tip was
disengaged from the ostium to avoid pressure damping. The
translesional ratio Pd/Pa was calculated as the ratio of mean Pd
to mean Pa. This in vivo measured Pd/Pa ratio (mPd/Pa) is a
standard measure to evaluate the haemodynamic significance of
an arterial stenosis (Subramanian et al., 2005). The hyperaemic
renal Fractional Flow Reserve (rFFR) was calculated in the same
way after the administration of 30 mg of papaverine into the renal
artery distal to the stenosis via a 3F multifunctional catheter.

COMPUTATIONAL WORKFLOW

Our computational workflow segmented and reconstructed the
patient-specific three-dimensional arterial geometries from the

CT images. CFD analysis was used to simulate the translesional
haemodynamics. The computed results were used to calculate
the ‘virtual’ Pd/Pa (vPd/Pa) which was validated against the
invasively measured Pd/Pa (mPd/Pa).

Volume Segmentation
The workflow’s first step involved segmenting a volume from
the available CT images. For that purpose the non-parametric
geodesic active regions (GAR) method was implemented,
following the algorithm presented in (Hernandez and Frangi,
2007). This segmentation model was tested and made available
through the application @neufuse, initially developed as part of
the ‘@neurIST project’2.

Computational Fluid Dynamics
CFD was implemented on the ANSYS R©-CFXTM (ANSYS
Canonsburg, United States) simulation software: a volumetric
mesh was created, the flow’s boundary conditions were set,

2http://www.aneurist.org//index.php
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FIGURE 2 | Typical volume mesh for the CFD simulations: (i) the mesh elements on the wall and on the inlet cross-section, and (ii) the tetrahedral elements inside

the volume and the prismatic layers near the wall on a cut plane can be observed.

the flow was solved on a Navier–Stokes-based solver, and the
flow solution was post-processed for the vPd/Pa estimation. The
method from Marzo et al. (2009) was adopted for the creation of
the volumetric mesh: an octree approach was implemented with
finer grids at the wall, tetrahedral elements inside the volume, and
five layers of prismatic elements adjacent to the wall (for better
accuracy of the velocity gradient). An average mesh density of
approximately 200 elements per cubedmillimeter was chosen. An
example volume mesh cross-section is presented in Figure 2.

Typical renal boundary flow conditions were chosen for the
CFD on the renal arterial segments. The 1Dmodel of the systemic
arterial tree by Reymond et al. (2011) was utilized, which provides
pressure and flow values (at rest) over a heart cycle for various
points within the renal vasculature, based on the healthy state.
Based on these data, an inlet velocity (with a plug flow velocity
profile) and an outlet peripheral resistance were set. Peripheral
resistance is defined as the ratio of the pressure drop from the
point of measurement to the capillary level along that branch to
the flow passing through the point of measurement. It describes
the resistance encountered by the blood as it flows through the
systemic arterial system and represents the effect of downstream
microcirculation (of smallest arteries and arterioles) (Bott, 2014).
For the steady flow simulations of the current study we calculated
an average from Reymond’s values over the heart cycle for the
pressure and flow boundary conditions in the renal arteries. The
ultimate vPd/Pa calculation is thus a time-averaged parameter
extracted from the time-dependent boundary data. It should
be noted that, under the aforementioned boundary conditions,
hyperaemic haemodynamics was infeasible and the study focuses
on resting flow conditions.

Additionally, we compared the vPd/Pa estimations when the
geometry included the aortic and contralateral renal geometry,
and when it did not. Reymond’s boundary conditions are
not representative of our patient data set, consisting of old
and diseased subjects. When the geometry only includes the
renal arterial segment, a realistic flow is imposed by the inlet
boundary condition and therefore this limitation is overcome.
However, when the inlet velocity boundary condition is set
on the aorta, Reymond’s measurements underestimate the
resistance of renal artery with stenosis, resulting in much

higher resistance to blood flow entering the renal artery,
which in turn results in insufficient blood flow into the renal
artery.

Therefore, for the purposes of this comparative part of our
study (patient 7 and 10), we fine-tuned the outlet pressure
in order for the blood flow into the renal artery to reach
expected generic levels. A direct comparison between the two
geometric segments was then possible by setting the boundary
flow conditions, as follows: (i) for the cases including the
aorta, a generic inlet aortic velocity boundary, and adjusted
outlet stenotic renal, contralateral renal and downstream aortic
pressure were defined, and (ii) for the cases excluding the
aorta, a generic inlet renal velocity and the same adjusted
outlet renal stenotic pressure as with case (i) were defined. The
boundary flow conditions for the comparative study and for
the aforementioned simulations on the complete data set are
illustrated in Figure 3.

The program solves the steady incompressible Navier–
Stokes momentum equations in combination with the
continuity equation. The flow solution follows the implicit
finite volume discretisation method for the numerical approach.
The blood flow is modeled as a Newtonian fluid of viscosity at
µ = 0.0035 Pa s and constant density ρ = 1066 kg m−3, and
the arterial wall is assumed to be rigid (Ferziger and Peric,
2002). The computer used for the simulations was an Intel(R)
Xeon(R) X5690 CPU @ 3.47 GHz x 12, 24.0 GB RAM, 64-bit
OS (Windows 7). The steady flow simulations took on average
2 min to solve. The general clinical protocol indicated that the
proximal pressure was measured furthest from the stenosis and
close to the opening to the aorta, whereas the distal pressure was
measured 10–20 mm downstream of the stenosis. We defined
three downstream cross-sectional areas within this range and
calculated the average pressure across each of them. Downstream
pressure was then simply defined as the arithmetic average of the
three. For the upstream pressure, an additional cross-sectional
area was carefully chosen to exclude pressure extremes resulting
from the Bernoulli effect due to the proximity of the stenosis
to the inlet boundary, and the average pressure across it was
calculated. vPd/Pa was then estimated as the ratio of downstream
to upstream pressure (Figure 4).
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FIGURE 3 | Boundary flow conditions for the set of simulations. The image summarizes the boundary flow conditions applied on the computational simulations:

(1) for the comparative study between including and excluding the aortic segment (top row) and (2) for testing the accuracy of the workflow (bottom row) across the

patient data set. The case of Patient 7 is used here for illustration purposes.

FIGURE 4 | Downstream and upstream pressure monitoring cross-sections.

Statistical Analysis
We follow the statistical analysis of (Morris et al., 2013) for the
diagnostic and quantitative accuracy of our workflow. Consensus
guidelines for RAS stenting (Parikh et al., 2014) and research
on the criteria for renovascular hypertension due to RAS (De
Bruyne et al., 2006) indicate a Pd/Pa of ≤ 0.9 as physiologically
significant. On that basis, the diagnostic accuracy was evaluated
by calculating the sensitivity, specificity, positive predictive value
(PPV), negative predictive value (NPV) and overall accuracy for
our results, with the binomial test’s 95% confidence intervals
(CIs). The correlation between mPd/Pa and vPd/Pa data was
visualized and assessed through a diagram plot. Additionally,

agreement was measured by the mean difference and absolute
error between measured and virtual values, and the standard
deviation of the differences were computed in order to illustrate
the quantitative accuracy of the workflow in a Bland–Altman
plot.

RESULTS

Volume Segmentation
Figure 5 presents the reconstructed geometries, following
a process of manual correction whereby the region of
interest was separated from local tissue artifact. Three
of the CT scans were of insufficient quality for vessel
reconstruction (indicated by a red frame in Figure 5) and
were therefore excluded from analysis. For an additional case,
the number of CT slices were insufficient in order for the
segmentation tool to process them. The successfully segmented
stenosed renal arteries include the descending aorta and the
contralateral renal artery. Patients whose renal arteries show
multiple stenoses, for example Patient 10, were suffering
from FMD.

Simulations
The following sections present the results from our study,
including a quantitative comparison to assess the accuracy of the
vPd/PA against the mPd/Pa from the simulations in the complete
dataset of 7 RASs.
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FIGURE 5 | Resulting segmented patient renal geometries. Segmented volumes of renal arteries: unsuccessful segmentation examples based on the provided CT

images are indicated by a red frame. The number for each image corresponds to patient number in Table 1.

Comparative Study With and Without
the Aorta
Table 2 shows the calculations of vPd/Pa for the two patients
of our comparative study: Patient 7 (one stenosis), and Patient
10 (double stenosis). A percentile differences in vPd/Pa
is estimated between the computations when the aortic
geometry is included and when it is not, demonstrating a
maximum difference of 1.28% for the left RAS of Patient
10. The remaining two cases present a difference of less
than 1%. Table 2 (last column) also shows the variability in
the values of downstream pressure extracted from the three
different post-stenotic locations, showing a direct correlation
between pressure variability and anatomical complexity
(Figure 5).

Quantitative Accuracy
The results of mPd/Pa and vPd/Pa are presented in
parallel in the bar plot diagram of Figure 6. This bar plot
illustrates mPd/Pa side-by-side with vPd/Pa for each patient,
indicated by their number (Patient 10’s RAS on both renal
arteries is distinguished with R for the right, and L for the
left RAS).

TABLE 2 | Comparative study between including and excluding the aortic

geometry in CFD.

Patient no. vPd/Pa (incl.

aorta)

vPd/Pa (excl.

aorta)

difference

[%]

Pd [Pa]

7 0.847 0.865 2.1 13374 ± 69

10 (Right) 0.829 0.862 3.8 12806 ± 8

10 (Left) 0.852 0.853 0.1 13037 ± 169

Quantitative differences of vPd/Pa when implementing CFD with geometries that

include and exclude the aortic segment, for Patients 7 and 10 (Patient 10 presents

a renal stenosis on both the right and the left renal artery). The last column reports

the arithmetic average and standard deviation (SD) of the downstream pressure

(Pd) calculated at three different locations for the case without the aorta only.

FIGURE 6 | Measured versus virtual Pd/Pa.

Table 3 summarizes the measures of accuracy of our
vPd/Pa estimations against mPd/Pa: the mean difference between
mPd/Pa and vPd/Pa was ± 0.015, with an average absolute
error of ± 0.064, representing a percentage error of 8.1%. Those
quantitative measures are used to illustrate the accuracy of
our computations, seen in the Bland Altman plot of Figure 7.
The correlation between measured and virtual values (Pearson
correlation coefficient r = 0.604) is illustrated in Figure 8.

Diagnostic Accuracy
Table 4 overviews the accuracy of our virtual simulations in
identifying a physiologically significant RAS. Relative to mPd/Pa,
the sensitivity, specificity, PPV and NPV of vPd/Pa was 1.0 (95%
CI 0.4–1.0), 0.67 (0.13–0.98), 0.8 (0.3–0.99) and 1.0 (0.2–1.0).
Overall diagnostic accuracy was 86%.

Frontiers in Physiology | www.frontiersin.org 6 August 2018 | Volume 9 | Article 1106

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


Mandaltsi et al. Virtual Renal Fractional Flow Reserve

TABLE 3 | Quantitative accuracy of vPd/Pa.

Patient no. mPd/Pa vPd/Pa Diameter stenosis (%)

2 0.981 0.954 46

5 1.016 0.954 42

6 0.958 0.862 43

7 0.903 0.865 53

8 0.872 0.865 76

10R 0.690 0.862 n.a.

10L 0.900 0.853 n.a.

Measures of accuracy

Mean difference ± 0.015

Standard deviation 0.087

Mean absolute error ± 0.064

Mean absolute error (%) 8.1

Pearson’s coefficient (r) 0.604

Quantitative comparison between mPd/Pa and vPd/Pa for our patient-specific

data set, evaluating the mean difference between mPd/Pa and vPd/Pa, standard

deviation, average absolute error, and Pearson’s correlation coefficient.

FIGURE 7 | Bland Altman plot. The solid line represents the mean value of the

difference between mPd/Pa and vPd/Pa, and the dotted lines create

boundaries for ± 2 standard deviations from the mean difference. Each dot

represents a stenosis and combines the knowledge for the difference and the

mean value between the measured and the virtual calculations.

DISCUSSION

This proof-of-concept study investigates a novel in silico
approach that uses CFD modeling to non-invasively estimate
renal artery haemodynamics from routine CT imaging of RAS.
Our results demonstrate that this approach is feasible and
diagnostically accurate. This may have great value in reducing the
need for invasive haemodynamic assessment. In this feasibility
study, several challenges and limitations were encountered.
Although the range of mPd/Pa reflects the expected clinical
range, the sample size was modest. There were limited available
data around 0.9 threshold and only one case was less than 0.8.

FIGURE 8 | Correlation between mPd/Pa and vPd/Pa. The diagram plots

mPd/Pa against vPd/Pa for each stenosis, where the segmented line in gray

represents the points of exact agreement between measured and virtual

calculations, while the solid line represent the data trendline of best-fit.

TABLE 4 | Diagnostic accuracy of vPd/Pa.

Patient no. Test outcome

2 True negative

5 True negative

6 False negative

7 True positive

8 True positive

10R True positive

10L True positive

Diagnostic accuracy of vPd/Pa for our patient-specific data set on the basis of

identifying a physiologically significant RAS.

It is likely that clinically and statistically more conclusive results
might be achieved with a larger sample size.

The anatomy and geometry of the stenosed segments
(Figure 5) are highly variable but some anatomic generalizations
could be made: the arteries are tortuous, they emerge
perpendicular to the aorta, and most of the stenoses are detected
very close to the ostium of the renal artery, an observation which
is clinically supported for ARASs (Kaatee et al., 1996). These
anatomic observations also posed a challenge for the in silico
simulations. The velocity field at the inlet of the renal artery
will be influenced by these sharp bifurcating angles and there
will be a difference when considering or not the aortic part.
This different flow field might result in a different pressure
distribution at these bifurcations that might influence adversely
our vPd/Pa prediction across the stenosis. As part of this study
we investigated the effect of including the aorta or not on the
accuracy of vPd/Pa. We found that the difference in the vPd/Pa
estimations was too small (< 3.8%) to justify the use of the aortic
segment. Considering the added requirements on computational
time, and boundary conditions that are largely unknown or will
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have to be invasively measured, it was decided that the workflow
should use only the stenosed arterial geometry in the vPd/Pa
calculations.

Executing the simulation including the aorta also contributed
to an improved understanding of the expected velocity profile at
the inlet of the renal artery. In our simulations, we assumed plug
flow, i.e., the velocity was constant across the inlet cross-section
(this is demonstrated in a cross-sectional area near the inlet
in Figure 9(i) for the case excluding the aortic geometry). For
the same cross-section in the case when the aortic geometry is
included [Figure 9(ii)], the velocity profile upon entry to the
renal artery, although not presenting plug flow, does not exactly
represent a parabolic velocity profile either. At a later stage, a
more complex velocity profile might be more suitable, supported
by in vivomeasurements.

For a subset of datasets (patient 7, patient 10L, patient
10R) we reported the potential impact of uncertainty in the
location of data extraction on the predicted values of downstream

pressure (Table 2). This showed only marginal effect on clinical
significance but a direct correlation between data variability
(standard deviation) and anatomical complexity, highlighting the
importance for more precise protocols for more quantitative
comparisons and analyses.

Even though patient-specific arterial geometries were used
in the CFD calculations, the applied boundary flow conditions
were generic (defined for healthy and young individuals) for
renal flows, which might have compromised the precision
of vPd/Pa. The potentially unrealistic high flow rates due to
the generic boundary flow conditions might have led to the
observed overestimation of vPd/Pa for all but one presented cases
(Figure 8). However, echo Doppler measurements of maximum
velocity at the stenoses were available, and these data were used
and compared with velocity at the same locations, to validate the
approach of using typical renal artery flows.

Despite the sample size and the generic boundary conditions,
vPd/Pa for the present data set, showed a good agreement with

FIGURE 9 | Velocity Vectors including and excluding the aorta. The figure shows the velocity vectors on a cross-sectional area of the renal artery close to the aorta

for the simulation (i) that does not include the aortic geometry, and (ii) that does.

FIGURE 10 | Examples from the CFD analysis. Pressure distributions (top row) and velocity streamlines (bottom row) are presented for the stenoses of three

patients: 6 (left column), 7 (middle column), 10 (Right RAS, right column).
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the values of mPd/Pa (only Patient’s 10 Right RAS was evaluated
just outside the 2 standard deviation boundaries, shown in
Figure 7). This vPd/Pa underestimation for Patient 10 possibly
indicates the importance of patient-specific boundary conditions,
especially for cases of severe stenosis. Nonetheless, contrary to
previous CFD studies (Morris et al., 2017), we can argue that the
influence of geometry in our workflow seems more important
than boundary conditions. It should also be noted that based on
the estimated diagnostic accuracy, and in comparison with the
standard anatomical criteria in Table 1, our workflow managed
to evaluate only one false result in identifying a physiologically
significant RAS (Table 4), demonstrating a very encouraging
result for RAS diagnosis using physiology based metrics.

The aim of these computational simulations is achieving
accuracy in calculating vPd/Pa but computational time and
memory are also of importance. It should be noted that, alongside
the presented steady simulations, finer mesh simulations and
transient simulations over the heart cycle for the dataset were
run, that rendered quantitatively insignificant differences in the
resultant vPd/Pa.

Figure 10 presents the pressure distribution (top row) and
velocity streamlines (bottom row) for three of our cases.
Considering the complex geometries, the flow, as is evident in the
figure, is also complex. Vortices are observed and areas of both
high and low pressures can be identified. Estimating a Reynolds
number for our data set is thus important. Reynolds number
in the presented results ranged between 813 and 940, with two
cases at 1463 and 1965. According to the theoretical Reynolds
definition for internal flow in straight pipes, that indicates
laminar flow. However, most of the presented geometries are far
from an assumed straight cylinder which may induce turbulence
at lower Reynolds number values. Therefore, consideration of
turbulent effects in stenosed renal arteries might be further
considered in the next research stage to achieve further accuracy.

Given the observations made in this study, there is a
clear direction for the next stage of research. A larger
clinical cohort, with a clinically representative range of mPd/Pa
values will increase statistical confidence of the hypothesized
correlations we demonstrated in this proof-of-concept study.
Standardization and automisation of the workflow will be
required in order to deal with a larger number of clinical
cases. A further limitation was the use of retrospective CT
angiographic and invasive haemodynamic data not specifically
collected for the purposes of this study. Future studies are
planned that will prospectively collect more detailed information
of invasive haemodynamics and optimize CT or magnetic
resonance image acquisition protocols. This will permit: (1)
the standardization of image resolution for increased feasibility
of volume segmentation, (2) the enhancement of in silico
predictions by complementary non-invasive measures of renal
artery blood flow using Doppler sonography (Li et al., 2008; Kaya,
2012), and (3) the more direct comparison of in silicowith in vivo
predictions by more precisely specifying the location of pressure
measurements.

Information on the functionality of the post-stenosis tissue
is important for the clinical diagnosis of RAS, but can also
affect our computational simulations, as it is reflected on

the value of peripheral resistance. eGFR which was measured
in this study can provide such an assessment and although
most of the provided cases presented normal levels of eGFR,
biomarkers for kidney function could inform our in silico
simulations in the future. Bearing in mind that there is
no consensus in the medical community on a quantitative
measure for the health of each individual kidney, creatinine
clearance rates, kidney size, resistant hypertension, and velocity
measurements comparing the stenosed artery with the aorta and
the contralateral renal artery, have been previously examined
to create an informed profile on stenosis severity (Zeller et al.,
2008; Noory et al., 2016; Staub et al., 2016). There has also
been recent research on the use of MRI for the assessment of
kidney perfusion (Odudu et al., 2012). Consequently, knowledge
on the functionality of the stenosed kidney provided clinically
at a later study, combined with a statistically significant
data set size, could contribute to the investigation of a
correlation between peripheral resistance and renal function
clinical indicators.

This study demonstrated the potential value of in silico
assessment of renal haemodynamics for the purposes of RAS
diagnosis, implementing a fast segmentation of high standard,
and calculating reliable values of vPd/Pa. The next stage of
research, based on the presented analysis, will largely contribute
to reliably illustrating the importance of non-invasive renal
haemodynamics on diagnosis.

CONCLUSION

This is the first in silico assessment of renal artery
haemodynamics from CT angiography. This approach is
feasible and diagnostically accurate. Non-invasive renal artery
haemodynamic assessment may facilitate precision medicine in
patients with RAS and resistant hypertension.
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