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Abstract1

Soil behaviour is often an important consideration in the design of protective sys-2

tems for blast and impact threats, as the properties of a soil can greatly affect the3

impulse generated from buried explosive devices, or the ability of a soil-filled struc-4

ture to resist ballistic threats. Numerical modelling of these events often relies5

on extrapolation from low-pressure experiments. In order to develop soil models6

which remain accurate at very high pressures there is a need for data on soil be-7

haviour under these extreme conditions. This paper demonstrates the use of a high-8

pressure multi-axial test apparatus to provide compressibility and shear strength9

data for four dry sandy soils. One-dimensional compression experiments were per-10

formed to axial stresses of 800 MPa, where the effects of particle size distribution11

were observed with respect to compressibility and bulk unloading modulus. Each12

soil followed a bi-linear NCL: more uniform soils initially had higher compression13

indices, but all four NCLs began to converge at void ratios below e ≈ 0.3. The14

failure surface of a sand was characterised to p′ > 400 MPa using reduced triaxial15

compression experiments, removing the need to rely on extrapolation from low-16

pressure data.17

Keywords: high pressure; compressibility; shear strength; sand; blast; impact18
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Introduction1

Soil-filled wire and geotextile gabions are commonly used to construct defensive2

infrastructure in military bases, as the attenuating properties of soils can help pro-3

tect against blast and fragmentation effects (Warren et al. 2013). Soils also sig-4

nificantly affect the impulse generated by buried mines and improvised explosive5

devices (IEDs), with implications for the structural response of protective systems6

and decision making in civilian demining operations (Clarke et al. 2017). In order7

to adapt to new threats and develop robust constitutive models, the designers of8

protective systems require high-pressure data on the behaviour of soils over a wide9

range of ground conditions, particularly for common sandy soils.10

The pressures produced in blast and impact events are much higher than those11

in most civil engineering applications: the peak overpressure around a buried ex-12

plosion is typically hundreds of megapascals. One-dimensional compression of13

sands in high-pressure oedometer experiments has shown that large strains and ex-14

tensive particle crushing occur at these stresses, and that soil stiffness and crushing15

are dependent on particle size distribution and mineralogy (Fukumoto 1992, Mc-16

Dowell 2002, Chuhan et al. 2003). Hagerty et al. (1993) tested quartz sand, slag17

and glass bead specimens at stresses up to 689MPa and found that particle crush-18

ing increased with increased angularity and increased median particle size, and19

began at lower stresses for angular and loose specimens. Yamamuro et al. (1996)20

investigated the effect of mineralogy using tests on quartz and gypsum sands and21

an intermediate hardness sand to 850MPa. As well as being more compressible,22

the softer soils showed less sensitivity to initial density, as differences in initial void23

ratio disappeared at lower stresses than in the quartz sand. The effects of particle24

size and particle size distribution in quasi-static testing have also been replicated25

in the high-strain-rate regime: well graded soils tend to be less compressible than26

uniform soils and experience less particle breakage (Farr 1990, Huang et al. 2013),27

and finer soils are less compressible and experience less particle breakage than28

coarse soils (Luo et al. 2014). High strain rates (102 s−1 to 106 s−1) have been29
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shown not to have a significant effect on the compressibility of quartz sands once1

inertial effects are accounted for (Song et al. 2009, Bragov et al. 2008, Barr et al.2

2016b), and so numerical models can be calibrated reliably using quasi-static data3

from high-pressure experiments.4

Triaxial testing at the pressures experienced in blast and impact events is much5

less developed, with many numerical models relying on shear behaviour extrapo-6

lated from standard laboratory tests. Investigations at lower stresses have shown7

that confining pressure has a significant effect on the mechanisms which contribute8

to shearing resistance, as increasing confinement leads to a reduction in dilation9

and interlocking (Guo and Su 2007) and an increase in the contribution of parti-10

cle breakage and rearrangement (Hall and Gordon 1964, Marachi 1969). At high11

pressures (σ3 = 310MPa), Murphy (1971) used a triaxial cell to show that an12

increase in the mineral hardness of a soil results in an increase in shear strength13

and a reduction in compressibility. Martin and Cazacu (2013) also used a triaxial14

cell to characterise the strength and elastic properties of a quartz sand at high pres-15

sures (σ3 ≤ 300MPa), and successfully defined a linear failure surface and stress-16

dependent elastic moduli. Both compression and dilation were observed during17

deviatoric loading in these experiments. Recent triaxial testing approaches (Martin18

et al. 2013, Barr et al. 2016a) have begun to explore the shear response of soils at19

very high strain rates: further comparison with high-pressure quasi-static data is20

required to investigate whether existing models of shear behaviour hold under this21

extreme loading.22

This paper demonstrates the use of a high-pressure multi-axial test apparatus23

to characterise the quasi-static compressibility and failure surface of quartz sands24

to pressures of 800MPa and 400MPa, respectively. The multi-axial nature of the25

apparatus means that many other stress paths are possible, including cyclic exper-26

iments, stress probes and tests at different Lode angles. The current experiments27

provide data which can be used to calibrate existing material models for sands, and28

which can support research into the high-strain-rate shear behaviour of soils.29
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Figure 1: The mac2T test apparatus.

High-pressure multi-axial apparatus1

The high-pressure one-dimensional compression and triaxial tests in this paper2

were carried using mac2T (pronounced MASS-et), a test apparatus for Multi-Axial3

Compression of Concrete at Elevated Temperatures (Petkovski et al. 2006). The4

mac2T test apparatus, shown in Figure 1, allows specimens to be tested in true5

multi-axial compression (σx 6= σy 6= σz), with independent control of loads or6

displacements in the x, y and z directions. In each axis the load is applied by a7

4MN hydraulic actuator installed in an independent loading frame.8

Each loading frame (Figure 2) contains a load cell which is rated at 4MN and9

operates to an accuracy of ±4 kN. Loads are transmitted from the actuator to the10

specimen, and from the specimen to the load cell, by 200mm diameter steel rams,11

which each terminate in a 95× 95mm steel loading platen, initially designed for12

100× 100mm concrete cubes.13
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Figure 2: The mac2T x-axis loading frame. Hatching indicates a section cut.

The displacement of each specimen face is measured to an accuracy of ±1 µm1

by a laser interferometer, which operates along an evacuated stainless steel tube in-2

side the loading ram. Data acquisition and control of the loads, displacements and3

temperatures in the apparatus are managed by a purpose-built LabVIEW program,4

which is described in more detail by Petkovski et al. (2006).5

Sand test box6

In tests on concrete the specimen cube is 5mm larger than the loading platens,7

and so experiments can be carried out without the platens ever touching. To en-8

able the testing of highly compressible, cohesionless soils, a special loading box9

was fabricated to contain the sand during testing. The test box is made up of six10

case-hardened steel blocks which can be arranged to form an interior cube. The11

dimensions and assembly of the box are depicted in Figure 3, which also shows the12

axis convention used throughout this work. The bolts are countersunk in oversized13

holes: this allows the interior dimensions of the box to be fixed during specimen14

preparation, while allowing the relative displacement of all six faces during testing.15
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Soil properties1

This paper provides experimental data for four sandy soils, which are commonly2

encountered in buried blast events and are often used as fill material in protective3

gabion structures. All four soils are quartz sands with a variety of particle size dis-4

tributions, as shown in Figure 4 and Table 1. The well-graded and uniform medium5

sands also contain 13% and 2% silt by mass, respectively. The mineralogy of the6

specimens was assessed using x-ray diffraction and confirmed that all four soils7

are predominantly formed of quartz. The well-graded and uniform medium sands8

also contain minor quantities of microcline, and uniform medium sand contains9

minor quantities of augite. All experiments were performed on dry soil prepared10

at a density of 1.5Mgm−3 (e = 0.71), and initial specimen dimensions were11

50mm× 50mm× 50mm unless otherwise noted.12

One-dimensional compression13

In a one-dimensional compression experiment the specimen is deformed along one14

axis, while deformations in the other two directions are kept at zero. To achieve15

this in mac2T, the load was applied in the x-axis under load control, while the other16

two axes were kept under displacement control, recording the stress required to17

maintain zero deformation.18

Method19

Figure 5 shows an example of a one-dimensional compression experiment on uni-20

form medium sand. At the beginning of the experiment the specimen was placed21

into mac2T and the loading platens in each axis were brought into contact with the22

sand test box. A load of 7 kN (2.8MPa) was applied to each face of the test box23

to initialise the position of the interferometers (Point 1). The specimen was then24

loaded at a relatively low rate of 20MPamin−1 to σx = 40MPa (Point 2), with25

a peak strain rate of approximately 10−3 s−1. The y- and z-axis loading platens26
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were backed off by 0.1mm at this point to ensure that friction between the sand1

test box blocks did not significantly contribute to the stiffness of the soil specimen2

at higher stresses. Loading to the peak axial stress of 800MPa was carried out in3

three cycles (Points 2–5), at a constant loading rate of 60MPamin−1: these load4

cycles were performed in order to determine the hysteretic behaviour of the soil,5

and to provide data for calculating the unloading stiffness at different stress levels.6

The specimen was unloaded by reducing the axial stress until it was equal to the7

two minor stresses (Point 6), and then all stresses were reduced to zero, so that the8

sample remained intact for further study.9

This method was used to test three specimens of each soil, with repeatable10

results (Figure 6a). The sensitivity of the stress-strain behaviour to variations in11

quasi-static loading rates was also investigated in an experiment where the ax-12

ial stress was applied at 250MPamin−1: the stress-strain curve was identical to13

those in the tests where the specimen was loaded at 60MPamin−1, as shown in14

Figure 6a.15

Results16

Following one-dimensional compression to 800MPa, all four soils could be re-17

moved from the test box as a block of solid material (Figure 7). These blocks18

remained intact under significant unconfined loading: a block of medium sand19

tested in a state of uniaxial stress along the original loading axis failed at a stress20

of 3.2MPa. The grey markings on the surface of the sand block are evidence of21

friction with the interior of the steel test box; however, an experiment performed22

with a shorter 30mm specimen did not show a significant effect of friction on the23

recorded soil behaviour (Figure 6a).24

Mean results for the four soils are shown in Figure 6b. At 800MPa the soils25

achieved void ratios between 0.08 and 0.15, equating to dry densities between26

2.31Mgm−3 and 2.43Mgm−3. In each soil convergence on a unique normal com-27

pression line (NCL1) was followed by further stiffening at low void ratios (NCL2),28
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Figure 7: Dry uniform medium sand after loading to 800 MPa under one-

dimensional compression.

resulting in the approximately bi-linear behaviour idealised in Figure 6c:1

e =











e0,1 − Cc,1 log10 σx e ≥ eint

e0,2 − Cc,2 log10 σx e < eint

(1)

where e0 is the void ratio at 1MPa, Cc is the compression index and eint is the void2

ratio at the intersect between NCL1 and NCL2. The values of these parameters are3

provided for each soil in Table 2. The trend at high pressures is similar to that4

observed by Hagerty et al. (1993), who related the increased stiffness to decreasing5

particle breakage caused by an increasing coordination number.6

As would be observed in low-pressure oedometer tests, more uniform sands7

moved onto the initial NCL at higher stresses (well graded: 6MPa, uniform medium:8

20MPa, very uniform medium: 30MPa), and the slope of the NCL was steeper in9

the more uniform soils (well-graded Cc,1 = 0.26, uniform medium Cc,1 = 0.30,10

very uniform medium Cc,1 = 0.47). The very uniform medium sand moved onto11

the NCL at a higher stress (30MPa) than the very uniform coarse sand (15MPa):12

while they had identical coefficients of uniformity (Cu = 1.5) there is an increased13

probability of breakage in larger particles (McDowell et al. 1996). The behaviour14

of the soils converges at low void ratios, which may indicate that the soils have15

developed a similar PSD through particle breakage: extrapolation of the data in16

12
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Figure 6c indicates that a void ratio of zero would be achieved at approximately1

3GPa.2

The unloading bulk modulus of all four soils increased as the peak stress in-3

creased, as shown in Figure 8. The well-rounded coarse sand, which was the most4

compressible of the soils in NCL1, also had a significantly lower unloading mod-5

ulus than the three finer, more angular soils. It is not clear how the difference6

in particle size distribution and particle shape have each contributed to the parti-7

cle locking and packing structure in the current experiments: further experiments8

using µCT could be used to analyse these effects.9

Reduced triaxial compression10

The failure surface of the uniform medium sand was obtained at high pressures by11

using mac2T to perform reduced triaxial compression (RTC) experiments. RTC dif-12

fers from conventional triaxial compression (CTC) experiments in that deviatoric13

stresses are applied by reducing the cell pressure under a constant axial stress,14

rather than increasing axial stress under a constant cell pressure. Both CTC and15
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RTC experiments typically begin with hydrostatic compression, but true hydro-1

static pressure cannot be applied in mac2T over large displacements using the cur-2

rent test box design, as this would lead to contact between the loading platens.3

Instead, initial compaction of the sand in these RTC tests was achieved in one-4

dimensional compression, as shown by the stress paths in Figure 9.5

Method6

An example of an RTC experiment on uniform medium sand is shown in Figure 10.7

As before, once the sand specimen was loaded into mac2T each of the axes were8

loaded to 7 kN (Point 1). The y- and z-axes were then switched to displacement9

control with a displacement rate of zero and, with the x-axis in load control, the10

specimen was loaded to σx =120MPa in one-dimensional compression (Point 2).11

At this point the x- and y-axis platens were backed off by 0.1mm to ensure that12

friction between the sand test box blocks did not contribute to the stiffness of the13

soil specimen. Loading then continued in one-dimensional compression to the peak14

mean stress, p′
0

(Point 3) – peak mean stresses of 325MPa, 445MPa and 555MPa15

were used in the current test series. To begin the deviatoric (RTC) portion of the16
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experiment, the load in the x-axis was fixed by setting the loading rate to zero. The1

y- and z-axes were then set to a negative displacement rate, decreasing the lateral2

stresses, and causing the stress path to turn towards the failure surface (Point 4). A3

small decrease in axial stress occurred during shearing due to the increasing cross-4

sectional area of the x-axis. To unload the specimen, displacement of the y- and5

z-axes was halted (Point 5), σx was reduced to around 20MPa, and then all three6

axes were unloaded together (Point 6).7

Results8

As these are the first experiments of their kind in the literature, the high-pressure9

shear behaviour of the sand was not known before testing, and there was a risk that10

a sudden failure of the specimen would lead to a loss of control of the actuators11

and damage the mac2T apparatus. To reduce this risk, lateral displacements in the12

current experiments were limited to 1mm and, as a result, the specimens did not13

quite reach a critical state. However, least-squares fits to the data in Figures 11a14

and 11b show that each specimen was within 4MPa of its ultimate strength, and so15

the small associated error was easily accounted for. These extrapolations also pre-16

dict that the largest lateral displacement required would be approximately 1.6mm17

(for p′
0
= 555MPa), and so shearing to a critical state should be achievable in18

future experiments.19

Figure 11c shows the results of the three RTC tests on dry uniform medium20

sand, which can be used to define a linear failure surface for the sand to pressures21

of over 400MPa. As the sand is cohesionless, the surface passes through the22

origin with a slope, M , of 1.47, equivalent to an angle of shearing resistance of23

φ′

crit = 36.6◦. CTC experiments to similar pressures have carried out by Martin24

and Cazacu (2013) on a quartz sand with a similar PSD to the uniform medium25

sand in this paper, and these experiments also produced a linear failure surface,26

with an angle of shearing resistance of φ′

crit = 32.3◦. There is therefore confidence27

that the RTC method developed in this paper can be used to characterise the shear28
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behaviour of soils at high pressures and, as mac2T permits independent control1

of all three axes, there is the potential to explore more complex stress paths not2

possible with triaxial cell approaches.3

Summary4

This paper demonstrated the use of a multi-axial test apparatus to characterise soils5

at the high pressures encountered in blast and impact events. One-dimensional6

compression experiments on four sandy soils were carried out to 800MPa, en-7

abling bi-linear normal compression lines to be characterised. The coarse and8

well-graded soils were more initially more compressible than the finer, more uni-9

form soils, and bulk unloading moduli were shown to increase with the peak mean10

stress, particularly in the finer soils.11

Reduced triaxial compression (RTC) experiments were used to investigate the12

failure surface of uniform medium sand to p′ > 400MPa, removing the need to13

rely on extrapolations from low-pressure data. Further experiments of this type14

will be particularly important for soils which do not exhibit a linear failure surface15

at high pressures, and will enable soil models to be calibrated for the simulation of16

blast and impact events. They will also provide valuable high-pressure quasi-static17

data for investigations into the high-strain-rate shear behaviour of soils.18
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List of symbols

Cc compressibility index

Cu coefficient of uniformity

D10 10th percentile particle size

D50 50th percentile particle size

D60 60th percentile particle size

e void ratio

Gs specific gravity

p′ mean effective stress

p′
0

maximum mean effective stress prior to deviatoric loading

q deviatoric stress

ǫ strain, where a subscript indicates the axis

σ stress, where a subscript indicates the axis

φ′

crit critical angle of shearing resistance
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Tables

Table 1: Properties of the quartz sands tested. Angularity: well-rounded (WR),

sub-rounded (SR) and sub-angular (SA).

Soil description

(EN ISO 14688–1:2018)

D10

(µm)

D50

(µm)

D60

(µm)

Cu Gs Angularity

Very uniform coarse SAND 520 740 790 1.5 2.65 WR–SR

Very uniform medium SAND 170 230 250 1.5 2.65 SR–SA

Uniform medium SAND 130 250 280 2.2 2.65 SR–SA

Well graded silty SAND 40 200 240 6.0 2.65 SR–SA

Table 2: Compression indices for four quartz sands. Values of e0 are taken at

1MPa, the subscripts 1 and 2 relate to NCL1 and NCL2, and eint is the void ratio

at the intersect of NCL1 and NCL2.

Soil description e0,1 Cc,1 e0,2 Cc,2 eint

Very uniform coarse SAND 1.22 0.50 0.66 0.19 0.31

Very uniform medium SAND 1.31 0.47 0.81 0.23 0.32

Uniform medium SAND 0.99 0.30 0.85 0.24 0.27

Well graded silty SAND 0.82 0.26 0.74 0.22 0.26
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List of figure captions

• Figure 1: The mac2T test apparatus.

• Figure 2: The mac2T x-axis loading frame. Hatching indicates a section cut.

• Figure 3: Exploded view of sand loading box, indicating axes convention.

Dimensions in mm. Specimen location is shaded.

• Figure 4: Particle size distributions of the four quartz sands tested.

• Figure 5: High-pressure one-dimensional compression experiment on dry

uniform medium sand: a) Axial stress–axial strain, b) stress–time and c) strain–

time. Stresses and strains in the y and z axes are coincident.

• Figure 6: a) Repeatability of mac2T one-dimensional compression exper-

iments and the effect of stress rate and specimen length, b) the effect of

particle size distribution on compressibility (mean results), and c) idealised

bi-linear NCLs with extrapolation to e = 0 (grey lines).

• Figure 7: Dry uniform medium sand after loading to 800 MPa under one-

dimensional compression.

• Figure 8: Variation of bulk unloading modulus with peak mean stress. Mean

values shown.

• Figure 9: Stress paths in CTC and RTC tests with the same CSL intersect.

The RTC experiments in this paper begin loading under one-dimensional

compression (solid line) rather than hydrostatic compression (fine dashed

line).

• Figure 10: High-pressure reduced triaxial compression (RTC) experiment on

dry uniform medium sand: a) q − p′ behaviour, b) stress–time and c) strain–

time. Stresses and strains in the y and z axes are coincident.
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• Figure 11: RTC experiments on uniform medium sand, a) ǫv − ǫx behaviour

during deviatoric loading, b) q − ǫx behaviour during deviatoric loading,

c) q − p′ behaviour, with critical state line. Unloading omitted for clarity.
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