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Background: Meta‐regression results must be interpreted taking into account

the range of covariate values of the contributing studies. Results based on inter-

polation or extrapolation may be unreliable. In network meta‐regression

(NMR) models, which include covariates in network meta‐analyses, results

are estimated using direct and indirect evidence; therefore, it may be unclear

which studies and covariate values contribute to which result. We propose

graphs to help understand which trials and covariate values contribute to each

NMR result and to highlight extrapolation or interpolation.

Methods: We introduce methods to calculate the contribution that each trial

and covariate value makes to each result and compare them with existing

methods. We show how to construct graphs including a network covariate dis-

tribution diagram, covariate‐contribution plot, heat plot, contribution‐NMR

plot, and heat‐NMR plot. We demonstrate the methods using a dataset with

treatments for malaria using the covariate average age and a dataset of topical

fluoride interventions for preventing dental caries using the covariate

randomisation year.

Results: For the malaria dataset, no contributing trials had an average age

between 7–25 years and therefore results were interpolated within this range.

For the fluoride dataset, there are no contributing trials randomised between

1954–1959 for most comparisons therefore, within this range, results would

be extrapolated.

Conclusions: Even in a fully connected network, an NMR result may be esti-

mated from trials with a narrower covariate range than the range of the whole

dataset. Calculating contributions and graphically displaying them aids inter-

pretation of NMR result by highlighting extrapolated or interpolated results.

KEYWORDS

contribution, meta‐regression, network meta‐analysis, extrapolationtreatment by covariate

interactionsweight
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1 | INTRODUCTION

Network meta‐analyses have become increasingly popu-

lar in recent years in terms of application in systematic

reviews and methodological developments.1-5 Network

meta‐regression (NMR) is an extension of network meta‐

analysis, which examines whether several treatment

effects (eg, log odds ratios) differ according to a covariate

(eg, trial setting).6 For instance, if 3 treatments exist for

a particular condition (treatments 1, 2, 3), NMR could

simultaneously examine whether the treatment effect for

2 vs 1 varies according to a covariate, whether the effect

for 3 vs 1 varies according to the same covariate, and

whether the effect for 3 vs 2 also varies. NMR results from

the NMR model commonly consist of, for each compari-

son, 1 treatment effect estimated at the covariate value

zero (or at the mean covariate value when the NMR

model is centred) and 1 regression coefficient for the treat-

ment by covariate interaction.

When inconsistency (ie, variability across treatment

comparisons) or heterogeneity (ie, variability across trials

that directly compare the same 2 treatments) is detected

in a networkmeta‐analysis, the results of themeta‐analysis

may not be valid. In such cases, NMR can be used to

explore causes of the heterogeneity and/or inconsistency,

and if the variability is reduced or disappears in the

NMR, the results from the NMR may be more meaningful

than those from the network meta‐analysis and may be

used to draw reliable clinical inferences. Yet, when hetero-

geneity and/or inconsistency is still present in the NMR,

the results of the NMR may be unreliable, and it may be

more appropriate to reconsider the eligibility criteria or

explore other covariates. Moreover, NMR can be valuable

when stratified results for different patient groups are

required to answer clinical questions. For example, results

were stratified by seizure type (ie, patients suffering from

partial or generalised seizures) in a NMR of epilepsy

drugs.7,8 In these circumstances, NMR can estimate treat-

ment effects at different covariate values, facilitating strat-

ified medicine for different patient groups. For categorical

covariates (such as, surgical procedure), the treatment

effects for each category can be estimated (eg, treatment

effects for studies involving amputees and treatment

effects for studies of breast surgery). For continuous covar-

iates (eg, trial duration), it is possible to calculate treatment

effects at any value of the covariate (eg, at weeks 0, 4, 8, 12,

16, 20,....). Stratified analyses or meta‐regressions are often

used in reviews to explore patient‐level covariates (eg,

patient age) using trial‐level summaries (eg, average age)

or trial‐level covariates (eg, study location).9,10

However, when interpreting the results of a meta‐

regression, it is important to consider the covariate values

of the included trials so that interpolated or extrapolated

results are identified. Results that rely on interpolation

or extrapolation may not be reliable and could lead to

drawing incorrect conclusions that affect clinical practice.

In a standard pair‐wise meta‐regression, where trials'

results for only 1 treatment comparison are regressed

against trials' covariate values, it is relatively simple to

identify when results are interpolated or extrapo-

lated.6,11,12 For example, if the dose of a drug ranged from

100 to 150 mg/day and 300 to 400 mg/day in the studies,

the results would be applicable for doses 100 to 150 mg/

day and 300 to 400 mg/day, but we would be less confi-

dent about applying the results (interpolated) for doses

150 to 300 mg/day, and even less confident in applying

results (extrapolated) for those over 400 mg/day. How-

ever, understanding the contribution of different covari-

ate values to results is more complicated for NMR

because results are estimated based on a combination of

direct and indirect evidence. For example, for the compar-

ison 2 vs 1, the trials that directly compare 2 vs 1 may

have covariate values for dose ranging from 100 to

200 mg/day, but the trials that contribute indirect evi-

dence (eg, 3 vs 1 and 3 vs 2) may have covariate values

ranging from 200 to 300 mg/day; therefore, the results

for that comparison may be considered to be reliably esti-

mated for doses 100 to 300 mg/day. For the comparison 3

vs 1, different trials with different covariate values may

contribute to results for that comparison, etc. Further-

more, for large treatment networks, trials that are closely

connected to a particular treatment comparison in the

network (eg, first‐order indirect evidence) may contribute

more to the NMR result for that comparison than trials

that are further away in the network (eg, third‐order indi-

rect evidence).13 Therefore, to avoid drawing misleading

conclusions in NMR, it is important to identify which tri-

als contribute to each NMR estimate, by how much they

contribute, and consider their covariate range so that each

result can be interpreted with the relevant covariate range

in mind. To our knowledge, although NMR methodology

has been widely introduced and applied, such issues

regarding interpretation have not been discussed in pub-

lished literature.6,8,14-18

In this article, we introduce novel methods to help

understand which trials and covariate values contribute

to each NMR result (ie, each treatment effect at zero

covariate and each regression coefficient) and to highlight

extrapolated or interpolated results. We propose new

methods to calculate the percentage contribution that

each trial makes to each NMR result. The methods can

tell us, for example, that a particular result is 10% based

on trials with covariate values 0 to 100 mg/day, 70% from

trials with values 100 to 200 mg/day, and 20% from trials

with values 200 to 300 mg/day. Therefore, we can con-

sider the covariate range relevant to each NMR result.
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The proposed methods to calculate contributions were

inspired by an existing fixed‐effect Frequentist method

that involved estimating the pairwise meta‐analytic treat-

ment effects based on direct evidence and calculating the

contribution each pairwise estimate makes to each

network meta‐analytic estimate in the absence of covari-

ates.19-21 Caldwell et al also used similar methodology to

calculate the precision of a network meta‐analysis

treatment effect.13 We extend the method to compute

the contribution each trial makes to each NMR treatment

effect estimate and to each regression coefficient estimate

for a treatment by covariate interaction.

Recently, methods were proposed for calculating

study weights in multi‐parameter meta‐analysis.22,23

Neither article presented methods specifically for NMR

or discussed contributions of covariate values, extrapola-

tion, or interpolation. Yet, such methods can be applied

to NMR without modification. We compare the new

methods proposed here in with those presented by

Riley et al.23

The methods introduced in this paper are applicable

for both continuous and categorical covariates and trial‐

level aggregate outcome data. In Section 2, we introduce

2 datasets that are used to illustrate the methods. We out-

line existing NMR models in Section 3. In Section 4, we

introduce new methods for calculating the contribution

that each trial makes to each NMR result and compare

them with those presented by Riley et al.23 New methods

are described for fixed‐effect and random‐effects models,

Bayesian, and Frequentist frameworks, and models

that make different assumptions regarding the regression

coefficients for the treatment by covariate interactions. In

Section 5, we propose novel graphs that will help

interpret NMR results with the covariate distribution

and contributions in mind. In Section 6, we discuss the

proposed methods and findings.

2 | ILLUSTRATIVE DATASETS

The proposedmethods will be demonstrated using 2 exam-

ple aggregate datasets; a dataset of 3 treatments for severe

malaria with a dichotomous outcome where the treatment

effects are measured on the log odds ratio scale and

another dataset of topical fluoride interventions for

preventing dental caries, which is a much larger network,

involving a continuous outcome with treatment effects

measured by the standardised mean difference (SMD).

The malaria dataset was constructed using 2 Cochrane

reviews and trial reports; 1 review compared artesunate

(AS) versus quinine (QU) and the second compared

artemether (AR) versus QU and AS versus AR.24,25 Both

reviews included randomised controlled trials including

patients with severe malaria. Results were stratified by

age in the reviews, and therefore age was considered to

be a treatment effect modifier. Event rates for the primary

outcome, death, were extracted from the reviews and data

were cross‐checked against the trial reports. The covari-

ate, average age of patients, in each trial was extracted

from the trial reports. Two studies with missing covariate

data were deleted from the dataset. Log odds ratios and

their standard errors were calculated for each trial in R

using the event rates. Table S1 displays the data.

The fluoride dataset was originally constructed using

several Cochrane reviews and has been used previously

to demonstrate network meta‐analysis methods in the

methodological literature.17,26-33 Reviews included

randomised or quasi‐randomised controlled trials that

used or indicated blind outcome assessment and com-

pared different forms of topical fluoride interventions for

preventing dental caries in children or adolescents with

a duration of at least 1 year or school year. Six treatments

were compared, that is, no treatment (NT), placebo (PL),

fluoride in dentifrice (DE), fluoride in rinse (RI), fluoride

in gel (GE), and fluoride in varnish (VA). The primary

outcome was caries increment in permanent teeth mea-

sured by the change from baseline in decayed, missing,

and filled tooth surfaces. For each trial, for each treatment

group, the number of participants, mean caries incre-

ment, and the corresponding standard deviation were

obtained. The covariate, randomisation year, of each trial

was also obtained. Specifically, the year of randomisation

was taken to be the same as the year the study began but

for trials where the year a study began was not accessible

it was estimated by subtracting the duration of the trial (in

years) plus 1 extra year from the publication year. Previ-

ously, Salanti et al found an interaction between treat-

ment effect and randomisation year and we explore this

interaction further.17 As in the previous article, SMDs

were used to compare treatments. SMDs, their standard

errors and covariances (for multi‐arm trials) were

calculated for each trial in R using formulae specified by

Cooper et al.34 See Table S2 for the data.

3 | NETWORK META ‐REGRESSION
MODELS

3.1 | Model specification

Let i denote the trial where i = 1, ……, N and N is the num-

ber of independent trials and let k be the trial arm where

k = 1, ……, Ai and Ai is the number of arms in trial i. Let tik
denote the treatment given in trial i in arm kwhere tik∈ {1,

……,T} and T is the number of treatments in the network.

Note that treatment 1 is taken to be the reference

treatment.
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Suppose we have trial‐level outcome data, where yik is

the observed treatment effect (eg, log odds ratio) for arm k

vs arm 1 (with k ≥ 2) in trial i and vik is the corresponding

variance. We assume a normal likelihood yik~N(θik,vik)

where θik is the mean treatment effect in trial i (with

k ≥ 2). Let ci be a study‐level covariate for trial i (such

as, a continuous covariate value or an indicator variable

for a dichotomous covariate).

There are 3 different assumptions that can be made

regarding the basic regression coefficients for the treat-

ment by covariate interactions, that is, they are indepen-

dent, exchangeable, or common.6,14,15,35 The basic

regression coefficients are the coefficients for each treat-

ment versus the reference treatment 1 (ie, β12, β13, …,

β1T, where, for example, β12 is the regression coefficient

for treatment 2 versus treatment 1). The decision regard-

ing which assumption is most appropriate for a specific

dataset can be based on the model fit, data availability,

the resulting estimates of the regression coefficients, and

clinical judgement.

The NMRmodel with independent interactions can be

written as

θik ¼ δik þ βti1;tikci

where βti1;tik=β1;tik
‐β1;ti1

, βti1;tik is the difference in the

treatment effect of tik vs ti1 per unit increase in the covariate

ci, or in other words, the regression coefficient for the treat-

ment by covariate interaction for tik vs ti1. In a random‐

effects model, δik (with k ≥ 2) represents the trial‐specific

treatment effect treatment effect in trial i for arm k vs

arm 1 when the covariate is zero (or when the covariate

is the mean value if the model is centred at the mean)

and is assumed to be a realisation from a normal distribu-

tion where δik∼Ν dti1;tik ; σ
2

� �
with dti1;tik ¼ d1;tik−d1;ti1 and

dti1;tik is the mean treatment effect of tik vs ti1 when the

covariate is zero (or when the covariate is the mean value

for centred models). Here, the between trial variance σ2 is

assumed to be the same for each comparison; this assump-

tion is often made in the network meta‐analysis literature

and applications to aid estimation.

In a fixed‐effect model, we set σ2 = 0 to obtain δik=

d1;tik−d1;ti1 . The NMRmodel with exchangeable interactions

is given by letting β1;tik
eNorm B; υ2ð Þ and the model with

common interactions is formulated by settingβ1;tik
¼ β. With

common interactions, the functional regression coefficients

(ie, βti1;tik where ti1 ≠ 1) are fixed to be zero.35

When multi‐arm trials contribute, the correlation

between the observed treatment effects (yik) and the

trial‐specific treatment effects (δik) from the same study

must be taken into account in the modelling; details are

described in the supplementary material.

3.2 | Application to datasets

NMR models were fitted using WinBUGS 1.4.3 and the

R2WinBUGS package in R. Fixed‐effect and random‐

effects models including independent, exchangeable, and

common interactions were applied. The correlation

between treatment effects from the same trial was taken

into account in the models when multi‐arm trials existed.

The covariates were centred at their mean. All parameters

were given non‐informative normal prior distributions

(ie, N(0, 100000)) except the between trial standard devia-

tion that was assumed to follow a non‐informative

uniform distribution (ie, Uni(0, 10)). Three chains with

different initial values were run for 300 000 iterations.

The initial 100 000 draws were discarded, and chains were

thinned such that every fifth iteration was retained. See

supplementary code S1.

Model fit and complexity of fixed‐effect and random‐

effects models was assessed using the deviance informa-

tion criterion (DIC) defined as DIC ¼ Dþ pD where

pD ¼ D−bD and D was the posterior mean residual devi-

ance, pD was the effective number of parameters, and bD
was the deviance evaluated at the posterior mean of the

model parameters.36 A model with a comparatively

smaller DIC was preferable to a model with a larger

DIC; when the difference in DIC was very small, the

difference was not considered meaningful; and in this

case, the simpler fixed‐effect models were preferred to

random‐effects models and the model with independent

interactions was preferred because it makes the weakest

assumption regarding the coefficients.

3.2.1 | Malaria dataset

The results from the fixed‐effect NMR with independent

interactions are shown in Table S3. Results from this

model are presented because the DICs from each applied

model were similar (DICs 22.95–26.13). There is evidence

of an interaction between log odds ratio and average age

for AS vs QU. As the average age ranged from 2.33 to

34.47 years across trials, log odds ratios at mean age, 0,

5, 10, 15, 20, 25, 30, and 35 years are displayed. For AS

vs AR, none of the displayed log odds ratios indicate a

difference between the drugs. However, each of the log

odds ratios suggests a difference between AS and QU,

and a difference between AR and QU is observed for log

odds ratios estimated for age 15 years or more. The results

of the NMR could be used to draw clinical inferences

because an interaction has been found. However, to aid

interpretation, we must first consider which trials and

covariate values contribute to each result to be aware of

extrapolation and interpolation.
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3.2.2 | Fluoride dataset

Table S4 displays the results from the random‐effects

NMR model including independent interactions. This

model provided a lower DIC (DIC = 546.67) than the

fixed‐effects models with independent (DIC = 797.41),

exchangeable (DIC = 798.82), and common interactions

(DIC = 809.14); results from the random‐effects models

were similar (DIC = 546.67–547.04). The posterior

median of the between trial variance is 0.03 with 95%

credibility interval (0.02, 0.05). The results show that

there is an interaction between the SMD and

randomisation year for VA vs PL. SMDs at year 1954,

1960, 1970, 1980, 1990, and 1994 are presented because

the randomisation year across all the trials ranged from

1954 to 1994. For DE, RI, GE, vs NT and DE vs PL, there

is a difference between the 2 interventions being com-

pared for each displayed SMD. For VA vs NT and RI vs

PL, a difference is found for SMDs estimated for years

1954, 1960, 1970, 1980, and 1990. Whereas, for PL vs

NT, a difference is found between 1970 and 1990, and

for GE and VA vs PL, a difference is observed between

1954 and 1980. Salanti et al concluded that “older studies

gave more enthusiastic results for the effectiveness of

fluoride” and the NMR results in our article agree with

this conclusion.17 However, to further explore the results,

we need to consider which trials and covariate values

contribute to each result.

4 | CALCULATING THE TRIALS '

CONTRIBUTIONS

4.1 | Methods

In the supplementarymaterial, details are provided regard-

ing the newmethods for calculating the percentage contri-

bution that each trial makes to each NMR result (ie, each

dti1;tik and each βti1;tik ). For each NMR result, the amount

that each trial contributes to the result is estimated; the

contributions across all trials sum to 100%. The methods

can be used assuming either fixed or random treatment

effects, and assuming independent, exchangeable, or com-

mon interactions. Methods are described for a Frequentist

approach and Bayesian framework including prior infor-

mation. In a Bayesian framework, the contribution that

the prior distributions make to each NMR result can also

be calculated, whichmay be useful when informative prior

distributions are used. The methods can be applied to

datasets that include multi‐arm trials because they can

allow for the correlation between treatment effects from

the same trial.

A summary of the existing methods proposed by Riley

et al to calculate trial contributions is also given in the

supplementarymaterial.23The existingmethods have been

applied in a Frequentist framework, can assume either

fixed or random treatment effects, and accommodate

multi‐arm trials. However, at present, the existingmethods

do not allow for the inclusion of prior information in a

Bayesian setting. The current methods can calculate the

contribution that each trial makes to each basic treatment

effect (ie, dti1;tik where ti1 = 1) and to each basic regression

coefficient (ie, βti1;tik where ti1 = 1). Providing the model's

results does not depend on the choice of reference treat-

ment, the contribution that each trial makes to each func-

tional treatment effect (ie, dti1;tik where ti1 ≠ 1), and each

functional coefficient (ie, βti1;tik where ti1 ≠ 1) can be calcu-

lated by re‐applying the methods with different treatments

coded as the reference treatment. Therefore, the existing

methods cannot be used assuming exchangeable or com-

mon interactions because the results of such models can

differ depending on the choice of reference treatment.

4.2 | Application to datasets

We used R and Excel to calculate the studies' contribu-

tions using the new methods. The methods by Riley et al

were applied using Stata and verified using R.23 The

covariates were centred at their mean. Computing code

is supplied (code S2).

4.2.1 | Malaria dataset

Using the new methods, the contribution of each trial to

each log odds ratio and each regression coefficient is

shown in Table S5. Study contributions vary between 0

and 49.86%. Notice that each contribution column sums

to 100%. Generally, a trial will contribute different

amounts to each NMR result, for example, van Hensbroek

1996 contributes 25.70% to the log odds ratio of AR vs QU

and 14.00% to the coefficient for AS vs AR. Also, different

trials contribute different amounts to each NMR result,

for example, for the coefficient for AS vs QU, Dondorp

2010 contributes 46.26% whereas Adam 2002 contributes

0.00%. It is clear that the contribution a study makes to

a log odds ratio is generally similar but not identical to

the contribution it makes to the corresponding regression

coefficient, for example, van Hensbroek 1996 contributes

25.70% to the log odds ratio of AR vs QU and 21.00% to

the coefficient for AR vs QU.

Table S6 displays the study weights for each NMR result

calculated using the existing methods proposed by Riley

et al.23Contributions were similar but not identical to those

calculated using the newmethods with absolute differences

between results varying from 0 to 15.29%. The NMR results

obtained from Stata were the same as those in Table S3.
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4.2.2 | Fluoride dataset

The contribution of each trial to each SMD and each regres-

sion coefficient is displayed in Table S7 using the new

methods. Study contributions vary between 0% and 12.7%;

therefore, no single study dominates a particular NMR

result. Analogous to the malaria dataset, a trial will contrib-

ute different amounts to each NMR result, different trials

contribute different amounts to each NMR result, and the

contribution a study makes to a log odds ratio differs from

the contribution it makes to the corresponding coefficient.

Note that when the NMR model was refitted in Stata to

calculate the study weights using the existing Frequentist

methods proposed by Riley et al, the NMR results differed

marginally (see Table S8).23 Table S9 displays the study

weights for each NMR result calculated from the existing

method. The contributions from the existing method were

not exactly the same as those from the new method. The

absolute differences between results varied from 0 to 18.64%.

5 | GRAPHICAL DISPLAYS

The proposed graphs aid interpretation of NMR results by

displaying the covariate distributions or study contribu-

tions. Graphs include a network covariate distribution

diagram, covariate‐contribution plot, heat plot, contribu-

tion‐NMR plot, and heat‐NMR plot.

Covariate‐contribution plots, heat plots, contribution‐

NMR plots, and heat‐NMR plots were constructed in R.

Example code is provided in the supplementary material

(code S3‐S6). We chose to use the contributions calculated

from the new methods in the graphs but equally, the

contributions estimated by the methods of Riley et al

could be used.23

5.1 | The network covariate distribution
diagram

5.1.1 | Graph description

A standard network diagram displays nodes and edges; the

nodes represent the treatments and each edge (ie, a

connecting line), which join 2 nodes, represents the avail-

ability of outcome data from studies that directly compare

the 2 treatments. Such diagrams are widely used to visually

display the available evidence and can be constructed using

various software and display options.19,37 The proposed net-

work covariate distribution diagram is an adaptation of the

standard network diagram in that the covariate values of

trials are also displayed on the diagram. For each edge (ie,

treatment comparison with direct evidence), a histogram

of the covariate values can be drawn with the edge consid-

ered analogous to the horizontal axis of the histogram.

Furthermore, for large networks, the diagrams can

become cluttered; therefore, instead, histograms of the

covariate values can be drawn alongside the network

diagram. Alternatively, a 3‐dimensional version of the

diagram can be drawn, with the treatment network drawn

on a 2‐dimensional plane and the covariate distributions

plotted in a third dimension; Batson et al propose a simi-

lar diagram and have produced a computer package to

draw such graphs.38

The purpose of the network covariate distribution

diagram is to visualise the covariate values in addition to

the evidence base. For each comparison, it is useful to

understand the range of covariate values contributing

direct evidence because NMR parameter estimation issues

may be identified, for example, it would not be possible to

fit a model with independent interactions when only 1

trial contributes to a basic regression coefficient or when

all the studies that contribute to a basic coefficient have

the same covariate value. Also, interpolation and extrapo-

lation may be detected from the diagram when no trials

with covariate values within a particular covariate range

exist. However, it is difficult to draw conclusions regard-

ing the overall covariate range relevant for each compari-

son from this diagram because indirect evidence also

contributes to the NMR results.

5.1.2 | Application to datasets

5.2 | Malaria dataset

Figure 1 shows the network covariate distribution dia-

gram. As this dataset is a 3 treatment network, histo-

grams can be drawn into the diagram. It is apparent

that the distribution of the average ages of the patients

in trials that contribute direct evidence differs across

comparisons. There are no paediatric trials directly com-

paring AS vs AR. However, this may not be a concern

because the network is a 3 treatment loop; therefore,

all the trials in the network and their covariate values

should contribute to all NMR results, but it is not obvi-

ous by how much each trial contributes to each NMR

result. Furthermore, we see that no trials have an aver-

age age between approximately 10 and 20 years, so

results are interpolated within this range; however, if

some trials contribute very little to some results, the

range for interpolation may be wider than this for some

comparisons.

5.3 | Fluoride dataset

As the fluoride dataset is a larger network, a network

diagram including covariate data is cluttered (diagram
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not presented), and therefore it is preferable to present

covariate information separately to the diagram.

Figure 2 shows the network diagram, and Figure 3

presents covariate information. There are certainly dif-

ferences in the distribution of randomisation year across

comparisons with many comparisons having a very narrow

range of years (Figure 3). However, the network is fully con-

nected (ie, every intervention is directly compared with

every other intervention); therefore, one would expect all

trials to make some contribution to each NMR result.

5.4 | The covariate‐contribution plot

5.4.1 | Graph description

A covariate‐contribution plot consists of 1 graph per NMR

result, that is 1 graph for each treatment effect at zero covar-

iate and each regression coefficient. For each NMR result,

the percentage contribution that each trial makes to the

NMR result is plotted on the vertical axis against the covar-

iate value for each study on the horizontal axis; 1 point per

study is displayed on the graph. Various display options can

be considered in the plot. The study number can be

displayed in the graph rather than a standard plotting point

FIGURE 1 Network covariate distribution diagram for the malaria dataset

FIGURE 2 Network diagram for the fluoride dataset.DE:

dentifrice; GE: gel; NT: no treatment; PL: placebo; RI: rinse; VA:

varnish. Numbers of studies contributing direct evidence are displayed
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symbol so that the contribution a particular study makes to

different NMR results can be compared.

Moreover, for large networks, where the number of

NMR results is large, 1 graph per comparison can be con-

structed, rather than 1 graph per NMR result, with the

contributions to the treatment effect and the contribu-

tions to the coefficient displayed on a single graph but

using different colours or plotting symbols.

The aim of the plot is to show which trials and covar-

iate values contribute to each result. A key advantage of

the plot is that if extrapolation or interpolation exists, it

is clearly visible from this plot. Furthermore, it can be

useful to know which studies and covariate values con-

tribute to which results when considering causes of any

existing inconsistency.

5.4.2 | Application to datasets

5.5 | Malaria dataset

The contribution of each trial to each log odds ratio and

each regression coefficient is shown in the covariate‐contri-

bution plot in Figure 4. For this dataset, we present separate

plots showing the contributions to the log odds ratios

(Figure 4A,C,E) and regression coefficients (Figure 4B,D,

F), and we display the study numbers instead of points.

Figure 4 shows that no trials have an average age between

7 and 25 years, and therefore results are interpolated within

this range for each NMR result. For each comparison, spe-

cific studies do seem to dominate the NMR result. For

example, for AS vs QU, studies 18 and 19 contribute

32.22% and 49.86%, respectively, to the log odds ratio and

33.52% and 46.26% to the coefficient; the average ages of

patients in these studies are 27.90 and 2.85 years. Therefore,

we may bemore confident in drawing conclusions for these

average ages. Whereas, studies with average ages of 3 to

7 years, 25 to 27 years, and over 28 years contribute little

for AS vs QU; therefore, we may be less confident about

interpreting the result within this range (Figure 4C,D).

5.6 | Fluoride dataset

Figure 5 is the covariate‐contribution plot showing the

contribution of each trial to each SMD and each regres-

sion coefficient. As many treatments are compared in this

dataset, we chose to present 1 graph per comparison and

red points to represent the contributions to the SMDs

and blue points to represent the contributions to the

regression coefficients. The figure clearly shows that, for

each comparison, a wide range of covariate values con-

tribute to the NMR results with no obvious areas of inter-

polation or extrapolation. For most comparisons, the

percentage contributions are relatively similar across

covariate values such that the contributions do not

decrease or increase with increasing randomisation year.

Also, no single study dominates a particular comparison,

that is, all contributions are less than 15%.

FIGURE 3 Distributions of randomisation year for the fluoride dataset.DE: dentifrice; GE: gel; NT: no treatment; PL: placebo; RI: rinse;

VA: varnish

250 DONEGAN ET AL.



5.7 | Heat plot

5.7.1 | Graph description

For continuous covariates, to construct the heat plot, first,

suitable ranges of the covariate are chosen (eg, trial dura-

tion 12–24 weeks, 24–36 weeks,,,….). Then, for each NMR

result, the contributions can be summed across trials

within the same covariate range to give the contribution

of the covariate range to the result. For instance, for a par-

ticular NMR result, the contributions of trials that have a

covariate value between 12 and 24 weeks would be

summed and similarly, summed for trials with values

between 24 and 36 weeks; from this, we may find that the

result is 80% from trials with values 12 to 24 weeks and

20% from trials with values 24 to 36 weeks. For categorical

covariates, a similar approach is taken by summing the

contributions of trials within each covariate category.

The summed contributions are then displayed on the

heat plot. The heat plot displays how much each covariate

range contributes to each NMR result using a matrix for-

mat. Each cell of the matrix shows the contribution of a

covariate range to an NMR result by displaying the

numerical contributionandusing colour shading (eg, lower

contributions represented using blue shades and higher

contributions represented using red shades). The heat plot

is particularly useful for highlighting covariate ranges

where an NMR result is extrapolated or interpolated.

5.7.2 | Application to datasets

5.8 | Malaria dataset

Figure 6 shows the heat plot. Trialswere grouped according

to the average age of patients using intervals of 2.5 years,

ranging from zero to 35 years. For AS vs AR and AR vs

QU, the contributing trials have average ages within range

0 to 7.5 years and 22.5 to 32.5 years; therefore, results would

be interpolated or extrapolated outside of these ranges.

Similarly, for AS vs QU, trials within range 2.5 to 7.5 years

and 22.5 to 35 years contribute to results. The plot shows

that results between 7.5 and 22.5 years are interpolated

for all comparisons. Within each age group, the contribu-

tions vary across NMR results, for instance, trials with

FIGURE 4 Covariate‐contribution plot showing average age versus percentage contribution of each trial to each log odds ratio and each

regression coefficient for the malaria dataset.Numbers represents the study number in Table S1
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average age between 2.5 and 5 years contribute 36% to the

regression coefficient for AR vs QU but contribute 51% to

the regression coefficient for AS vs AR.

5.9 | Fluoride dataset

The heat plot is shown in Figure 7. Trials were grouped

with respect to randomisation year using intervals of

5 years. For most NMR results, the majority of the con-

tributing trials have randomisation years between 1960

and 1979. There are no contributing trials randomised

between 1954 and 1959 for most NMR results, and there

are no contributing trials randomised between 1985 and

1989 for 1 NMR result; therefore, these results would be

extrapolated if interpreted within these ranges. The

observed contributions vary across NMR results within

FIGURE 5 Covariate‐contribution plot showing randomisation year versus percentage contribution of each trial to each SMD and each

regression coefficient for the fluoride dataset.DE: dentifrice; GE: gel; NT: no treatment; PL: placebo; RI: rinse; VA: varnish [Colour figure

can be viewed at wileyonlinelibrary.com]

FIGURE 6 Heat plot showing average

age versus the NMR result for the malaria

dataset.Block colour and numbers

represent the contribution of each

covariate range to each log odds ratio and

each regression coefficient (%).AR:

artemether; AS: artesunate; QU: quinine

[Colour figure can be viewed at

wileyonlinelibrary.com]
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each randomisation year range, as well as varying across

randomisation year ranges for each NMR result.

5.10 | The contribution‐NMR plot

5.10.1 | Graph description

The aim of the contribution‐NMR plot is to display the

results of the NMR as well as the study data points in a

similar way to a bubble plot that is often used to display

standard pair‐wise meta‐regression. This enables the

NMR results to be interpreted while also considering the

covariate distributions.

The contribution‐NMR plot consists of 1 graph per

treatment comparison. Each graph has 2 sections.

The bottom section of the graph is a plot of the treat-

ment effect on the vertical axis versus the covariate value

on the horizontal axis. The NMR regression line (and its

95% confidence or credibility interval) for that compari-

son is drawn to show the NMR treatment effects

estimated at various covariate values. Points plotted for

each study that contributes direct evidence at the

observed trial's treatment effect and covariate value.

The top section of the graph displays a plot of covari-

ate value on the horizontal axis. Points are plotted for

each study contributing indirect evidence to that compar-

ison at the observed covariate value. Notice that there are

no observed treatment effects for trials contributing

indirect evidence; therefore, the points could not plotted

in the bottom section but can be plotted in the top section

because there is no treatment effect scale on the

vertical axis.

To display the contributions on the plot, the size of the

contribution that a study makes to a NMR result can be

represented by the size of a point for that study. For a par-

ticular comparison, the size of the contribution that a

study makes to the treatment effect at zero covariate

may differ from the contribution it makes to the corre-

sponding regression coefficient; therefore, 2 points of dif-

ferent sizes must be plotted in the same place because

they represent the same study. We recommend using a

circle as the plotting symbol so that the 2 points for each

study can both be seen simultaneously even when they

are over‐layered on the plot; a red circle whose size repre-

sents the contribution of a study to the treatment effect

and a blue circle whose size represents the contribution

of the same study to the regression coefficient. When the

circles are large and do not fit inside the plotting region,

the contribution values can be rescaled by dividing all

contributions by an appropriate scalar value so that circles

fit in the region and are visually pleasingly.

However, it is worth noting that to simplify the plot,

information regarding contributions can be ignored such

that 1 point per study is plotted where all plotting points

have the same standard size.

The contribution‐NMR plot shows which trials and

covariate values contribute most to each NMR result,

whether results are evidence based or have been interpo-

lated or extrapolated and whether treatment by covariate

interactions exist. Furthermore, differences between the

covariate distribution of trials contributing direct evi-

dence and the covariate distribution of trials contributing

indirect evidence for a particular comparison are obvious

from the plot, and as such, the plot facilitates exploration

of causes of inconsistency.

FIGURE 7 Heat plot showing randomisation year versus the NMR result for the fluoride dataset. Block colour and numbers represent the

contribution of each covariate range to each SMD and each regression coefficient (%)DE: dentifrice; GE: gel; NT: no treatment; PL: placebo;

RI: rinse; VA: varnish [Colour figure can be viewed at wileyonlinelibrary.com]
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5.10.2 | Application to datasets

5.11 | Malaria dataset

Figure 8 displays the contribution‐NMR plot. Contribu-

tions were scaled by a fifth. Results are interpolated

between around average age 7 to 25 years. For AR vs QU,

results are mostly based on 2 direct evidence trials and 2

indirect evidence trials approximately within ranges 0 to

5 years and 28 to 35 years. For AS vs QU, 2 direct evidence

trials mostly contribute to the results around range 0 to

5 years and 25 to 30 years. Results for AS vs AR are mostly

based on indirect evidence trials approximately within

range 0 to 7 years and 28 to 35 years. Figure S1 shows the

same plot but without presenting the study contributions.

5.12 | Fluoride dataset

The contribution‐NMR plot is shown in Figure 9. Contri-

butions were scaled by a half. For all comparisons except

7 (ie, PL vs NT, DE vs NT, DE vs PL, RI vs PL, RI vs DE,

GE vs DE, and VA vs DE), there are no contributing trials

randomised before 1960; therefore, results are extrapo-

lated for low randomisation years. The plot clearly shows

that for many comparisons (ie, PL vs NT, DE vs NT, RI vs

DE, GE vs DE, VA vs DE, GE vs RI, VA vs GE), NMR

results are based on no or very limited direct evidence.

A simpler version on the plot that does not display the

study contributions is shown in Figure S2.

5.13 | Heat‐NMR plot

5.13.1 | Graph description

The contribution‐NMR plot was devised to simulta-

neously display the results of the NMR and the contribu-

tions of various covariate ranges to the NMR results so

that the NMR results can be interpreted with the covariate

distribution in mind.

FIGURE 8 Contribution‐NMR plot for the malaria dataset. The bold dot‐dash line is the log odds ratio, and the 2 dashed lines are the upper

and lower 95% credibility intervals estimated by the model. Points (ie, circles) represent the trials that contribute to the model estimates; points

for trials that contribute direct evidence are displayed in the bottom section, and points from trials that contribute indirect evidence are

displayed in the top section. The size of the red circle represents the size of the contribution that a trial makes to the log odds ratio (estimated

at mean value), and the size of the blue circle represents the size of the contribution that a trial makes to the regression coefficient. Larger

circles represent larger contributions [Colour figure can be viewed at wileyonlinelibrary.com]
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The heat‐NMR plot has 1 graph per treatment com-

parison. Like the contribution‐NMR plot, for each treat-

ment comparison, a graph of treatment effect on the

vertical axis versus covariate value on the horizontal axis

is constructed with the NMR regression line and its 95%

confidence or credibility interval displayed.

However, in the heat‐NMR plot, the area between the

upper and lower confidence or credibility bounds is

coloured. The summed contributions calculated for the

heat plot are used to colour the area so that the covariate

ranges with higher contributions are coloured red shades

and the ranges with lower contributions are coloured blue

shades. As the contribution to the treatment effect may

differ from the contribution to the regression coefficient,

2 colours must be displayed for the same covariate range;

consequently, the area between the upper interval and the

NMR regression line displays the colour shades for the

treatment effect, and the area between the lower interval

and the NMR regression line displays the colour shades

for the coefficient.

The heat‐NMR plot display whether treatment by

covariate interactions exist, areas of interpolation or

extrapolation, and which covariate ranges contribute

most to each NMR estimate.

5.13.2 | Application to datasets

5.14 | Malaria dataset

The heat‐NMR plot is shown in Figure 10. For each com-

parison, most of the contributing trials are within range

2.5 to 5 years and 25 to 32.5 years so we can be most

FIGURE 9 Contribution‐NMR plot for the fluoride dataset. The bold dot‐dash line is the SMD, and the 2 dashed lines are the upper and

lower 95% credibility intervals estimated by the model. Points (ie, circles) represent the trials that contribute to the model estimates; points

for trials that contribute direct evidence are displayed in the bottom section, and points from trials that contribute indirect evidence are

displayed in the top section. The size of the red circle represents the size of the contribution that a trial makes to the SMD (estimated at mean

value), and the size of the blue circle represents the size of the contribution that a trial makes to the regression coefficient. Larger circles

represent larger contributions. DE: dentifrice; GE: gel; NT: no treatment; PL: placebo; RI: rinse; SMD: standardised mean difference; VA:

varnish [Colour figure can be viewed at wileyonlinelibrary.com]
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confident in interpreting the NMR results for patients

within these average age ranges.

5.15 | Fluoride dataset

Figure 11 shows the heat NMR‐plot. For the majority of

comparisons, we can be most confident in the NMR

results between 1960 to 1980 because most of the contrib-

uting trials were randomised within this time period.

6 | DISCUSSION

The proposed methods can help one to understand which

trials and covariate values contribute to each NMR result

and highlight extrapolation or interpolation. For both

example datasets, we found that the contribution that

each trial made to each NMR result varied. For the

malaria dataset, for every NMR result, no contributing tri-

als had an average age between 7 and 25 years; thus,

results were interpolated. For the fluoride dataset, there

were no contributing trials randomised between 1954

and 1959 for most NMR results and no contributing trials

randomised between 1985 and 1989 for some NMR

results; therefore, within these ranges, these results would

be extrapolated. However, we anticipate that in other

datasets, the extrapolated or interpolated range may differ

more strongly across comparisons, for example, extrapola-

tion within covariate range 7 to 25 years for treatment 3 vs

treatment 2 but extrapolation within covariate range 25 to

40 years for treatment 3 vs treatment 1.

It may be argued that if one truly believes that the

model is appropriate and its underlying assumptions are

valid, then extrapolated and interpolated results should

be of no concern. Yet, we believe that such occasions are

likely to be rare because often in an aggregate data NMR,

it is difficult to detect whether the consistency assumptions

are feasible because of data limitations. Furthermore, if

inconsistency is present for a particular treatment compar-

ison in the NMR, it is likely to be caused by differences

in the distribution of a covariate from trials that contribute

direct evidence and those that contribute indirect

evidence. The proposed methods, in particular the contri-

bution‐NMR plot, can help to visualise such differences

and therefore understand causes of the inconsistency.

In this article, we have provided newmethods to calcu-

late contributions based on models with independent,

exchangeable, or common interactions. We applied

models including independent interactions, but in some

scenarios, this model cannot be fitted, and modellers may

apply models with exchangeable or common interactions

instead. For instance, when all the trials that contribute

FIGURE 10 Heat‐NMR plot showing average age versus log odds ratio for the malaria dataset. The bold dot‐dash line is the log odds ratio,

and the 2 dashed lines are the upper and lower 95% confidence intervals estimated by the model. Block colours represent the contribution of

each covariate range to each log odds ratio and each regression coefficient (%) [Colour figure can be viewed at wileyonlinelibrary.com]
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to the estimation of one of the coefficients have the same

covariate value, which can be problem especially when cat-

egorical covariates are considered. In these cases, the

exchangeable or common model could be fitted providing

that studies that contribute to the results for other compar-

isons have different categories. For example, when explor-

ing an interaction between treatment effect and study

location (ie, continent), studies that contribute to results

for comparison 2 vs 1 may all be carried out on the same

continent provided that studies that contribute to compar-

ison 3 vs 1were located on different continents. Thismeans

that NMR results can be obtained for a comparison even

though there is no direct or indirect evidence for the regres-

sion coefficient for that comparison, and hence results on

that comparison are not evidence based.

If data are limited, an alternative to using models with

exchangeable or common interactions would be to use

informative prior distributions in a Bayesian framework.

Methods have been presented in this article that can be

used with such prior distributions allowing the contribu-

tion that the prior distribution makes to each NMR result

to be calculated as well as the study contributions. In

these situations, informative prior distributions would

ideally be evidence based, perhaps elicited from other

similar meta‐analyses or expert opinion.

As with all meta‐regression methods, there may be

missing covariate data or covariate data may be reported

using different statistical summarises across trials

meaning that it is not possible to combine all trials. In

such situations, ideally the data should be sought from

the original trial investigators. If contact with investiga-

tors is not fruitful, it may be possible to impute covariate

data, the relevant studies could be deleted from the

dataset, and/or sensitivity analyses could be carried out

to explore the impact of the missing or imputed data on

the results.

In this article, we introduced methods to calculate the

contribution that each study makes to each NMR result

and compare the methods with the existing methods

described in Riley et al for calculating study weights in

multi‐parameter meta‐analysis than can also be applied

to NMR.23 When both methods were applied to real data,

we found differences in the estimated contributions. Dif-

ferences may exist for the fluoride dataset, because, when

multi‐arm trials exist, the methods proposed by Riley et al

estimate the contribution that the study makes to each

NMR result, whereas the new methods estimate the con-

tribution that each data point (ie, each observed treatment

effect for that study) makes to each NMR result.23 Fur-

thermore, the results of the NMR estimated using the

Frequentist methods of Riley et al differed from those

obtained using Bayesian methods.23 Also, it is worth

emphasising that the previously proposed methods on

which our methods are based have been criticised

because the estimated contributions are not invariant

to transformations of the data, such that if the data

FIGURE 11 Heat‐NMR plot showing randomisation year versus SMD for the fluoride dataset.The bold dot‐dash line is the SMD, and the 2

dashed lines are the upper and lower 95% confidence intervals estimated by the model. Block colours represent the contribution of each

covariate range to each SMD and each regression coefficient (%)DE: dentifrice; GE: gel; NT: no treatment; PL: placebo; RI: rinse; SMD:

standardised mean difference; VA: varnish [Colour figure can be viewed at wileyonlinelibrary.com]
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are rescaled, the contributions matrix changes19-21;

whereas the methods proposed by Riley et al produce

the same contributions even when the data are trans-

formed.22,23 Further work may adapt the methods of

Riley et al to accommodate NMR models with

exchangeable or common interactions and perhaps prior

information in a Bayesian setting, so that the methods

can be applied in all situations.23

As an alternative method to calculating study contri-

butions, we could have used more similar methods to

those proposed elsewhere by fitting a standard pairwise

meta‐regression to each comparison in the treatment net-

work to estimate a treatment effect and regression coeffi-

cient for each comparison, and then calculating the

contribution that each of the pair‐wise treatment effects

and coefficients makes to each NMR result.19-21 There-

fore, unlike the methods proposed in this article, the alter-

native method would not provide the contribution of each

trial to each NMR result. The alternative approach could

not be used when only 1 trial contributed direct evidence

to 1 or more comparisons because a regression coefficient

could not be estimated for that comparison, whereas the

methods proposed in this article may be used. Also, the

conclusions drawn regarding extrapolation and interpola-

tion would be less intuitive; for example, the alternative

method would allow one to state that a particular NMR

result was based on pairwise estimates that were esti-

mated using trials within range X‐Y; yet, the proposed

methods can tell one how much each covariate value con-

tributed to an NMR result.

In this paper, we calculated contributions by model-

ling trial‐level aggregate data (ie, treatment effects and

variances). Individual patient data models can be advan-

tageous over aggregate data models when studying

patient‐level covariates because they avoid ecological

biases.39,40 Yet, it is common to explore patient‐level

covariates (eg, patient age) using study‐level covariate

summaries (eg, average age of patients) in meta‐regres-

sion such as in the malaria dataset. In these instances,

the treatment effect is estimated from all patients with

potentially widely variable covariate values, yet the full

covariate distribution for each study is ignored in the

meta‐regression. The methods presented in this article

do not show how the “ignored” covariate values contrib-

ute to the NMR results. Therefore, the methods presented

in this article are limited when patient‐level covariates are

of interest, in the same way that existing meta‐regression

methods are also limited in such circumstances. Exten-

sion of the new methods to individual patient data and

other types of aggregate data, such as event rates, and

are not straightforward because iteratively weighted least

squares estimation with transformed observations is

required.

Standard pairwise meta‐regression is a special case of

NMR, and so the methods presented here can also be

applied to aid analysts' interpretation of pair‐wise meta‐

regression by providing a better understanding of the

covariate distribution of trials. In principle the proposed

methods can be applied for any number of treatments

without adaptation; but of course, the number of plots

increases with the number of treatments. The methods

also apply when multiple covariates are included in the

NMR simultaneously. With multiple covariates, the

network covariate distribution diagram would display

multiple histograms on each edge; therefore, a 3D figure

may be favourable (or the histograms can be presented

in 2D separate to the network diagram); the covariate‐

contribution plot would include graphs showing, for each

comparison, the contributions to the treatment effect and

the contributions to each regression coefficient; 1 heat

plot for each covariate would be constructed; and the con-

tribution‐NMR plot and heat‐NMR plot would include 1

graph for each covariate for each comparison. The

methods in this article can also be applied to categorical

covariates, in NMR or pairwise meta‐regression and the

interpretation is natural; graphs were also constructed

using a dataset with a categorical covariate (graphs not

presented).

In conclusion, it is important to consider the contribu-

tion of trials and covariate values to model estimates in

NMR. Graphically displaying the contributions helps to

better understand the data, model, and results, and pre-

vent results from being misinterpreted by review users

and reviewers.
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