This is a repository copy of The Authors reply: "Dual energy X-ray absorptiometry: gold standard for muscle mass?".

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/136626/

Version: Published Version

Article:

https://doi.org/10.1002/jcsm.12329

Reuse
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don't have to license any derivative works on the same terms. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
The Authors reply:
“Dual energy X-ray absorptiometry: gold standard for muscle mass?” by Scafoglieri et al.

We appreciate your interest in our recent publication and your valuable comments. We completely agree that there is still ambiguity in the literature on the definition and use of parameters characterizing body composition. From this perspective, DXA actually is a progression as the definition of lean and fat (according to DXA terminology) and based on differences of X-ray mass absorption coefficients. With a two energy X-ray system, two materials that differ in atomic number can be uniquely identified using a so-called base material composition. Specific calibration equations of identification of dedicated anatomical entities consisting of either one of the materials is not required. As shown by Pietrobelli et al. in terms of the so-called R-value that quantifies differences in the mass absorption coefficient for a given material at different X-ray energies fatty acids and triglycerides the ingredients of can well be separated from non-lipid body composition materials.

From this perspective, lean and fat mass as measured by DXA are clearly defined, but do not necessarily agree with anatomical entities such as the amount of adipose tissue. As fat is a term used in many different contexts, perhaps a different name should have been given to what is now known as DXA fat mass. We agree that DXA lean body mass is smaller than FFM. FFM is the mass of the body excluding the chemical fat. So essential lipids are also excluded. Lean body mass, interpreted the ‘DXA way’, is the soft lean tissue of the body, excluding the bone minerals and the chemical fat. However, lean body mass from a historical point of view, does include the bone, and very closely resembles FFM (but is not perfectly the same). What we would like to stress is that the concept of lean body mass (of FFM for that matter) is not perfectly the same). What we would like to stress is only the difference in the lean composition, i.e. the variation of relative amounts of water, protein, and glycogen remains.

With regard to estimations of fat-free mass and (appendicular) lean mass using bioelectrical impedance (BIA), we appreciate the confirmation that large prediction errors at the individual level may occur which hampers the use of BIA in clinical practice. We also showed that on a group level, discrepancies might occur between lean mass predicted by BIA and lean mass measured by DXA. We agree these discrepancies should not be interpreted as BIA not being valid to assess lean mass. We merely provided these examples to highlight the fact that estimates of lean mass from BIA clearly differ from those from DXA, thereby influencing the interpretation of findings (e.g. the prevalence of sarcopenia and the comparison of data obtained with different methods).

Given the high degree of DXA standardization, excellent precision, the high correlation of DXA lean mass with muscle mass and muscle volume, currently DXA seems to be the best reference technique, in particular for appendicular muscle measurements. This does not imply that DXA will be the gold standard for the diagnosis of sarcopenia, which requires a functional component in addition to appendicular muscle mass assessments. It also calls for further efforts to develop anthropometric standards representing the wide range of body compositions encountered in the clinical routine in order to validate the accuracy of methods, such as DXA and BIA. At this stage, the scientific evidence derived from the published literature seems to support the conclusions of the original article.

Conflict of interest

The authors declare no conflict of interest. The authors certify that they comply with the ethical guidelines for publishing in the Journal of Cachexia, Sarcopenia and Muscle: update 2017.
Correspondence

Francesco Landi
Department of Geriatrics, Neurosciences and Orthopedics, Catholic University of the Sacred Heart Rome, Milan, Italy

Matteo Cesari
Gérontopôle, University Hospital of Toulouse, Toulouse, France
INSERM UMR1027, University of Toulouse III Paul Sabatier, Toulouse, France

Roger A. Fieding
Nutrition, Exercise Physiology and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA

Marjolein Visser
Department of Health Sciences, VU University Amsterdam, Amsterdam, Netherlands
Department of Nutrition and Dietetics, Internal Medicine, VU University Medical Center, Amsterdam, Netherlands

Klaus Engelke
Institute of Medical Physics, University of Erlangen, Erlangen, Germany

Stefania Maggi
National Research Council, Neuroscience Institute, Aging Branch, Padova, Italy

Elaine Dennison
MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK

Nasser M. Al-Daghri
Prince Mutaib Chair for Biomarkers of Osteoporosis, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia

Sophie Allepaerts
Department of Geriatrics, CHU-Liège, Liège, Belgium

Jurgen Bauer
Department of Geriatric Medicine, Klinikum, Carl von Ossietzky University, Oldenburg, Germany

Ivan Bautmans
Gerontology and Frailty in Ageing Research Department, Vrije Universiteit Brussel (VUB), Brussels, Belgium

Maria Luisa Brandi
Department of Surgery and Translational Medicine, University of Florence, viale Pieraccini 6, Florence 59139, Italy

Olivier Bruyère
Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium

Tommy Cederholm
Human Medicines Research and Development Support Division, Scientific Advice, London, UK

Francesca Cerreta
Human Medicines Research and Development Support Division, Scientific Advice, London, UK

Antonio Cherubini
Geriatrics and Geriatric Emergency Care, IRCCS-INRCA, Ancona, Italy

Cyrus Cooper
MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK

NIHR Musculoskeletal Biomedical Research Unit, University of Oxford, Oxford, UK

Alphonso Cruz-Jentoft
Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis), Madrid, Spain

Eugene McCloskey
Centre for Metabolic Bone Diseases, University of Sheffield, Sheffield, UK
MRC and Arthritis Research UK Centre for Integrated Research in Musculoskeletal Ageing (CIMA), London, UK

Bess Dawson-Hughes
Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA

Jean-Marc Kaufman
Department of Endocrinology and Unit for Osteoporosis and Metabolic Bone Diseases, Ghent University Hospital, Ghent, Belgium

Andrea Laslop
Scientific Office, Austrian Agency for Health and Food Safety, Vienna, Austria

Jean Petermans
Department of Geriatrics, CHU-Liège, Liège, Belgium

Jean-Yves Reginster
Department of Public Health, Epidemiology and Health Economics, University of Liège, Liège, Belgium

René Rizzoli
Service of Bone Diseases, Department of Internal Medicine Specialties, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland

Sian Robinson
MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton, UK
National Institute for Health Research Southampton Biomedical Research Centre, University of Southampton and University Hospital, Southampton NHS Foundation Trust, Southampton, UK

DOI: 10.1002/jcsm.12329
References