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Abstract

Background Clinical trials report severe hypoglycaemic

events as the number of patients with at least one event out

of the total randomised or number of events for a given

total exposure. Different network meta-analysis models

have been used to analyse these different data types.

Objective This aim of this article was to establish the

impact of using the different models on effectiveness, costs

and health utility estimates.

Methods We analysed a dataset used in a recent network

meta-analysis of severe hypoglycaemic events conducted

to inform National Institute for Health and Care Excellence

recommendations regarding basal insulin choice for

patients with type 1 diabetes mellitus. We fitted a model

with a binomial likelihood reporting odds ratios (using a

logit link) or hazard ratios (complementary log-log link), a

model with a Poisson likelihood reporting hazard ratios and

a shared-parameter model combining different types of

data. We compared the results in terms of relative effects

and resulting cost and disutility estimates.

Results Relative treatment effects are similar regardless of

which model or scale is used. Differences were seen in the

probability of having an event on the baseline treatment

with the logit model giving a baseline probability of 0.07,

the complementary log-log 0.17 and the Poisson 0.29.

These translate into differences of up to £110 in the yearly

cost of a hypoglycaemic event and 0.004 in disutility.

Conclusion While choice of network meta-analysis model

does not have a meaningful impact on relative effects for

this outcome, care should be taken to ensure that the

baseline probabilities used in an economic model are

accurate to avoid misrepresenting costs and effects.

Key Points

The method used to model severe hypoglycaemic

events can have an impact on the estimated

probability of having an event. This article shows

that some statistical modelling methods give a lower

probability while others give higher.

As probabilities are the inputs used in economic

models, a lower or higher probability can have a

substantial impact on the costs and utilities

estimated.

It is important to ensure that probabilities of severe

hypoglycaemic events are accurately calculated to

avoid misrepresenting the cost effectiveness of

treatments.
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1 Background

Severe hypoglycaemia can occur in people with diabetes

mellitus who take insulin and other anti-diabetic treat-

ments. Clinical trials use variable definitions for severe

hypoglycaemia but it is generally defined as having low

blood glucose levels that require assistance from another

person to treat and is classed as a diabetic emergency that

can lead to seizures, coma or death [1]. Trials also report

hypoglycaemic events in different forms. Some report the

number of patients who experienced at least one event out

of the total number randomised (risk) and others report the

number of events for a given total exposure (rate). This

makes combining results from different trials to conduct a

meta-analysis based on aggregate data alone a challenging

task and poses a question about whether there are advan-

tages of using one outcome over another.

In the context of economic modelling, the costs and

quality of life (QoL) losses associated with these events

should be taken into account. Hence, measuring the risk of

having a hypoglycaemic event as opposed to the rate/

number of events, could lead to underestimating the costs

and QoL losses associated with these events as only the

costs and disutilties associated with one event will be

considered. Results of economic analyses, in terms of the

most cost-effective treatment, often hinge on small differ-

ences in costs and utilities and it is therefore important to

represent these accurately. The issues highlighted in this

article are therefore relevant not only in the case of severe

hypoglycaemic events but in any situation where repeated

events in the same patient are possible.

Published Bayesian network meta-analyses (NMAs) of

trials of treatments to prevent hypoglycaemic events have

used either the binomial with logit link [2] for data reported

as the risk of an event, or Poisson with log link [3] for data

reported as the rate of events. These models estimate rel-

ative treatment effects as odds ratios or hazard ratios,

respectively. Another model that would be considered

suitable for such data is the binomial model with a com-

plementary log-log (clog-log) link [4]. This model assumes

an underlying Poisson rate of events, but can be used when

data are reported as the risk of an event after a certain time

period. In the first part of this article, we use the data from

the systematic review and NMA conducted to inform rec-

ommendations regarding basal insulin choice for patients

with type 1 diabetes from the 2015 National Institute for

Health and Care Excellence (NICE) guideline [5] to com-

pare the relative effectiveness results from the three sug-

gested models. These results will then be compared with

those from a shared-parameter model [4], which has the

advantage of being able to combine both risk and rate data.

The second part of this article considers the impact of

using the binomial with logit or clog-log links and Poisson

models on conducting a meta-analysis of studies to inform

baseline effects. The baseline probability of an event is a

person’s risk, or probability, of having an event when using

the reference treatment, often placebo. The baseline prob-

ability of an event can be informed by using values from a

cohort study or local database, using the reference treat-

ment arm from a particular trial, which represents the UK

population, or by performing a meta-analysis of relevant

treatment arms from all or a subset of included trials. In

this study, we conduct Bayesian meta-analyses of all the

reference treatment arms of the studies that compared the

reference treatment, glargine (once), to any of the

remaining insulin regimens [6].

Absolute probabilities of an event on each treatment are

the inputs most commonly used in economic models. As

these are calculated by applying the relative effects of each

treatment to the baseline effect, different assumptions

about this baseline effect can have a substantial impact on

the costs and QoL outputs of economic models, even when

relative effects are unchanged. We assess the impact dif-

ferent data types and modelling strategies could have on

costs and QoL estimates.

2 Methods

2.1 Relative Effects

An NMA uses all the available evidence, both direct and

indirect, to produce estimates of the relative effects of each

treatment compared with every other in a network, even if

some pairs of treatments have not been directly compared

[4, 7–10] Network meta-analyses were conducted to

simultaneously compare eight insulin regimens: insulin

detemir once daily, insulin detemir twice daily, degludec

once daily, insulin neutral protamine Hagedorn (NPH)

once daily, insulin NPH twice daily, insulin NPH four

times daily, insulin detemir once or twice daily and insulin

NPH once or twice daily to the reference treatment, insulin

glargine once daily. The network of evidence for each

model is shown in Fig. 1 and the data used in each model

are given in Appendix A of the Electronic Supplementary

Material (ESM).

All analyses were conducted within a Bayesian framework

using WinBUGS 1.4.3, Boca Raton, FL [11]. The binomial

and Poisson models were based on the approach and code

provided by theNICEDecisionSupportUnit [4]. The code for

the shared-parameter model was adapted from the code pro-

vided by the NICE Decision Support Unit [4]. The code used

in each model is provided in Appendix B of the ESM.
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Twenty studies were available for meta-analysis.

Twelve studies reported data as both the risk of having a

hypoglycaemic event and the rate of events, while four

studies only reported the risk and four only reported the

rate. All studies met the inclusion criteria for the NICE

guideline on type 1 diabetes [5] and were deemed eligible

to be compared in a NMA based on the similarity of the

populations included. In terms of baseline glycosylated

haemoglobin, the percentage was similar between most of

the studies (between 7.5 and 8.5%) and none were below

7%. The baseline age was also similar between studies

(most were between 35 and 45 years of age). Further

details on the inclusion and exclusion criteria are provided

in the NICE guideline [5].

The 16 studies that reported risk data were synthesised

using two alternative models. The first model adopts a

binomial likelihood with a logit link function, and gener-

ates output on a log-odds scale. Relative treatment effects

are reported as posterior median odds ratios and 95%

credible intervals (CrIs). This model assumes linearity of

effects on the logit scale and does not consider follow-up

time of the trials, assuming that differences in follow-up

time have no effect on how likely a patient is to have a first

severe hypoglycaemic event. This model will henceforth be

referred to as the logit model.

The follow-up time in the included trials varied from

4 weeks to 2 years. The second model, assumed a constant

rate of events, to estimate the probability of events

occurring over time. Again, a binomial likelihood is

assumed, but a clog-log link function is used, which results

in outputs on a log-hazard scale. Relative treatment effects

are reported as posterior median hazard ratios and 95%

CrIs. We will refer to this as the clog-log model.

For the 16 studies that reported rates over person-time,

a Poisson model with a log link function was used to

estimate the probability of events occurring over time.

This model also produces outputs on a log-hazard scale.

Relative treatment effects are reported as posterior med-

ian hazard ratios and 95% CrIs. This model, like the clog-

log model, assumes that in each arm of each trial the

hazard is constant over the follow-up period and also that

the events are independent; thus, a person who has

already had an event is no more likely to have a subse-

quent event than a person who has not yet had their first

event.

Fig. 1 Network plots of studies included in each analysis. The lines

connecting each pair of interventions represent a direct comparison in

one or more randomised controlled trials. The width of the lines is

proportional to the number of trials directly comparing each pair of

interventions. The size of each node is proportional to the number of

participants randomised to that treatment (sample size)
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An advantage of taking a Bayesian approach to esti-

mation is that it is straightforward to extend to shared-

parameter models where different trials report outcomes in

different formats but from a common underlying model. As

both rate and risk data can be synthesised on a log-hazard

scale, it is possible to combine both in a shared-parameter

model using a binomial likelihood with a clog-log link

function for the risk data and a Poisson likelihood with a

log link function for the rate data [4]. This assumes that,

regardless of how the data are reported, the incidence of

events has the characteristics of a homogeneous Poisson

process. This model also assumes that after a patient has

their first event, the rate of subsequent events does not

change. A model of this type was estimated to combine the

risk and rate data. This model could incorporate all 20

studies. For studies that reported both risk and rate data,

rate data were given preference. Relative treatment effects

are reported as posterior median hazard ratios and 95%

CrIs.

Both fixed- and random-effects models were estimated.

The goodness of fit of each model to the data was measured

using the posterior mean of the residual deviance, which is

a measure of the magnitude of the difference between the

observed data and the model predictions for those data.

Smaller values are preferred, and in a well-fitting model,

the posterior mean residual deviance should be close to the

number of data points [12]. The Deviance information

criterion (DIC), which is equal to the sum of the posterior

mean of the residual deviance and the effective number of

parameters and penalises model fit with model complexity,

was used as the basis for model comparison with lower

values being favoured [12]. Differences of less than 3 were

not considered meaningful and the simpler model was

selected. Model selection was also based on the posterior

median between-study heterogeneity and its CrI. Consis-

tency between the different sources of indirect and direct

evidence was explored statistically by comparing the fit of

a model assuming consistency with a model that allowed

for inconsistency (also known as an unrelated treatment-

effect model). In this type of model, each of the compar-

isons for which evidence is available represents a separate

unrelated basic parameter to be estimated [13]. If the

inconsistency model had the smallest posterior mean

residual deviance, heterogeneity or DIC value, then this

would indicate potential inconsistency in the data.

Results are reported in terms of relative effects of each

treatment compared with the reference treatment, glargine

(once), for each of the models analysed. The posterior

median of the ranking of each treatment (and 95% CrIs) is

also reported, with the convention that the lower the rank

the better the treatment.

2.2 Absolute Probabilities

We also report the absolute probability of an event on each

treatment, using the relative effects from each model. To

estimate this, we needed to make an assumption about the

absolute effect of the reference treatment, in this case,

glargine (once), and apply this to the relative effects.

Glargine (once) was chosen as the reference treatment as it

was in the centre of the network of evidence and was

directly compared to the most other treatments, increasing

the stability of its relative effect estimates.

We derived the probability of an event on glargine

(once) by conducting a Bayesian meta-analysis of all the

glargine (once) arms of the studies that compared glargine

(once) with any of the remaining insulin regimens. This

was also done within a Bayesian framework using Win-

BUGS 1.4.3 and based on the approach described in Dias

et al. [6]. The code is provided in Appendix B of the ESM.

There were eight studies reporting risk data that com-

pared glargine (once) with any of the remaining insulin

regimens (Appendix A of the ESM). A separate analysis of

these arms was first carried out on the log-odds scale to

apply to the relative effects from the logit model. The

baseline probability was also estimated using the clog-log

link (log-hazard ration scale) through a meta-analysis of

the glargine (once) arms of the risk data.

The baseline rate of severe/major hypoglycaemia,

defined here as the number of severe/major hypoglycaemic

events per person-year of follow-up when using insulin

glargine (once), was also calculated using a Poisson like-

lihood. There were seven studies in the rate data that

compared glargine (once) to any of the remaining insulin

regimens (Appendix A of the ESM).

Synthesising risk data using a binomial likelihood gives

the absolute probability of having a hypoglycaemic event

in 1 year, whereas synthesising rate data using a Poisson

likelihood gives an absolute rate of events in 1 year. To

make the results comparable, the absolute rates from the

Poisson model were transformed into probabilities using

the formula:

p ¼ 1� exp �rtð Þ

where p is the probability, r is the rate and t is the time

period of interest (in this case, 1 year) [14]. This conver-

sion assumes constant rates.

Both fixed- and random-effects models were estimated

for each model and the goodness of fit of each model to the

data was again measured by comparing the posterior mean

of the summed residual deviance, the DIC and the posterior

mean between-study heterogeneity. The results from the

three models and their effect on the absolute probabilities

are explored below.
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2.3 Estimating Costs and Disutilities

To demonstrate the difference that the use of each of these

models could have on costs and disutilities, we used a cost

of £333 per severe hypoglycaemic event, estimated from

Hammer et al. [15], and a utility decrement of - 0.012 for

anyone experiencing a severe hypoglycaemic event (taken

from NICE clinical guideline NG17 on type 1 diabetes [5]),

and multiplied these by the absolute probabilities of having

an event calculated from the three models.

3 Results

3.1 Model Fit

For the logit and clog-log models, the fit of the fixed-ef-

fects model was comparable to the random-effects model

with the fixed-effects models having a higher residual

deviance but a lower DIC. However, for comparison with

the Poisson model (where random effects are required), we

assess consistency and present results using random effects

for all. No meaningful differences were observed in pos-

terior mean residual deviance or DIC values when com-

paring the random-effects consistency and inconsistency

models, suggesting that there was no evidence of incon-

sistency. The goodness-of-fit and model selection statistics

for the models are reported in Appendix C of the ESM.

3.2 Relative Effects

Reported results are based on the random-effects NMA

models, assuming consistency. Results in terms of relative

effects were relatively consistent across all models. Fig-

ure 2 shows the relative effects compared with glargine

(once) when using each model, with the logit model on the

log odds ratio scale and the other models on the log hazard

ratio scale. The figure shows that there is very little dif-

ference between treatments in the reduction of events and

that choice of model has little effect on this. One exception

is for detemir (once), which seems more likely to increase

hypoglycaemic events compared with glargine (once) in

the Poisson model but is likely to decrease events in all

other models. This suggests that there is a higher chance of

having repeated events on detemir (once), which is not

captured by the data included in the other models. How-

ever, overall for this dataset, choice of model scale has

little impact on results and no firm conclusions can be

drawn on which is the best treatment based on efficacy

alone, owing to the uncertainty in the results.

Table 1 lists the treatments in terms of median rank and

95% CrIs. In the logit and clog-log models, detemir (once)

has the highest median rank (second, CrI first to sixth)

followed by detemir (once/twice) [third, CrI first to sixth].

Detemir (once) is replaced by detemir (once/twice) as the

highest-ranking treatment in the Poisson and shared-pa-

rameter models. Neutral protamine Hagedorn (once/twice)

is the lowest ranked treatment in all models. However, the

wide CrIs around these ranks reflect the considerable

uncertainty in the relative treatment effects and no firm

conclusions on which is the best treatment can be drawn

(Fig. 2).

3.3 Absolute Probabilities

The probability of having a hypoglycaemic event on the

reference treatment was calculated separately using a logit,

clog-log and Poisson model [6]. In each case, the random-

effects model was a better fit to the data.

The single-arm meta-analysis of the eight studies com-

paring glargine (once) and reporting risk data using a logit

model, produced a mean baseline probability of sev-

ere/major hypoglycaemic events of 0.07 (95% CrI

0.04–0.13) when using glargine (once). The meta-analysis

using the same studies but with a clog-log model produced

a mean baseline probability of severe/major hypogly-

caemic events at 1 year of 0.17 (95% CrI 0.06–0.34). The

analysis of the seven studies comparing glargine (once) and

reporting rate data, using a Poisson likelihood, produced a

mean baseline rate of severe/major hypoglycaemic events

of 0.38 events per person-year (95% CrI 0.07–1.21). When

this was transformed into a probability at 1 year, the

baseline probability of having an event when using glar-

gine (once) was 0.29 (95% CrI 0.07–0.7).

The difference in the baseline probabilities estimated is

the result of the different time periods assumed. The logit

model assumes the probability is the same for any time

period but reflects the probability of an event over the study

follow-ups in the contributing data. These have an average

follow-up time of 5 months. The clog-log model gives a

probability of an event over a 1-year period; thus, it follows

that this will be larger. The Poisson model reflects the

possibility of multiple events, which again leads to a higher

probability. The Poisson model also has slightly different

data included, owing to not all studies reporting both risk

and rate data, although five out of the seven studies are

common across all three models (Appendix A of the ESM).

Table 2 shows the absolute probabilities of events when

the probabilities of having an event on glargine (once) from

each of the baseline meta-analysis models are applied to

the relative effects from the corresponding NMA model.

This table shows that despite the relative effects being very

similar (Fig. 2), the difference in baseline probabilities

causes the absolute probabilities to differ considerably

across models.
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3.4 Expected Costs and Disutilities

Table 3 shows the expected costs from each of the models

and Table 4 shows the expected disutilities. Although the

ranking of costs and disutilities from lowest to highest is

similar across the models, there is considerable difference in

the estimated values. The expected cost of detemir (once),

for example, varies from £13.29 per year when the absolute

probabilities from the logit model are used, to £123.28 when

the values from the Poissonmodel are used. The difference in

disutilties is less apparent as the figures are small but the

change in magnitude across the models is the same.

Fig. 2 Mean differences in hypoglycaemic events. Negative values

mean that the treatment reduces hypoglycaemic events compared with

Glargine (once). Treatment legend: 2. Neutral protamine Hagedorn

[NPH] (twice); 3. Detemir (once); 4. Detemir (twice); 5. Degludec

(once); 6. NPH (once); 7. NPH (once/twice); 8. Detemir (once/twice).

Clog-log complementary log-log

Table 1 Posterior median rank

and 95% credible intervals

(CrIs)

Treatment Logit and clog-log Poisson Shared parameter

Median rank 95% CrIs Median rank 95% CrIs Median rank 95% CrIs

Detemir (once) 2 (1–6) 5 (1–8) 3 (1–8)

Detemir (once/twice) 3 (1–6) 2 (1–6) 2 (1–6)

Detemir (twice) 4 (1–8) 4 (1–8) 4 (1–8)

NPH (once) 4 (1–8) 5 (1–8) 4 (1–8)

Glargine (once) 5 (2–7) 4 (2–7) 5 (2–7)

NPH (twice) 5 (1–8) 5 (1–8) 5 (1–8)

Degludec (once) 6 (2–8) 4 (1–8) 5 (1–8)

NPH (once/twice) 6 (3–8) 6 (2–8) 7 (3–8)

clog-log complementary log-log, NPH Neutral protamine Hagedorn
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4 Discussion

This article found that, in the context of treatments to

reduce hypoglycaemic events, choice of scale for the rel-

ative treatment effects does not have a significant impact

on efficacy results. Although the Poisson model is expected

to be the most appropriate for modelling these data as it

takes into account different follow-up times and repeated

events, because severe hypoglycaemic events are rare and

occur at a constant rate, modelling relative treatment

effects using odds ratios rather than hazard ratios still

captures the differences between treatments.

However, as trials currently report severe hypogly-

caemic events in different forms, and may continue to do

Table 2 Absolute probabilities of having a hypoglycaemic event (at 1 year)

Treatment Absolute probability (logit) Absolute probability (clog-log) Absolute probability (Poisson)

Mean 95% CrIs Mean 95% CrIs Mean 95% CrIs

Detemir (once) 0.04 (0.01–0.11) 0.10 (0.02–0.29) 0.37 (0.04–0.97)

Detemir (once/twice) 0.04 (0.01–0.1) 0.11 (0.03–0.29) 0.2 (0.03–0.61)

NPH (once) 0.06 (0.01–0.17) 0.15 (0.03–0.43) 0.33 (0.05–0.86)

Glargine (once) 0.07 (0.04–0.12) 0.17 (0.07–0.34) 0.29 (0.07–0.7)

NPH (once/twice) 0.08 (0.04–0.16) 0.20 (0.07–0.43) 0.4 (0.08–0.91)

Degludec (once) 0.09 (0.03–0.18) 0.21 (0.07–0.47) 0.31 (0.05–0.81)

Detemir (twice) 0.12 (0–0.71) 0.26 (0–1) 0.38 (0–1)

NPH (twice) 0.14 (0–0.75) 0.29 (0–1) 0.39 (0–1)

clog-log complementary log-log, CrIs credible intervals, NPH Neutral protamine Hagedorn

Table 3 Expected costs (£) Treatment Expected cost (logit) Expected cost (clog-log) Expected cost (Poisson)

Mean 95% CrIs Mean 95% CrIs Mean 95% CrIs

Detemir (once) 13.29 (2.97–36.83) 34.21 (6.88–97.52) 123.8 (13.21–323)

Detemir (once/twice) 14.41 (4.17–34.16) 38.16 (9.81–97.26) 66.91 (10.31–201.7)

NPH (once) 20.42 (4.38–57.71) 51.11 (10.14–145) 110.4 (18.24–287.6)

Glargine (once) 22.65 (11.76–39.04) 56.14 (22.35–112.6) 95.59 (22.34–233.5)

NPH (once/twice) 28.08 (12.17–53.85) 68.36 (24.27–144.5) 134.6 (27.28–302.8)

Degludec (once) 29.63 (11.53–61.19) 71.1 (23.44–156.8) 102.7 (18.24–287.6)

Detemir (twice) 41.67 (0.35–237.9) 87.82 (1.13–332.8) 126.7 (1.43–333)

NPH (twice) 47.37 (0.44–251.1) 97.82 (1.43–333) 128.3 (1.55–333)

clog-log complementary log-log, CrIs credible intervals, NPH Neutral protamine Hagedorn

Table 4 Expected disutilities

Treatment Expected disutility (logit) Expected disutility (clog-log) Expected disutility (Poisson)

Mean 95% CrIs Mean 95% CrIs Mean 95% CrIs

Detemir (once) 0.000 (- 0.001 to 0) - 0.001 (- 0.004 to 0) - 0.004 (- 0.012 to 0)

Glargine (once) - 0.001 (- 0.001 to 0) - 0.002 (- 0.004 to - 0.001) - 0.003 (- 0.008 to - 0.001)

Detemir (twice) - 0.001 (- 0.009 to 0) - 0.003 (- 0.012 to 0) - 0.005 (- 0.012 to 0)

Degludec (once) - 0.001 (- 0.002 to 0) - 0.003 (- 0.006 to - 0.001) - 0.004 (- 0.01 to - 0.001)

NPH (once) - 0.001 (- 0.002 to 0) - 0.002 (- 0.005 to 0) - 0.004 (- 0.01 to - 0.001)

NPH (once/twice) - 0.001 (- 0.002 to 0) - 0.002 (- 0.005 to - 0.001) - 0.005 (- 0.011 to - 0.001)

Detemir (once/twice) - 0.001 (- 0.001 to 0) - 0.001 (- 0.004 to 0) - 0.002 (- 0.007 to 0)

NPH (twice) - 0.002 (- 0.009 to 0) - 0.004 (- 0.012 to 0) - 0.005 (- 0.012 to 0)

clog-log complementary log-log, CrIs credible intervals, NPH Neutral protamine Hagedorn

Different Methods for Modelling Severe Hypoglycaemic Events 529



so, the use of a shared-parameter model is recommended as

this allows the incorporation of both risk and rate data;

making use of all available data. Although incorporating

both types of data did not make a considerable difference to

results in this example, this may change in a different

example.

Where extra care should be taken is in ensuring that the

baseline probability of an event used in an economic model

is realistic and accurate to avoid over or underestimation of

the costs and effects. This article has demonstrated that

choice of model and scale can have a significant effect on

this baseline probability, with differences of between 0.07

and 0.29 found depending on the model and data used. It

has also shown that when this baseline probability is

applied to the relative effects from the corresponding

model, significant differences can be seen in cost and

utility estimates. It is feasible that these differences could

lead to changes in the decision as to which treatment is

most cost effective when the absolute probabilities are used

in cost-effectiveness models.

The different assumptions made by the models and the

data used explain the differences in results. The Poisson

and clog-log model allow for a constant rate of events over

time. These models are preferable to the logit model, which

estimates a probability of at least one event that is

unchanged over time. In addition, the Poisson data allow

for more than one event per person, which allows a better

estimation of the rate of events, when multiple events can

occur (as is the case here).

The sensitivity of cost-effectiveness results to the

hypoglycaemic event rate has been highlighted in several

studies. Gschwend et al. [16], who used the IMS CORE

Diabetes Model to estimate the cost effectiveness of insulin

detemir compared with NPH insulin in patients with type 1

diabetes using data from a 2-year randomised controlled

trial, showed that results were highly sensitive to the event

rate used with small differences in the rate causing detemir

to lose dominancy over NPH.

McEwan et al. [17] describe the Cardiff Type 1 Diabetes

Model and report the quality-adjusted life-year impact of

changes in the rate of hypoglycaemic events. The default

baseline rate of a severe hypoglycaemic event used in the

model is based on the probability of self-reporting a severe

hypoglycaemic event of 0.46 in patients with type 1 dia-

betes from an observational study carried out by the UK

Hypoglycaemia Study Group [18]. Modifying hypogly-

caemia frequency by - 10, - 20 or -30% resulted in

changes to discounted quality-adjusted life-years of ? 0.05,

? 0.11 and ? 0.17, respectively, and modifying hypogly-

caemia frequency by ? 10, ? 20 or ?30% resulted in

changes to discounted quality-adjusted life-years of - 0.05,

- 0.09 and - 0.13. This emphasises the importance of

accurately reflecting the probability of hypoglycaemic

events in economic models.

The difficulty of calculating the cost of hypoglycaemic

events based on studies reporting events in different forms

has also been highlighted by Jonsson et al. [19] who used a

cost-of-illness approach, based on an incidence methodol-

ogy, to estimate the cost of hypoglycaemia in patients with

type 2 diabetes. The incidence of hypoglycaemia was based

on findings from several published studies, some reporting

the number of events per person-years and some reporting

the percentage of patients experiencing an event. They

stated that the risk of hypoglycaemic events may therefore

be slightly underestimated but did not adjust for this. Our

analysis shows that this underestimation could potentially

have a significant impact on cost-effectiveness results.

A strength of this work is that the dataset used to

compare the different models in this paper is the same as

that used in the NICE guideline on type 1 diabetes. The

systematic review carried out to inform this guideline

found 20 studies comparing basal insulin regimens but

reporting different outcome measures. For the guideline, it

was decided to only use the 16 studies that reported rate

data and analyse these using a Poisson model. This article

has demonstrated the difference in results had they opted to

use the risk data, as has been done in a previous NMA [2].

The limitation of using these 20 studies reporting dif-

ferent outcome measures is that slightly different number

of trials, and hence data, have gone into each analysis. The

results are therefore not completely comparable and this

may be a source of heterogeneity. It is evident from the

network plots in Fig. 1 which direct comparisons are

included in the logit/clog-log and Poisson models and

which are missing. An alternative method would be to only

include the 12 studies reporting both risk and rate data in

each analysis and compare results on this basis, although

this would mean excluding data, which will reduce the

power of the analysis, making the networks even more

uncertain. The strength of the shared-parameter model

proposed here is that it can incorporate all the data and we

recommend using this model wherever possible. There is,

however, a relatively small number of studies per com-

parison, even in the shared-parameter model, leading to

sparse networks. This means that the analyses have low

statistical power to detect differences between the included

treatments and it is not possible to make a recommendation

regarding the optimal basal insulin regimen based solely on

these analyses.

Another issue to consider is the uncertainty in the lit-

erature as to the exact definition of severe hypoglycaemic

events, which may lead to between-trial heterogeneity in

analyses such as these. The NICE guideline defined severe

hypoglycaemia as ‘a blood glucose level that is sufficiently

low to cause a reduced level of function in an individual
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such that they are unable to self-manage a hypoglycaemia

episode and require help from another individual to achieve

normoglycaemia.’ Most of the studies included in these

analyses were in line with this definition, referring to the

person needing assistance from another to treat, although

some went into more detail, specifying the exact blood

glucose level cut-off. Standardisation in this regard is

recommended to reduce uncertainty in future analyses.

A further limitation is the lack of access to patient-level

data. Insulin regimens that reduce complications such as

severe hypoglycaemia are likely to also improve the sta-

bility of glycosylated haemoglobin, a reflection of average

plasma glucose levels over the medium term (2–3 months),

and also to reduce the occurrence of long-term complica-

tions and premature mortality [20–22] All of these are

important factors when choosing the most appropriate

treatment, but it is not possible to disentangle these effects

with aggregate data.

In terms of future research, a further model comparison

that could be made is with the negative binomial model,

which is useful in the case of overdispersed data, i.e. when

the observed variance is greater than expected under a

Poisson model. The negative binomial is more flexible than

the Poisson distribution, although it includes the Poisson

distribution as a limiting case. We have not yet seen this

model implemented in a meta-analysis context and because

we only have aggregate data on the number of events per

person-year, we did not have reason to suspect over-dis-

persion; thus, we chose to use the simpler Poisson model,

which fitted well. Because of the flexibility of WinBUGS,

the model could be adapted to include this more flexible

approach, if required [11].

In addition, we were unable to access the IMS Core

Diabetes Model [23] (which was used to assess cost

effectiveness in the NICE guideline) and re-estimate the

cost effectiveness using the different probabilities obtained.

This is also an area for future research, as it would deter-

mine whether the differences in probabilities of severe

hypoglycaemic events identified would in fact impact on

the treatment decision.

In general, we recommend using the model that best fits

with the underlying data-generating process. In the case of

severe hypoglycaemic events, the Poisson model for the

rate of events per person-year is the most appropriate.

Based on the results from this model and the cost and

disutilites of an event alone, detemir (once/twice) is the

best intervention. The findings of this study suggest that in

the case of severe hypoglycaemic events, when repeated

events are taken into account, the baseline probability of

having an event on glargine (once) is 0.29 but with wide

CrIs of 0.07–0.7. Further exploration should be given to

this baseline probability to ensure that it is accurate for use

in economic models.

5 Conclusion

This work has shown that choice of model and scale has

little impact on relative effectiveness or on the ranking of

basal insulin regimens from best to worst. No firm con-

clusions can be drawn with regard to the best basal insulin

regimen for preventing severe hypoglycaemic events owing

to the sparsity of the data and uncertainty in the networks.

However, we have shown that, despite this uncertainty in

terms of relative effects, it is possible for incorrect conclu-

sions to be drawn in terms of costs and disutilites, as absolute

probabilities of events can easily be underestimated if the

baseline probability does not take repeated events into

account. This is particularly important in health economic

models where small differences can have a considerable

impact on results. Care should therefore be taken to choose

an appropriate outcome measure when synthesising data on

repeated events for use in an economic model.
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