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Abstract—Input/Output (I/O) operations can represent a sig-
nificant proportion of run-time when large scientific applications
are run in parallel and at scale. In order to address the growing
divergence between processing speeds and I/O performance, the
Parallel Log-structured File System (PLFS) has been developed
by EMC Corporation and the Los Alamos National Laboratory
(LANL) to improve the performance of parallel file activities.
Currently, PLFS requires the use of either (i) the FUSE Linux
Kernel module; (ii) a modified MPI library with a customised
ROMIO MPI-IO library; or (iii) an application rewrite to utilise
the PLFS API directly.

In this paper we present an alternative method of utilising
PLFS in applications. This method employs a dynamic library
to intercept the low-level POSIX operations and retarget them
to use the equivalents offered by PLFS. We demonstrate our
implementation of this approach, named LDPLFS, on a set of
standard UNIX tools, as well on as a set of standard parallel
I/O intensive mini-applications. The results demonstrate almost
equivalent performance to a modified build of ROMIO and
improvements over the FUSE-based approach. Furthermore,
through our experiments we demonstrate decreased performance
in PLFS when ran at scale on the Lustre file system.

Index Terms—Data Storage Systems, File Systems, High Per-
formance Computing, I/O

I. INTRODUCTION

Historically, much of the high performance computing (HPC)

industry has focused on the development of methods to

improve compute-processing speeds, creating a tendency to

measure performance in terms of floating-point operations

per second (FLOP/s). The result has been that many other

contributors to application performance have developed at a

slower rate. An example of this are input and output (I/O)

activities which are required to read and store application

data and checkpoints. As the performance of I/O systems

continues to diverge substantially from compute performance,

a number of projects have been initiated to look for software-

and hardware-based solutions to address this concern.

One recent project of note is the Parallel Log-structured File

System (PLFS) which is being actively developed by EMC

Corporation, the Los Alamos National Laboratory (LANL) and

their academic and industrial partners [1]. To date, PLFS has

been reported to yield large gains in both application read and

write performance through the utilisation of two well known

principles for improving parallel file system performance: (i)

through the use of a log-structured file system – where write

operations are performed sequentially to the disk regardless of

intended file offsets (keeping the offsets in an index structure

instead); and (ii) through the use of file partitioning – where

a write to a single file is instead transparently transposed into

a write to many files, increasing the number of available file

streams.

Currently PLFS can be deployed in one of three ways:

(i) through a File System in Userspace (FUSE) mount point,

requiring installation and access to the FUSE Linux Kernel

module and its supporting drivers and libraries; (ii) through

an MPI-IO file system driver built into the Message Passing

Interface (MPI) library; or (iii) through the rewriting of an

application to use the PLFS API directly. These methods

therefore require either the installation of additional software,

recompilation of the MPI application stack (and, subsequently,

the application itself) or modification of the application’s

source code. In HPC centres which have a focus on relia-

bility, or which lack the time and/or expertise to manage the

installation and maintenance of PLFS, it may be seen as too

onerous to be of use.

In this paper we present an alternative method of using

PLFS that avoids the need to rewrite applications, obtain

specific file/system access permissions, or modify the applica-



tion stack. Such a method will allow HPC centres to quickly

and simply assess the impact of PLFS on their applications

and systems. We call this solution ‘LDPLFS’ since it is

dynamically linked (using the Linux linker ld) immediately

prior to execution, enabling calls to POSIX file operations to

be transparently retargeted to PLFS equivalents. This solution

requires only a simple environment variable to be exported

in order for applications to make use of PLFS – existing

compiled binaries, middleware and submission scripts require

no modification.

Specifically, this paper makes the following contributions:

• We present LDPLFS, a dynamically loadable library

designed to retarget POSIX file operations to functions

on PLFS file containers. We demonstrate its use with

standard UNIX tools, providing users with an alternative

method for extracting raw data from PLFS structures

without the need for a FUSE file system;

• We demonstrate the performance of LDPLFS in parallel

with respect to: the FUSE mounted alternative, the PLFS

ROMIO file system driver and standard MPI-IO file

operations without PLFS. Our study shows performance

that is near identical to the PLFS ROMIO driver and

greater than the PLFS FUSE file system, without the need

for FUSE specific permissions;

• Finally, we utilise LDPLFS at scale on the 260 TFLOP/s

Sierra cluster located at the Lawrence Livermore National

Laboratory (LLNL), utilising two mini-applications de-

signed for file system performance analysis. We show

how LDPLFS can improve the performance of applica-

tions without requiring any modification to the system’s

environment or an application’s source code. We also

demonstrate that on the Lustre file system used by Sierra,

PLFS can harm an application’s performance at scale,

most likely due to a bottleneck being created by the

metadata server (MDS).

The remainder of this paper is organised as follows: Section 2

outlines related work in the area of I/O optimisation; Section

3 discusses the experimental setup used in this study, the

mechanics of LDPLFS, and an analysis of its performance

compared to the FUSE and ROMIO alternatives; Section 4

contains a case study demonstrating the performance gains

of LDPLFS in parallel using a number of I/O intensive

mini-applications; finally, Section 5 concludes the paper and

outlines future work.

II. BACKGROUND AND RELATED WORK

Just as the Message Passing Interface (MPI) has become the

de facto standard for the development of parallel applications,

so too has MPI-IO become the preferred method for handling

I/O in parallel [2]. The ROMIO implementation [3] – utilised

by OpenMPI [4], MPICH2 [5] and various other vendor-

based MPI solutions [6], [7] – offers a series of potential

optimisations.

Firstly, collective buffering has been demonstrated to yield a

significant speed-up, initially on applications writing relatively

small amounts of data [8], [9] and more recently on densely

packed nodes [10]. These improvements come in the first

instance due to larger “buffered” writes which better utilise

the available bandwidth and in the second instance due to the

aggregation of data to fewer ranks per node, reducing on-node

file system contention.

Secondly, data-sieving has been shown to be extremely

beneficial when utilising file views to manage interleaved

writes within MPI-IO [9]. In order to achieve better utilisation

of the file system, a large block of data is read into memory

before small changes are made at specific offsets. The data is

then written back to the disk in a single block. This decreases

the number of seek and write operations that need to be

performed at the expense of locking a larger portion of the

file.

Another approach shown to produce large increases in

write bandwidth is the use of so called log-structured file

systems [11]. When performing write operations, the data is

written sequentially to persistent storage regardless of intended

file offsets. Writing in this manner reduces the number of

expensive seek operations required on I/O systems backed by

magnetic disks. In order to maintain file coherence, an index

is built alongside the data so that it can be reordered when

being read. In most cases this offers a large increase in write

performance at the expense of poor read performance.

In the Zest implementation of a log-structured file sys-

tem [12], the data is written in this manner (via the fastest

available path) to a temporary staging area that has no read-

back capability. This serves as a transition layer, caching data

that is later copied to a fully featured file system at a non-

critical time.

As well as writing sequentially to the disk, file partitioning

has also been shown to produce significant I/O improvements.

In [13] and [14], an I/O profiling tool is utilised to guide

the transparent partitioning of files written and read by a set

of benchmarks. Through segmenting the output into several

files spread across multiple disks, the number of available

file streams is increased, reducing file contention on the I/O

backplane. Furthermore, file locking incurs a much smaller

overhead as each process has access to its own unique file.

PLFS from LANL [1] combines file partitioning and a log-

structure to improve I/O bandwidth. In an approach that is

transparent to an application, a file access from n processors

to 1 file is transformed into an access of n processors to

n files. The authors demonstrate speed-ups of between 10×

and 100× for write performance. Furthermore, due to the

increased number of file streams, they report an increased

read bandwidth when the data is being read back on the same

number of nodes used to write the file [15]. Whilst the log-

structured nature of the file system usually decreases the read

performance, the use of file partitioning has a much greater

effect in this respect on large I/O systems.

As discussed, PLFS can currently be used in one of three

ways, each with advantages and disadvantages.

Firstly, the use of the FUSE kernel module and device

allows PLFS to be utilised by any user, but due to passing data
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Fig. 1: An applications view of a file and the underlying PLFS

container structure.

in and out of the kernel, may produce the worst performance of

the three options. It may also introduce several known security

issues, such as non-privileged access to block devices, or

privilege escalation. Furthermore, the installation of FUSE also

requires administrative privileges which may not be available

on shared systems (such as the Sierra supercomputer used in

Section IV).

Secondly, PLFS can be used by building a modified version

of the MPI library to include the PLFS ROMIO MPI-IO driver.

This method strikes a balance in performance between the

FUSE module and an application rewrite. However, recompi-

lation of the MPI library may introduce performance issues

in other areas, since optimisations found in the system’s MPI

installation may not be present in a modified build.

Finally, an application can be rewritten to use the PLFS

API directly. This has the potential to produce the greatest

performance at the expense of application redevelopment and

recompilation. However, neither a modified MPI library or an

application rewrite will allow users to view PLFS files as if

they were single files. Any applications that do not use MPI or

the PLFS API will not be able to load PLFS containers. This

may make the output of visualisation dumps, through PLFS,

inaccessible to the user.

In this paper we aim to offer an alternative approach that

operates much like the MPI-IO ROMIO driver without the

need to recompile the application stack. Furthermore, our

approach can take advantage of advanced MPI-IO features,

such as collective buffering and data-sieving, that are not

available when using the PLFS API directly.

III. PERFORMANCE ANALYSIS

A. LDPLFS

PLFS is a virtual file system that makes use of file partitioning

and a log-structure to improve the performance of parallel file

operations. Each file within the PLFS mount point appears to

an application as though it is a single file; PLFS, however,

creates a container structure, with a data file and an index for

each process or compute node. This provides each process

with its own unique file stream, increasing the available

i n t open ( c o n s t c h a r ∗ f i l e n a m e , i n t f l a g s , mode t mode ) ;

i n t p l f s o p e n ( P l f s f d ∗fd , c o n s t c h a r ∗ f i l e n a m e , i n t f l a g s ,

p i d t pid , mode t mode , Pl f s open opt ∗open op t ) ;

s s i z e t w r i t e ( i n t fd , c o n s t vo id ∗buf , s i z e t c o u n t ) ;

s s i z e t p l f s w r i t e ( P l f s f d ∗ p l f s f d , c o n s t vo id ∗buf ,

s i z e t count , o f f t o f f s e t , p i d t p i d ) ;

s s i z e t r e a d ( i n t fd , void ∗buf , s i z e t c o u n t ) ;

s s i z e t p l f s r e a d ( P l f s f d ∗ p l f s f d , void ∗buf ,

s i z e t count , o f f t o f f s e t ) ;

Listing 1: Open, Read and Write functions from the POSIX

and PLFS API.

bandwidth, as file writes do not need to be serialised [10].

Figure 1 demonstrates how a six rank (two processes per rank)

execution would view a single file and how it would be stored

within the PLFS backend directory.

LDPLFS is a dynamic library specifically designed to

interpose POSIX file functions and retarget them to PLFS

equivalents. By utilising the Linux loader, LDPLFS overloads

many of the POSIX file symbols (e.g. open, read, write),

causing an augmented implementation to be executed at run-

time1. This allows existing binaries and application stacks to

be used without the need for recompilation. For systems where

dynamic linking is either not available or is only available in

a limited capacity (such as on an IBM BlueGene system), a

static LDPLFS library can be compiled and, through the use

of the -wrap functionality found in some compilers, can be

linked at compile time.

Due to the difference in semantics between the POSIX

and PLFS APIs, LDPLFS must perform two essential book-

keeping tasks. Firstly, LDPLFS must return a valid POSIX

file descriptor to the application, despite PLFS utilising an

alternative structure to store file properties. Secondly, as the

PLFS API requires an explicit offset to be provided, LDPLFS

must maintain a file pointer for each PLFS file. Listing 1 shows

three POSIX functions and their PLFS equivalents.

When a file is opened from within a pre-defined PLFS

mount point, a PLFS file descriptor (Plfs_fd) pointer is

created and the file is opened with the plfs_open function

(using default settings for Plfs_open_opts and the value

of getpid() for pid_t). In order to return a valid POSIX

file descriptor (fd) to the application, a temporary file (in

our case /dev/random) is also opened. The file descriptor

of the temporary file is then stored in a look-up table and

related to the Plfs_fd pointer. Future POSIX operations on

a particular fd will then either be passed onto the POSIX

API, or if a look-up entry exists, the PLFS library.

In order to provide the correct file offset to the PLFS

functions, a file pointer is maintained through lseek()

operations on the temporary POSIX file descriptor. When a

POSIX operation is to be performed on a PLFS container,

1Note that although LDPLFS makes use of the LD_PRELOAD environmen-
tal variable in order to be dynamically loaded, other libraries can also make use
of the dynamic loader (by appending multiple libraries into the environmental
variable), allowing tracing tools to be used in alongside LDPLFS.
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the current offset of the temporary file is established (through

a call to lseek(fd, 0, SEEK_CUR)), a PLFS operation

is performed (again using getpid() where needed), and

then finally, the temporary file pointer is updated (once again

through the use of lseek()). Figure 2 shows the control flow

of an application when using LDPLFS.

B. Testing Platform

LDPLFS has been tested and utilised on two production-grade

supercomputers: Minerva, located at the Centre for Scientific

Computing (CSC) at the University of Warwick, and Sierra,

located at the Open Computing Facility (OCF) at LLNL.

Both machines consist of dual Intel “Westmere” hex-core

processors, clocked at 2.66 GHz and 2.8 GHz respectively,

and a QLogic QDR InfiniBand interconnect.

Minerva consists of 258 nodes and has a peak LINPACK

performance of approximately 30 TFLOP/s. The I/O back-

end for Minerva uses IBM’s General Parallel File System

(GPFS) [16] and consists of two servers. 96 disks, configured

in RAID-6, are used for data storage and 24 disks, config-

ured in RAID-10, are used for the storage of metadata. The

theoretical peak bandwidth is approximately 4 GB/s, but the

performance is heavily constrained by the relatively small

number and slow speed of the 2 TB hard disk drives.

Sierra is a much larger machine, with 1,849 compute nodes.

It has a LINPACK performance of 260 TFLOP/s and is backed

by LLNL’s “islanded I/O” (where many file systems are shared

by multiple machines). For this study we utilise the lscratchc

Lustre file system [17], using 24 I/O servers and a dedicated

MDS. The system uses 3,600 hard disk drives, running at

10,000 RPM. The theoretical peak bandwidth of the file system

is approximately 30 GB/s, with the limiting factor being the

Minerva Sierra

Processor Intel Xeon 5650 Intel Xeon 5660
CPU Speed 2.66 GHz 2.8 GHz
Cores per Node 12 12
Nodes 258 1,849
Interconnect QLogic TrueScale 4X QDR InfiniBand
File System GPFS Lustre
I/O Servers / OSS 2 24
Theoretical Bandwidth ∼4 GB/s ∼30 GB/s
Storage Disks

Number of Disks 96 3,600
Disk Type 2 TB 450 GB
Disk Speed 7,200 RPM 10,000 RPM
Bus Type Nearline SAS SAS
Raid Level 6 (8 + 2) 6 (8 + 2)

Metadata Disks
Number of Disks 24 30 (+2) a

Disk Type 300 GB 147 GB
Disk Speed 15,000 RPM 15,000 RPM
Bus Type SAS SAS
Raid Level 10 10

aSierra’s MDS uses 32 disks; two configured in RAID-1 for journalling
data, 28 disks configured in RAID-10 for the data volume itself and a further
two disks to be used as hot spares.

TABLE I: Benchmarking platforms used in this study.

InfiniBand interconnect to the file servers.

The specification for each machine is summarised in Table I.

C. Performance Analysis

Our initial assessment of LDPLFS is conducted on Minerva.

We utilise the MPI-IO Test application [18] from LANL,

writing a total of 1 GB per process in 8 MB blocks. Collective

blocking MPI-IO operations are employed with tests utilising

PLFS through the FUSE kernel library, the ROMIO PLFS

driver and LDPLFS. In all cases we use OpenMPI version

1.4.3 and PLFS version 2.0.1. We compare the achieved

bandwidth figures against those from the default MPI-IO

library without PLFS.

Tests have been conducted on 1, 2, 4, 8, 16, 32 and 64

compute nodes utilising 1, 2 and 4 processors per node2.

We note that each run is conducted with collective buffering

enabled and in its default configuration3 in order to pro-

vide better performance with minimal configuration changes.

The node-wise performance should remain largely consistent,

while the number of processors per node is varied – in each

case there remains only one process on each node performing

the file system write. As the number of processors per node

is increased, an overhead is incurred because of the presence

of on-node communication and synchronisation.

Figure 3 demonstrates promising results, showing that

LDPLFS performs almost as well as PLFS through ROMIO

and significantly better than FUSE (up to 2×) in almost all

cases. It is interesting to note that on occasion, LDPLFS

performs better than the PLFS ROMIO driver. This perfor-

mance difference may be due to a combination of background

2Due to machine usage limits, using all 12 processors per node would limit
our results to a maximum of 16 compute nodes, decreasing the scalability of
our results.

3The default collective buffering behaviour is to allocate a single aggregator
per distinct compute node.
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Fig. 3: Benchmarked MPI-IO bandwidths on FUSE, ROMIO, LDPLFS and standard MPI-IO (without PLFS).

load on the file system, optimisations in the standard MPI-

IO routines and the reduced overhead incurred by LDPLFS

over the PLFS ROMIO driver equivalent. On the Minerva

cluster, FUSE performs worse than standard MPI-IO by 20%

on average for parallel writes. While the overhead of FUSE

is addressed in [1], the I/O set-up used in that study is much

larger than that used by Minerva, and makes use of custom

optimised hardware.

D. Standard UNIX Tools

One of the current difficulties associated with the practical use

of PLFS is the complexity associated with managing PLFS

containers. Since FUSE treats a PLFS mount point as a self-

contained file system, using the files in any application is

trivial. However, when using either of the alternative solutions

for PLFS, applications must either use MPI or be rewritten

for PLFS. PLFS files appear inside the “backend” directory

as directories with hundreds of files. Visualising data or post

processing the information output becomes difficult in this

scenario; this is one of the problems LDPLFS aims to address.

As LDPLFS operates at the POSIX call level, it can be used

with any standard UNIX tools as well as parallel science and

engineering applications.

Table II presents the performance of several standard UNIX

tools operating on a PLFS container of 4 GB in size. Note that

the file copy (cp) times correspond to copying a file from a

PLFS container to a standard UNIX file and vice versa. These

PLFS Container Standard UNIX File

cp (read) 100.713
114.279

cp (write) 107.587
cat 25.186 25.433
grep 130.662 128.863
md5sum 26.970 26.781

TABLE II: Time in seconds for UNIX commands to complete

using PLFS through LDPLFS, and without PLFS.

can be compared to a single time for copying from and to a

standard UNIX file.

Since each of these commands are serial applications, each

command was executed on the login node of Minerva. It is

promising to see that the time for each of the commands to

complete is largely the same for both standard UNIX files

and PLFS container structures. These results show that PLFS

is marginally faster when copying to or from a PLFS file

than a normal UNIX file. We attribute this improvement in

performance to the increased number of file streams available,

improving the bandwidth achievable from the file servers.

Our results position LDPLFS as a viable solution to improving

the performance of I/O in parallel, as well as showing that

there is no substantial performance hit when using LDPLFS

to interact with PLFS mount points using serial (non-MPI) ap-

plications. We next demonstrate the performance of LDPLFS

at much larger scale, using a set of I/O intensive mini-

applications.
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Fig. 4: BT benchmarked MPI-IO bandwidths using MPI-IO, as well as PLFS through ROMIO and LDPLFS.

IV. CASE STUDY

Figure 3 shows that the performance of PLFS on Minerva is

approximately 2× greater than that of MPI-IO without PLFS

in parallel. Because of the relatively small I/O set-up employed

by Minerva, we do not believe it is possible to achieve the

same levels of speed-up seen in [1], where a high-end PanFS

I/O solution is used. In order to better demonstrate how PLFS

and LDPLFS perform on a much more substantial I/O set-up,

we have used two applications to benchmark the lscratchc file

system attached to Sierra.

For this study we utilise the Block Tridiagonal solver

application (BT) from the NAS Benchmark Suite [19], [20]

and the FLASH-IO [21], [22] mini-application. For BT we

use the C problem class (162 × 162 × 162), writing a total

of 6.4 GB of data during an execution, and the D problem

class (408 × 408 × 408), writing a total of 136 GB of data.

The application is strong scaled – as the number of processor

cores is increased, the global problem size remains the same,

with each process operating over a smaller sub-problem. For

the C problem class, the global problem size is relatively

small, and can only be scaled to 1,024 processors before the

local problem size becomes too small to operate on correctly.

Conversely for the D program class, the global problem size

is so large that on less than 64 processors, the execution time

becomes prohibitive. For this reason we use between 4 and

1,024 processor cores for the C problem class, and between

64 and 4,096 processor cores for the D problem class.

Figures 4 and 5 show the achieved bandwidth for the

two mini-applications in their default configurations using the

system’s pre-installed OpenMPI version 1.3.4 library (without

PLFS), as well as with the system’s OpenMPI library aug-

mented with LDPLFS, and finally with the ROMIO PLFS file

system driver compiled into a customised build of OpenMPI

version 1.4.3. The performance of PLFS through the two

methods is largely the same, with a slight divergence for BT.

Since LDPLFS retargets POSIX file operations transpar-

ently and uses various structures in memory to maintain file

consistency, a change in the local problem size may effect

the LDPLFS performance due to the memory access patterns

changing and additional context switching. Furthermore, write

caching can produce a large difference in performance – where

data is small enough to fit in cache, the write of that data to

disk can be delayed.

Write caching is most prevalent in the BT application where,

at large-scale, small amounts of data are being written by each

process during each parallel write step. For the C problem

class (Figure 4(a)), 6.4 GB of data is written in 20 separate

MPI write calls, causing approximately 300 KB of data to be

written by each process at each step. When writing to a single

file, the file server must make sure that writes are completed

before allowing other processes to write to the file. This causes

each write command to wait on all other processes, leading to

relatively poor performance. Conversely, through PLFS, each

process writes to its own file, therefore allowing the write to

be cleared to cache almost instantly.

In Figure 4(b), the performance rapidly decreases at 1,024

cores, where each process is writing approximately 136 MB,

in 20 steps. We believe these writes (of approximately 7 MB

each) are marginally too large for the system’s cache, causing

performance that is equivalent to vanilla MPI-IO. However,

when using 4,096 cores, each write is less than 2 MB per

process, writing only 34 MB per process during the execution.

This causes the write caching effects seen in Figure 4(a) to

reappear.

FLASH-IO is a synthetic benchmark that recreates the

checkpointing behaviour of the FLASH thermonuclear simula-

tion code [23], [24]. In this study we weak scale the problem,

with a local problem size of 24 × 24 × 24. This causes each

process to write approximately 205 MB to the disk, through

the HDF-5 library [25]. Runs were conducted on between 1

node and 256 nodes, using all 12 processors each time, thus

utilising up to 3,072 processors. We note that as the number
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Fig. 5: FLASH-IO benchmarked MPI-IO bandwidths using MPI-IO, as well as PLFS through ROMIO and LDPLFS.

of compute nodes is increased, so too is the output file size.

Since each process is writing the same total amount of data,

over the same number of time steps, caching effects will be

less prevalent in weak scaled problems.

Interestingly, Figure 5 shows that as the core count is

increased on FLASH-IO, the write speed of MPI-IO gently

increases up to approximately 550 MB/s. However, when

using PLFS we see a sharp increase in write speed until

192 cores (or 16 nodes), at which point the average write

speed reaches approximately 1,650 MB/s, before decreasing

to 210 MB/s at 3,072 cores. A possible explanation for this is

that since the Lustre file system uses a dedicated MDS, as the

number of processors is increased, the performance plateaus

and then decreases due to the MDS becoming a bottleneck

in the system. Since PLFS operates using multiple files per

processor (at least one for the data and one for the index),

it uses many more files as the problem is scaled, potentially

putting a large load on the MDS. This bottleneck is less evident

in the BT mini-application due to the small write sizes, which

facilitates simple write caching. On a file system like GPFS,

where metadata is distributed, these performance decreases

may not materialise.

V. CONCLUSION

File I/O operations have, in many cases, been one of the

last aspects considered during application optimisation. In

this paper we have presented LDPLFS – a dynamic, runtime

loadable plug-in for PLFS which offers the opportunity to

accelerate file read and write activities without modification

to the machine’s environment or an application’s source code.

Specifically we have demonstrated the performance of our

LDPLFS solution in comparison to PLFS using the FUSE

Linux kernel module, PLFS using the ROMIO MPI-IO file

system driver and the original MPI-IO operations without

PLFS. In this comparison LDPLFS is able to offer approx-

imately equivalent performance to using PLFS through the

ROMIO file system driver and improved performance over

FUSE.

LDPLFS not only allows end-users to improve their ap-

plications I/O performance, but also allows users to quickly

evaluate the benefits of PLFS on their system before under-

taking the task of library rebuilds or code modifications to use

PLFS natively.

In the second part of this paper we used LDPLFS at scale

to accelerate the I/O operations of the FLASH-IO and BT

mini-applications. We have shown that ROMIO with PLFS

and LDPLFS can offer significant improvements in I/O per-

formance – up to 20× – when compared to the original un-

modified applications. Furthermore, we have demonstrated that

while PLFS may seem like a quick-fix solution to improving

I/O performance, its use can actually harm performance at

scale and under certain conditions, due to the overhead of

managing hundreds or thousands of files in parallel.

LDPLFS is a solution which requires only two small pieces

of software to be built with no system administrator actions.

The library is loadable from only a single environment vari-

able, yet is able to offer significant improvement in parallel

I/O activity. In our work with industry partners, such a solution

helps to address concerns which may arise over the security

model of FUSE and the significant investment associated

with the recompilation of applications using a custom MPI-

IO/ROMIO middleware. LDPLFS therefore straddles the gap

between offering improved application performance and the

effort associated with the installation of traditional PLFS.

A. Future Work

In future work we intend to create an alternative implementa-

tion of PLFS that can operate on IBM BlueGene systems. We

feel that this platform is of interest to many research laborato-

ries and therefore PLFS could help improve the performance

of its unusual I/O setup (where all I/O operations are “function

shipped” to dedicated I/O nodes).



Through utilising an alternative implementation of PLFS,

we aim to investigate the low-level performance effects of

a log-based file system and file partitioning in isolation.

Furthermore, we aim to make our implementation much more

customisable, in order to correct the negative effects seen at

scale in Figure 5. We also intend to model the performance

of our implementation in order to aid auto-optimisation of

parameters, as well as assess the benefits of PLFS on future

I/O backplanes without requiring extensive benchmarking.

We hope to use our performance model to highlight systems

where PLFS may have a negative effect on performance, where

perhaps using just file partitioning or a log-based file system

will provide greater performance.
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