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Abstract

Here we present first results simulating plasma filaments in non-axisymmetric geometries, using

a fluid turbulence extension of the BOUT++framework. This is made possible by the

implementation of the flux coordinate independent (FCI) scheme for parallel derivatives, an

extension of the metric tensor components which allows them to vary in three dimensions, and

development of grid generation. Tests have been performed to confirm that the extension to three

dimensional metric tensors does not compromise the accuracy and stability of the associated

numerical operators. Recent changes to the FCI grid generator in BOUT++, including a

curvilinear grid system which allows for potentially more efficient computation, are also

presented. Initial simulations of seeded plasma filaments in a non-axisymmetric geometry are

reported. We characterize filaments propagating in the closed-field-line region of a low-field-

period, rotating ellipse equilibrium as inertially-limited by examining the velocity scaling and

currents associated with the filament propagation. Finally, it is shown that filaments in a non-

axisymmetric rotating ellipse equilibrium propagate in a toroidally nonuniform fashion, and it is

determined that the long connection lengths in the scrape-off-layer enable parallel gradients to

establish, which has consequences for interpretation of experimental data.

Keywords: blob, filament, BOUT++, BSTING, stellarator, turbulence, fluid turbulence

(Some figures may appear in colour only in the online journal)

1. Introduction

Neoclassical transport is the dominant loss mechanism in

sufficiently hot stellarator plasmas and can dominate in the

plasma core [1]. In the outer, colder parts of the plasma,

however, turbulence becomes more important and therefore

dominates the plasma edge region [2]. Since the Wendelstein

7-X stellarator [3] has been optimized to have low neo-

classical transport, turbulent transport could become com-

parable to neoclassical losses even in the center of the plasma.

Wendelstein 7-X has already demonstrated novel edge phy-

sics; poloidally rotating filaments as measured by visible

cameras [4], and a high-frequency variation of limiter heat

fluxes [5] merit numerical investigation. Furthermore, the

edge of Wendelstein 7-X in the island divertor configuration

exhibits long connection lengths, such that cross field trans-

port can become comparable to parallel transport. Predicting

this cross-field transport in high density, collisional, detached

plasmas without an ad hoc assumption for diffusion is a

motivation of this work. It is becoming increasingly important

to simulate turbulence in non-axisymmetric configurations.

In stellarator core plasmas, the most common method for

simulating plasma turbulence is with gyrokinetic codes such

as GENE [6], which is feasible due to the closed flux surfaces

and the low collisionality. However, the simulations are

computationally expensive for long (on the order of con-

finement time) temporal and global spatial scales. Addition-

ally, GENE simulations are currently limited to flux-tube and

flux-tube-ensemble geometries.
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The high collisionality of tokamak and stellarator edge

plasmas facilitates a fluid approach to turbulence simulations.

While there are several fluid turbulence simulation codes for

tokamak geometries [7–9], previous attempts to develop such

a simulation framework for stellarators have been

unsuccessful.

The recent implementation of the flux coordinate inde-

pendent (FCI) [10] method for parallel derivatives in BOUT+

+has allowed for simulations in non-axisymmetric geome-

tries [11, 12]. Instead of aligning the computational grid to

magnetic field lines, the FCI method uses interpolation of

field line mapping on poloidal (or, in the case of linear geo-

metries, azimuthal) planes to obtain values for finite-differ-

ence differentiation parallel to the magnetic field. In BOUT++,

a cubic Hermite spline is utilized, although other methods

have been implemented [12]. The FCI method removes the

inherent singularities in flux- or field-aligned coordinates near

magnetic null points. Additionally, since the computational

grid is no longer aligned to the magnetic field, the simulation

of complex geometries including X-points is possible. For a

more complete discussion of the FCI method, see [10–12].

Here, we present the first results simulating plasma fluid

turbulence in non-axisymmetric geometries, made possible by

extensive modifications to the BOUT++framework [13, 14].

Section 1.1 describes the recent modifications to the BOUT+

+framework which are relevant for this work. Initial testing

of the modified framework is described in section 2, where

sections 2.1 and 2.2 test the accuracy FCI parallel gradient

operators and their associated boundary conditions, and

section 2.3 reports the modifications to the Laplacian inver-

sion algorithms. Section 3 introduces a new curvilinear

coordinate system for FCI simulations inBOUT++which is

used in section 4 to simulate plasma filaments in non-axi-

symmetric geometries; filaments in the closed-field-line

region of a rotating ellipse geometry are determined to be

inertially-limited and exhibit a toroidally non-uniform pro-

pagation, a result which has implications for interpretation of

experimental data. Finally, section 5 describes how the cur-

vilinear FCI grids can be used for simulation of realistic

geometries, namely Wendelstein 7-X.

1.1. Modifications to the BOUT++framework

The BOUT++framework is a modular, object oriented and

open source framework for fluid simulations with an inter-

national team of developers [13]. This paper presents recent

progress in modifying BOUT++to Simulate Turbulence In

Non-axisymmetric Geometries under the ‘BSTING’ project.

Previous work in simulating non-axisymmetric geome-

tries has focused on the conventional BOUT++framework,

which is a 3D code but was written with metric tensor

components which vary in two dimensions due to an

assumption of toroidal symmetry. For an accurate simulation

of plasma dynamics in stellarators, BSTING must include

metric components which are fully three dimensional. This

extension to three dimensions is simple in principle (and was

in fact mentioned in the introduction of the original BOUT+

+ paper [13]), but unfortunately the geometrical components

are integral to many different parts of the code, and the work

presented here has required extensive modifications to the

framework.

The majority of modifications are primarily focused on

the numerical methods of spatial operators and do not affect

file handling, parallelization, post processing, and many other

functions in BOUT++. Development has focused on imple-

menting operators relevant to edge transport and turbulence

simulations: spatial derivatives of scalar fields which vary in

three dimensions, and Laplacian inversion. Here we address

the most relevant issues: the accuracy of spatial gradient

operators, boundary condition implementation, and Laplacian

inversion which allows plasma potential to be calculated from

vorticity. The following section provides initial tests for the

implementation of these methods.

2. Testing

The development of BSTING is an extensive modification to

the BOUT++framework, and therefore careful testing of

numerical accuracy is required. In this section, we concentrate

on ensuring the accuracy of spatial derivatives, boundary

conditions, and Laplacian inversion. All tests in this section

use a geometry where the poloidal planes are described by the

radial x-coordinate and vertical z-coordinate while the y-

coordinate describes the toroidal (or longitudinal in linear

geometries) direction. The FCI operators therefore interpolate

the relevant values based on field line mapping in the x–z

planes. The FCI method relies only on the local magnetic

field, and can handle both axisymmetric and non-axisym-

metric geometries. In section 3 we will discuss an alternative

poloidal coordinate system for complex geometries.

2.1. Flux surface mapping using heat diffusion

Preconditioning is often used in implicit time integration

schemes, to step over fast dynamics [15]. In BOUT++ with

structured grids this has been used effectively to precondition

shear Alfvén waves [14], though not the more dispersive

kinetic Alfvén waves which are present in most models of

interest. When using the FCI technique the domain can not in

general be divided into magnetic flux surfaces, making pre-

conditioning of parallel dynamics in some cases more diffi-

cult. In many cases the preconditioner would involve solving

a 3D problem, but preconditioning of kinetic Alfvén waves in

any case couples perpendicular and parallel directions. Design

and implementation of an effective preconditioner with the

FCI technique is the subject of ongoing work, so here we use

explicit or implicit timestepping with no preconditioner.

A potential issue with the implementation of the FCI

scheme as discussed in section 1.1 is that since the poloidal

planes are not orthogonal to the magnetic field lines, there

could be a considerable pollution of perpendicular dynamics

due to the projection of parallel effects [16]. A simple and

common test to ensure the proper calculation of parallel

dynamics using the FCI method in complex geometries is to

implement a parallel diffusion model such as that shown in

2

Plasma Phys. Control. Fusion 61 (2019) 025007 B Shanahan et al



equation (1).

¶
¶
=   º · ( · ) ( )

f

t
f fbb , 12

where b is the magnetic field vector. Here the diffusion model

in equation (1) is used to test the numerical diffusion in a

rotating ellipse equilibrium as done in [11, 12]. Specifically,

we will simulate this model on a rotating ellipse geometry.

The input grid for BSTING is created by the Zoidberg grid

generator, using an analytic description of the magnetic field

based on coil currents and position. A Poincaré plot showing

the flux surfaces calculated in Zoidberg is shown in figure 1.

Figure 2 illustrates that simulating a parallel diffusion

model qualitatively reveals the flux surfaces for a rotating

ellipse equilibrium, recovering the results from [11, 12]—

however this result differs in that it uses fully three dimen-

sional metric tensor components, whereas the previous results

utilized a metric tensor that varied in only two dimensions. It

is perhaps worth mentioning that in initial testing the addition

of variation in the third dimension has increased calculation

time by about 5%–15%, so calculations do not require pro-

hibitively more resources relative to conventional BOUT+

+simulations. This added flexibility allows for non-axisym-

metric toroidal geometries. Figure 3 indicates the flux sur-

faces as calculated by BSTING in a toroidal rotating ellipse

geometry. The red surfaces indicate the 2D projection for the

core region on each poloidal plane, and the blue/green cloud

is the interpolated function between the poloidal planes.

This heat flux mapping indicates that the FCI operators

are capable of simulating non-axisymmetric geometries after

the transition to three dimensional metric tensors in BSTING.

The following section will use a more quantitative method to

ensure the numerical operators and implementation of

boundary conditions with three dimensional metric tensors

have sufficiently small numerical error.

2.2. Method of manufacturing solutions for parallel derivatives

Imposing correct boundary conditions on plasma fluid tur-

bulence simulations is complicated [18]—but the FCI method

has particular issues at the boundaries, since the field lines can

leave the domain before reaching the next toroidal plane,

therefore leading to non-uniform grid point spacing for

interpolation and complicating the correct calculation of

derivatives. There have been a few recent advances in

boundary condition calculation for FCI operators; BOUT+

+utilizes the Leg-Value-Fill (LVF) method detailed in [12],

which employs a Taylor expansion about the boundary to

extrapolate the fields onto the ‘leg’ of the field line which lies

outside the boundary. In this section we extend previous

testing [12] using the method of manufactured solutions

[19, 20] to ensure that the extension to three dimensional

metric tensors has not diminished the accuracy and stability of

the framework. Two coupled differential equations were

therefore simulated for a single time step:

¶
¶
=  +   ( )

f

t
g D f 22

¶
¶
=  +   ( )

g

t
f D g, 32

where parameters are identical to those in [12]; namely,

D=10, and the domain measures 0.1 × 10 × 1 (x, y, z)

meters. The magnetic geometry is a sheared slab, such that

(Bx, By, Bz)=(0, 1, 0.05 + (x-0.05)/10). The manufactured

solutions are also those from [12]:

= - + -( ¯ ¯) ( ) ( ¯ ¯) ( )f y z t y zsin cos sin 2 4

= - - -( ¯ ¯) ( ) ( ¯ ¯) ( )g y z t y zcos cos sin 2 , 5

where ȳ and z̄ are normalized between 0 and 2π. The diffu-

sion terms in equations (2) and (3) scale with y-spacing, and

do not affect the convergence of . Therefore the grid is

scaled in y and z simultaneously. Figure 4 indicates the

convergence of FCI operators in BSTING, including LVF

boundary conditions.

Figure 1. Poincare plot indicating the flux surfaces in the analytic
straight rotating ellipse equilibrium as calculated by the Zoidberg
grid generator.

Figure 2. Flux surfaces for a straight rotating ellipse equilibrium as
calculated using the flux coordinate independent operators in
BSTING, reproducing to the test shown in figure 4 from [17].

Figure 3. Non-axisymmetric flux surfaces for a toroidal rotating
ellipse equilibrium as calculated in BSTING.
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Figure 4 indicates a second order convergence of our

operators. Explicitly, the convergence order is 2.08 for f, and

2.26 for g. A second order convergence is expected, as the

FCI operators are second-order-central-differencing operators.

Having established the accuracy and stability of the FCI

operators and the associated LVF boundary conditions in

BSTING, the following section describes the implementation

of Laplacian inversion routines which allow for the calcul-

ation of plasma potential from vorticity.

2.3. Laplacian inversion with complete poloidal metrics

One of the advantages of BOUT++is its modular nature;

numerical methods can be modified without compromising

the stability or accuracy of the rest of the framework. For this

reason, several different methods for Laplacian inversion

have been implemented in BOUT++. Unfortunately for

BSTING, many of these routines assume a periodicity in one

direction (the z coordinate, usually the toroidal angle in tok-

amak simulations), since BOUT++was originally designed to

simulate turbulence in tokamak scrape-off-layers. Recent

work on implementing the Hermes model [21] in BOUT+

+has included several new numerical methods. One of these

is the implementation of a Laplacian inversion routine in three

dimensions, which inverts an inhomogeneous Helmholtz

equation in the conservative form:

  + =^· ( ) ( )A f Bf b, 6

where A and B are coefficients set based on the equation to be

solved, b is most often vorticity and f is the unknown quantity

for which one solves (usually plasma potential). In most cases

for fluid turbulence simulations, B=0 so that this equation

becomes a Laplacian equation. Here, the Laplacian is solved

at each poloidal or azimuthal slice separately. The dis-

cretization of equation (6) is then described in terms of fluxes

through cell faces in the poloidal plane:

¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

¶
¶

+
¶
¶

¶
¶

+ =

⎜ ⎟

⎜ ⎟

⎛

⎝

⎞

⎠

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠

( )

J x
JAg

f

x J z
JAg

f

z

J x
JAg

f

z J z
JAg

f

x

Bf b

1 1

1 1

,

7

xx zz

xz xz

where J is the Jacobian, g ij are the metric tensor components,

and A, B and b are variables which are specific to each

situation. The current implementation of this solver utilizes

the PETScsuite of data routines [22], which is available with

several features including preconditioners for efficient com-

putation. This implementation differs from conventional

BOUT++since it includes the off-diagonal metric terms (g xz
).

By setting the metric tensor components, g ij, to non-zero

values and comparing the implemented inversion routine

using PETScto explicit calculation of equation (7) indicated

a difference of less than 10−15. Testing with zero-value

diagonal metric tensor components indicated similar errors

relative to the implementation without off-diagonal metrics in

BOUT++, suggesting proper convergence of the inversion

routines.

Having implemented the FCI operators and Laplacian

inversion with Cartesian poloidal grids, the BSTING project

is now capable of simulating turbulence in non-axisymmetric

geometries. A significant challenge for this method, however,

is to handle the entire plasma cross section in a Cartesian

poloidal grid while neglecting the plasma core and far edge.

One solution to this issue is to use a penalization function to

mask the areas where the variables should not be evolved.

This method has been used previously in BOUT++ [17] to

remove solid-density magnetic coils in the simulation domain

and is currently used in with FCI operators in GRILLIX [9] to

mask the plasma core and far scrape-off-layer. The dis-

advantage of this method is that it requires a large poloidal

grid for a relatively small computational area. In the following

section we present a new method for generating FCI grids in

BOUT++and BSTING which does not use a grid over the

entire plasma cross section, potentially providing faster

computation.

3. Elliptic FCI grid generation

3.1. Implementation of elliptic grids

While all previous simulations using the FCI method have

used poloidal planes with Cartesian coordinates [9–12, 23],

this is not required. The method is independent of the poloidal

grid system as long as interpolation in these planes is cor-

rectly calculated and communicated. Here we present recent

results using structured, non-Cartesian poloidal grids which

are still logically rectangular [24, 25]. As an illustration of

this method, figure 5 illustrates a sample grid with indepen-

dent inner and outer surfaces.

These new grids have been added to the BOUT++FCI
grid generator, Zoidberg, and are included in a recent release

Figure 4. Second order convergence for FCI operators in BSTING:
the slope of the fits are 2.06 and 2.26 for f and g, respectively. The
dashed lines indicate the maximum error (described as ¥l in [12]).
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of BOUT++(version 4.1). These grids are particularly

advantageous as they include a periodic direction which could

potentially increase computational efficiency. A grid is gen-

erated by prescribing an inner and outer surface, and then

inverting an elliptic equation to connect the inner and outer

points. This process is described in detail in [24, 25], but is

repeated here.

If the inner and outer points are defined by functions of

the major radius R and vertical location Z, the points between

the surfaces defined by the coordinates x(R, Z) and z(R, Z)

obey the elliptic relation:

+ = ( )
x

R

x

Z

d

d

d

d
0 8

2

2

2

2

+ = ( )
z

R

z

Z

d

d

d

d
0 9

2

2

2

2

which can be inverted, giving:

- + = ( )aR x bR z cR z2 0 10x x z

- + = ( )aZ x bZ z cZ z2 0, 11x x z

where:

= + ( )a R Z 12z z
2 2

= + ( )b R R Z Z 13x z x z

= + ( )c R Z 14x x
2 2

which gives a nonlinear set of equations which can be solved

iteratively to determine the locations of the grid

points [24, 25].

In Zoidberg, both the inner and outer surface shapes are

independently prescribed, and can be described using various

methods: Zoidberg includes an flux surface shape generator,

which will describe a shape based on elongation, triangularity

and indentation. Alternatively, one can use the Zoidberg field

line tracer to construct flux surfaces from a given magnetic

field (i.e. from VMEC, a vacuum field solver, or an analytic

magnetic field description), and generate a shape based on

this flux surface mapping.

These grids provide an additional degree of flexibility

and avoid some potential problems—primarily how to mask

the core/outer edges: perpendicular (poloidal) boundaries are

logically perpendicular to the grid cells, simplifying the

imposition of boundary conditions—although parallel

boundaries must still utilize a method such as the LVF

method [12] discussed earlier. Some minor modifications to

numerical operators are required for this poloidally-curvi-

linear coordinate system, which are discussed in the appendix

of this work.

The right side of figure 6 illustrates the curvilinear grid

used in the following section for simulations of plasma fila-

ments in a rotating ellipse geometry, and the left side is a

lower-resolution example of the same geometry which indi-

cates the field line map locations.

This two-field period, analytically-prescribed rotating

ellipse geometry has a major radius of 2.5 m, The inner sur-

face is described by a flux surface calculated by Zoidberg, but

the rest of the grid is not aligned to flux surfaces; the outer

surface is a circle centered around the magnetic axis with a

radius of 50 cm. Therefore, this geometry incorporates both

open and closed field lines. The left side of figure 6 indicates

grid points as blue crosses. The intersection of field lines from

the previous plane are indicated by circles: red circles indicate

field lines which land within the computational domain, and

the remaining circles indicate where the field lines intersect

the boundary—either through the outer surface (blue) or inner

(black). The grid has a resolution of 68×128×16 (radial,

poloidal, toroidal), which gives an average poloidal resolution

of 0.5 cm (radial) by 1.5 cm (poloidal).

4. Nonlinear filament simulations

4.1. Isothermal reduced MHD model

The following section utilizes a finite-β electromagnetic iso-

thermal reduced magnetohydrodynamic model similar to that

used in the isothermal version of TOKAM3X [27] which

evolves vorticity ω, electromagnetic potential AP, electron

density n, and parallel momentum Γ=minvP. Electron and

ion temperatures Te and Ti are assumed constant, though

independently specified. The magnetic field is described by a

constant equilibrium field B0 and a time-evolving poloidal

field such that:

= +  ´ f( ) ( )B B A e 150

y f= +  ´  ( )B , 160

where A is the parallel component of the vector potential and

a large-aspect ratio approximation has been utilized such that

ψ=RAP.

Figure 5.An example of a curvilinear grid generated by the Zoidberg
grid generator, which can be found in the BOUT++manual [26].

5
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The equations are described as follows in SI units:

w
w n w

¶
¶
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Here ¶ º  ·b and  º  = ¶ ( )· ( )f f Bb
f

B
. The pres-

sure is = + = +( )p p p n T Te i e i . The vector = fb e0 is the

‘toroidal’ magnetic field unit vector, and = Bb B 0 is the unit

vector along the total magnetic field, assuming that the

poloidal magnetic field is small relative to the toroidal field.

Gradients in the poloidal plane, which is not necessarily

perpendicular to the magnetic field (in the case using FCI

derivatives, as is used here), are defined by

 =  - ^ ·b b0 0 . Dissipation terms are determined by

the kinematic viscosity ν and the resistivity η, in units of
-m s2 1 and Wm, respectively.

In this model, the magnetic drift term is treated generally

(in comparison to, for instance, equation (A13)) and is written

as:

  ´ =  ´ 
⎡

⎣⎢
⎤

⎦⎥
· · ( )p

B B
p

b b
23

=  ´ +  ´ ⎜ ⎟
⎛

⎝

⎞

⎠
· ( )

B B
pB B

1 1
24

2 2

=-  ´ · ( )
B

B pB
2

25
3

= ´  · ( )
B

B pb
2

log 26

which uses  ´  =· pB 0 which is valid in equilibrium

since  =· pJ 0. The curvature operator is then defined as:

= ´  ( ) · ( )C f
B

B fb
2

log 27

which has a similar form as that derived in the appendix

(equation (A8)), meaning that we can use the bracket coef-

ficient to calculate the curvature effects in curvilinear grids.

This is especially convenient as the magnetic field does not, in

general, vary solely with the major radius in stellarators—an

approximation which is often used in fluid turbulence simu-

lations [17, 28, 29]. In the simulations presented here, all

cross-field drifts are implemented with the 2nd order Arakawa

brackets [30].

4.2. A weakly-non-axisymmetric, rotating ellipse geometry

As an initial investigation of turbulence in non-axisymmetric

geometries, a seeded plasma filament in a rotating ellipse

geometry was considered. While there have been exper-

imental investigations of turbulent filaments in stellarators

[31], this study will serve as the first example of fluid

Figure 6. (Left): An example of a curvilinear grid for a rotating ellipse geometry, with an inner surface described by a flux surface, and a
circular outer surface providing both open and closed field lines. Blue crosses indicate grid points, whereas circles indicate the locations of
field line mapping from the previous plane for the FCI scheme—red circles indicate field lines which remain in the computational domain,
black circles are field lines leaving the inner boundary, and blue circles leave the outer boundary. (Right): a curvilinear rotating ellipse grid
used for simulations in section 4.
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turbulence simulations in non-axisymmetric geometries. A

seeded filament test offers a somewhat straightforward

approach to studying important phenomena in plasma trans-

port. Previous studies in BOUT++have investigated filaments

in slab [32], toroidal pinch [28], and X-point geome-

tries [17, 33].

For the studies presented here, an analytically calculated,

low-field-period rotating ellipse geometry was chosen due to

the relatively straightforward implementation and analysis.

These analytic equilibria are a necessary step before geome-

tries like W7-X. Wendelstein 7-X grids for use in BSTING

are described in section 5, but turbulence studies in these

more complex geometries will be a subject of further study.

Furthermore, low-field-period rotating ellipse geometries

exhibit a magnetic field which generally varies as 1/R (see

figure 1 from [34]), allowing for a more straightforward

analysis since this configuration is most similar to axisym-

metric configurations. Figure 7 illustrates the degree of non-

axisymmetry by plotting the variation of the magnetic field

multiplied by the major radius, since a plot of the magnetic

field strength would be dominated by the predominantly 1/R
variation.

From figure 7 it can be deduced that the magnitude

magnetic field which does not vary like 1/R only changes

toroidally by less than a percent, indicating a small degree of

non-axisymmetry in the magnetic field strength, which can

affect the drive term for filament propagation (equation (26)).

4.3. Filament characterization

To characterize filament propagation in this non-axisym-

metric geometry, a field-aligned plasma filament is first

initialized; an approximately circular density perturbation at

(R, Z, f)=(2.5, −0.3 m, 0.0) is prescribed and a simple

parallel diffusion model as in equation (1) is first simulated to

achieve an initial condition of a field-aligned filament. As this

is a low-shear geometry, the filament approximately becomes

field aligned once the initial distribution diffuses once tor-

oidally. The initial field-alignment is determined when the

maximum value of the density on a plane varies by less than

5% in a timestep (100/ωCi, where ωCi is the ion cyclotron

frequency). This condition is satisfied after 100 timesteps, or

ten thousand ion cyclotron times. This field-aligned density

distribution, where the peak density perturbation is

= ´ -n 1.05 10 m19 3, is then used as an initial condition for

the seeded filament simulation using the model described in

section 4.1. All other plasma fields are not initialized and,

once the field-aligned filament is achieved, are allowed to

develop independently. The ion and electron temperature is

set to 100 eV and the background density

is = ´ -n 1 10 m0
19 3.

Plasma filaments (or blobs) are often characterized by the

method by which the charge separation is resolved; if charge

is carried via parallel currents through the sheath, filaments

are considered ‘sheath limited’. If the connection length to the

sheath is large, however, this charge separation can be short-

circuited via perpendicular currents and the filaments prop-

agate in a so-called ‘inertially-limited’ regime [35]. Filament

propagation can also characterized by the scaling of the

propagation speed as a function of its poloidal cross section,

d̂ ; inertially limited filaments scale proportional to d^
1 2,

whereas sheath-limited filaments scale as d^
-2. A derivation of

the inertial scaling is given in the appendix B, but for a more

complete discussion of filaments, see [35, 36].

One can therefore determine the filament propagation

regime by plotting the scaling of the maximum speed as a

function of filament diameter δ⊥. The edge and scrape-off-

layer of stellarators such as Wendelstein 7-X can exhibit large

connection lengths [5]. As an initial insight into filament

behavior in a non-axisymmetric field with long connection

lengths, filaments were seeded in the closed-field-line region

in the weakly non-axisymmetric geometry discussed in the

previous sections. The scaling of these filaments is shown in

figure 8, where δ⊥=1 is normalized to 7 cm, the initial

filament diameter for the filaments in the following

section (4.4).

Similar to the tokamak (axisymmetric) case, the scaling

of filaments initialized in the closed-field-line region prop-

agate in an inertially-limited regime, as indicated by the d^
1 2

scaling in figure 8. As a confirmation of the inertially-limited

propagation, figure 9 illustrates the currents which dictate the

propagation of the filament at t≈4 μs.

Figure 7. Variation of the non-toroidal magnetic field at three different toroidal locations—obtained by multiplying the total field by the
major radius R, and calculating the difference with respect to the mean value.
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Since the divergence of the parallel current is much

smaller than the perpendicular currents, the potential differ-

ence is resolved via short-circuiting perpendicular currents,

instead of traveling along field lines to the sheath. This again

supports the characterization an inertially-limited regime. As

this is only a weakly-non-axisymmetric field, it is reasonable

to find similarities to filaments in an axisymmetric field, for

instance in [33], where inertially-limited filaments were

characterized in a MAST (tokamak) geometry. For a more

strongly-non-axisymmetric geometry such as Wendelstein

7-X, the filament propagation may exhibit different behavior,

since the filament drive changes directions relative to the

major radius within a field period. While filament simulations

in Wendelstein 7-X await a future publication, the following

section discusses how even a weakly-non-axisymmetric field

can alter the toroidal uniformity of the filament propagation.

4.4. The effects of nonaxisymmetry

If the magnetic geometry is not axisymmetric, the filament

drive due to the magnetic field curvature can vary along the

length of a filament. If the drive is toroidally non-uniform,

one would expect the propagation to also vary toroidally. It is

often assumed, however, that filaments propagate uniformly

along field lines, for instance in [31]. To test the effects of a

non-axisymmetric magnetic field, we can investigate the

propagation of a filament at different toroidal locations.

Figure 10 illustrates the radial filament velocity (solid) and

displacement (dotted) of a 100 eV plasma filament at various

toroidal angles.

Figure 10 exhibits typical behavior of plasma filaments

seen in other magnetic configurations [17, 28]; an initial radial

acceleration and expansion before being decelerated as a

result of viscosity and dissipation of the charge separation.

Figure 10 also indicates that even a modestly non-axisym-

metric field, as simulated here, can visibly affect the propa-

gation of filaments. This effect is a direct consequence of the

non-axisymmetric filament drive, as shown in figure 11 which

indicates how the magnetic drive term (black, also fitted), and

the resulting maximum filament velocity vary as a function of

toroidal angle. Here, the filament velocity is normalized to the

toroidally-averaged radial velocity at 100 timesteps. The blue

squares in figure 11 indicate the normalized velocity at each

toroidal position, averaged over the 100 timesteps. The fill

cloud indicates the standard deviation of the toroidally-nor-

malized velocity for these sample timesteps.

The non-axisymmetric propagation of filaments can be

clarified by considering the timescales associated with fila-

ment propagation. First, we approximate the timescale for

parallel propagation along a filament to follow the relation

~t
l

cs
where l is the length along the filament and cs is the ion

sound speed. In the simulations presented here,

cs≈6.9×104m s−1, which indicates that information takes

about 14 μs to propagate one meter. Therefore, if the filament

is driven non-uniformly, the time which the filament needs to

restore the symmetry is longer than the propagation timescale

t⊥, which can be approximated by assuming d» »^ ^L 7 cm
and »^ -v 13 km s 1—indicating therefore that m»t̂ 5 s.

This assertion can be tested by increasing the speed at

which this restoration is performed, for instance by increasing

the sound speed. When simulations were performed with

hotter (1 keV), smaller filaments—thus keeping the pressure

constant—the standard deviation of the position of the fila-

ments averaged 79% of that for the colder simulation, indi-

cating that a hotter filament propagates more uniformly. This

can also be seen in the resulting speed of the hotter filament,

shown as red triangles in figure 11, which does not vary as

strongly with toroidal location.

It is also possible, however, that the filament is restored

to uniform propagation toroidally at the Alfvén velocity. This

would also explain the more uniform propagation for a hotter

filament, since the density perturbation was reduced to pro-

vide an equal drive (from pressure), and the Alfvén velocity is

a function of the plasma β. To determine the extent to which

this non-axisymmetric nature is affected by the Alfvénic

effects, one can simulate a filament in an electrostatic case. In

an electrostatic case, all terms in the model described in

section 4.1 which are dependent on the plasma β are

neglected, which in essence provides an infinite Alfvén speed.

Figure 12 illustrates how the propagation of a filament in an

electrostatic and electromagnetic filament compare as a

function of toroidal angle.

Figure 12 indicates that the non-uniform propagation is

not an electromagnetic effect and thus cannot be adequately

mitigated by parallel transport at infinite Alfvénic speeds,

since the electrostatic and electromagnetic case exhibit very

similar characteristics.

5. Wendelstein 7-X curvilinear grids

BSTING is designed to provide numerical support for

experimental measurements. The curvilinear grid system

presented in section 3 has therefore been applied to Wen-

delstein 7-X geometries using various descriptions of the

Figure 8. Inertial filament scaling; filament velocity (circles) and

tend to follow a d^
1 2 scaling, indicating propagation in the inertial

regime.
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magnetic field. As this geometry is considerably more com-

plicated than the analytically-prescribed rotating ellipse

equilibria presented earlier, the following sections extend the

flux surface mapping tests to the W7-X grids.

5.1. Inherent perpendicular diffusion in W7-X curvilinear grids

Here we present the development of curvilinear poloidal grids

for Wendelstein 7-X geometries using outputs from the

VMEC code [37]. To test the implementation and limitations

of grids in this complicated geometry, the parallel diffusion

model in section 2.1, equation (1) was modified to include a

perpendicular diffusion, as shown in equation (28).

¶
¶
=   +   - · ( · ) · ( · ) ( )

f

t
f D f fbb b b 280 0

º + ^ ( )f D f . 292 2

Figure 9. An illustration of the divergences for parallel and perpendicular currents (color contours) which dictate the propagation of a
filament (black contours, overlaid); parallel currents are negligible, indicating inertially-limited propagation.

Figure 10. The effects of nonaxisymmetry; filament velocity (solid)
and position (dotted) at various toroidal angles (color) in a rotating
ellipse equilibrium.

Figure 11. Filament speed and standard deviation normalized to the
average toroidal speed, averaged over 100 timesteps, at each toroidal
position for a 100 eV filament (blue squares) and a 1 keV filament
(red triangles). The more uniform propagation of a hot filament
indicates that the sound speed determines the timescale at which
non-uniform propagation is mitigated.

Figure 12. The non-uniform propagation of an electrostatic (green
diamonds) and electromagnetic (cyan triangles) filament as a
function of toroidal angle. Similar propagation indicates that
filaments are not restored to uniformity at the Alfvén timescale.
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By setting the diffusion coefficient D to zero and simu-

lating equation (28), we can again recover flux surfaces,

similar to the results described in section 2.1. The results of

this simulation are shown in figure 13.

Varying the perpendicular diffusion coefficient D allows

us to estimate the inherent perpendicular diffusion in Wen-

delstein 7-X curvilinear grids. Figure 14 illustrates how the

proportion of the test function f at the 150th timestep com-

pares to the total test function with zero perpendicular dif-

fusion, f0, for various values of D in a Wendelstein 7-X grid

with a resolution of 132×16×256 (radial, toroidal,

poloidal). This corresponds to a resolution of approximately

0.3 mm—although this obviously is not uniform—which is a

relatively coarse resolution for a Wendelstein 7-X turbulence

study (r » 0.1 mms ).
Figure 14 indicates that the inherent numerical

perpendicular diffusion caused by pollution from parallel

dynamics is less than a factor of 10−9 times smaller than the

parallel diffusion, as this is where the points begin to diverge

significantly from the zero-diffusion case (as indicated by the

dashed line at =f f 1.0150 0 ). This inherent perpendicular
diffusion is sufficiently less than transport due to plasma drifts

and turbulence [16]. This is encouraging as this result is for a

moderate-resolution grid, and higher-resolution grids will

most likely be necessary for future turbulence simulations in

Wendelstein 7-X.

5.2. W7-X curvilinear poloidal grid for the edge and scrape-off-

layer

The grids described in the previous section are generated from

VMEC [37, 38] equilibria, which assume closed flux surfaces.

The edge of Wendelstein 7-X is much more complex as it

includes magnetic islands and stochastic magnetic field lines.

As such, another tool must be developed to trace field lines

for grids which can accurately describe this region. To this

end, development is ongoing to generate grids based on

vacuum field solvers. Figures 15(a) and (c) illustrate two

different toroidal positions of one such grid, which uses the

Wendelstein 7-X web services vacuum field solver and

components database [39] to provide a magnetic field. The

inner surface is generated by tracing flux surfaces using the

vacuum field solver, which simplifies core boundary condi-

tions and potential coupling to core profiles and sources, and

the outer surface is generated based on a description of the

Wendelstein 7-X divertor and first wall developed by Michael

Drevlak for fast particle calculations, and is also available on

the Wendelstein 7-X webservices.

Figures 15(b) and (d) display the resulting flux surfaces

calculated by simulating a parallel diffusion equation on the

vacuum curvilinear grid, and overplot an example of a

Poincaré plot for a nearby flux surface. This grid serves as a

promising first step towards full edge Wendelstein 7-X

simulations, which await a further publication following an

effort to further parallelize FCI calculations and the imple-

mentation of a radial electric field profile. In addition to

vacuum field solvers, Zoidberg has also been modified to use

EXTENDER [40], allowing both plasma-generated magnetic

fields and a smooth vacuum solution outside of the last closed

flux surface.

6. Conclusions

The first fluid turbulence simulations in a non-axisymmetric

geometry have been performed, following the extension of

Figure 13. Three cross sections of the Wendelstein 7-X stellarator indicating flux surfaces as traced by a parallel heat diffusion equation in
BSTING.

Figure 14. Proportion of the total test function f at the150th timestep
normalized to the zero-perpendicular-diffusion case, f0, for several
perpendicular diffusion coefficients in a Wendelstein 7-X grid.
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the BOUT++framework to allow the metric tensors to vary in

three dimensions. This project has therefore yielded the first

fluid simulation framework capable of providing edge and

scrape-off-layer turbulence simulations in three dimensional

geometries, which is necessary for numerical support of

experiments on modern tokamaks and stellarators. One major

advancement is the implementation of curvilinear grids for

use with the FCI method. Initial simulations of filament

propagation in non-axisymmetric geometry have been per-

formed, and the filaments have been characterized to prop-

agate in the inertially-limited regime. Furthermore,

simulations indicate that even a weakly-non-axisymmetric

field can significantly alter the propagation of filaments. The

long connection lengths of the scrape-off-layer in non-axi-

symmetric geometries facilitates the establishment of parallel

nonuniformity, an effect which must be considered when

interpreting experimental data. For instance, in a system with

strongly varying drive, a measurement of a turbulent structure

at one toroidal location cannot simply be extrapolated uni-

formly along the field line. Instead, one must account for the

non-uniform drive to accurately map the transport at other

toroidal locations. Since three dimensional effects are

becoming increasingly important—for instance the applica-

tion of edge magnetic perturbations—the results presented

here are applicable to both tokamak and stellarator

configurations.

Future work will include simulations of filaments in the

Wendelstein 7-X stellarator, where the non-uniform drive of a

filament can be more pronounced. The curvature drive in

Wendelstein 7-X reverses direction relative to the major

radius within a single field period, which could lead to highly

non-uniform propagation of filaments.

Figure 15. (a), (c) Curvilinear grid as generated using by the Zoidberg grid generator indicating grid points (blue crosses), and field line maps
(circles) for the FCI operators which land inside the domain (red), or leave through the inner (black) or outer (blue) surface. (b), (d): the
calculated flux surfaces by parallel heat diffusion simulations for two toroidal locations in W7-X, where the contour is the quantity f in
equation (28).
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Appendix A. Modifications to numerical operators

The poloidally curvilinear coordinate system used in this

work dictates that numerical operators in the perpendicular

(x–z) plane must carefully incorporate the geometry into the

calculation. Here we will concentrate on two operators in

particular—Poisson brackets and an example of a curvature

operator.

The operator ´  ·g fb
B

1
appears often in plasma

models and represents phenomena such as E×B advection.

It often appears in equations in the form of Poisson brackets,

and is what is referred to here as the bracket operator. To

determine the modifications for the bracket operator in BOUT

++, we start by defining real space coordinates R(x, z) and Z

(x, z) which depend on the radial coordinate x and the poloidal

coordinate z. In the current formulation, x ranges from 0 to 1,

and z from 0 to 2π. From here, we determine the covariant

coordinate vectors by taking derivatives along the real-space

coordinates:

=
¶
¶

⎜ ⎟
⎛
⎝

⎞
⎠

( )e
R

Zx
, A1i

i

where xi is either the x or z coordinate. We can now define the

metric components as:

= = =· · · ( )g g ge e e e e e A2xx xz zzx x x z z z

The y-direction is considered to be orthogonal to the x−z
plane, and is defined as the toroidal angle spanning 0 to p2 .

The nonzero metric components are therefore simply:

= = ( )g R g
R

1
, A3yy

yy2
2

where R is the major radius. The unit vector b is considered to

be perpendicular to the x–z plane and is defined as:

= = = 
·

( )
g

y gb
e

e e

e
. A4

yy

yy

y

y y

y

We can then begin to construct the bracket operator by taking:

´  =
¶
¶
 ´  +

¶
¶
 ´ 

⎡

⎣⎢
⎤

⎦⎥
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y zb A5yy
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x J
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z J
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where we have used that = ( )J det gij
2 . Finally, by taking the

dot product with f , we get:

´   = -
¶
¶
¶
¶
+
¶
¶
¶
¶

⎡

⎣⎢
⎤

⎦⎥
· ( )g f

g

J

g

x

f

z

g

z

f

x
b . A7

yy

The terms in the square brackets is defined as the Poisson

bracket, which is what is conventionally described in BOUT+

+by the bracket operator. Noting this, we arrive finally at:

´   =· [ ] ( )
B

g f
g

JB
g fb

1
, , A8

yy

where we see that a coefficient of
g

JB

yy
is required for proper

calculation of E×B advection in curvilinear grids. In

Clebsch coordinates, however, it is worth noting that

 ´  = =z x e B
J y
1

and therefore =g J Byy and this

coefficient becomes 1.

Curvature effects are one of the most important aspects of

turbulence simulations, as this can drive drifts and ballooning

behavior which contributes to radial transport. The introduc-

tion of curvilinear poloidal grids has necessitated careful

implementation of curvature operators. To determine the

effects of curvature on a quantity f, we must determine how to

calculate k´ ( ) · fb . As a simple example to illustrate this,

we begin by assuming that the curvature vector is of the form:

k =  » - · ( )
R

Rb b
1

A9

=- 
¶
¶

+ 
¶
¶

+ 
¶
¶

⎛

⎝
⎜

⎞

⎠
⎟ ( )

R
x
x
R y

y
R z

z
R

1
A10

we can then determine:

k´ =  ´ 
¶
¶

+ 
¶
¶

+ 
¶
¶

⎛

⎝
⎜

⎞

⎠
⎟( )

( )

y g x
x
R y

y
R z

z
Rb

A11

yy
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¶
¶

+
¶
¶
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g

RJ
e

R

z

g

RJ
e

R

x
A12

yy yy

x z

=-
¶
¶

+
¶
¶

( )
e

J

R

z

e

J

R

x
A13

x z

which, when dotted with f , then allows the inclusion of

curvature effects in curvilinear poloidal grids. This form of

the curvature operator can then be used for large-aspect ratio

simulations where the magnetic field varies inversely with

major radius, an approximation which is often used in plasma

fluid turbulence simulations [17, 33]. A more general curva-

ture operator is derived in section 4.1.

Appendix B. Derivation of inertial scaling

The filaments presented in this work are seeded in the closed

field line region, and should be inertially limited. Here we

repeat a derivation of the inertial blob scaling which can be

achieved by examining a current balance, starting by defining
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the diamagnetic current:

 = 
´ ⎡

⎣⎢
⎤

⎦⎥
· · ( )

enT

B

B

B
J

B
B1ia

e
d 2

d
d

~
^

( )
eT n

BR

1
, B2

c

where we have assumed:

´ 
~

B

B R

B 1
.

c
2

When considering inertially limited filaments, the dia-

magnetic current is balanced through the polarization current:

 =  ^⎡

⎣⎢
⎤

⎦⎥
· · ( )

nm

B t
J

Ed

d
. B3

i
pol 2

We assume the perpendicular electric field varies as:

d
f
d

~^

^ ^
( )

t

vEd

d
. B4

r

We also assume that the radial velocity vr is dominated by the

´E B velocity, which allows us to write:

f
d

~ ~
^

( )v
E

B B
. B5r

Therefore the polarization current can be approximated as:

d d
 »

^ ^
· ( )

nm

B

v B
J

1
B6

i r
pol 2

2

which, when equating with equation (B2), gives:

d d
d

=
+

^⎡

⎣
⎢

⎤

⎦
⎥ ( )v c

R

n

n n
, B7r s

c 0

1 2

where we have used that =c T ms i , and assumed that the
density consists of a background and a perturbation,

n=n0+δn. Therefore, in inertially limited systems where

the diamagnetic current is balanced by the polarization cur-

rent, the blob velocity scales as d^
2 .
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