
This is a repository copy of Towards Multi-Objective Optimisation of Hadoop 2.x
Application Deployment on Public Clouds.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/136533/

Version: Accepted Version

Proceedings Paper:
Alasmari, Naif Nasser M and Calinescu, Radu Constantin orcid.org/0000-0002-2678-9260
(2018) Towards Multi-Objective Optimisation of Hadoop 2.x Application Deployment on
Public Clouds. In: Proceedings of the 6th International Conference on Enterprise Systems.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Towards Multi-Objective Optimisation of Hadoop 2.x
Application Deployment on Public Clouds

Naif Alasmari
Department of Computer Science

University of York

York, United Kingdom

nnma500@york.ac.uk

Radu Calinescu
Department of Computer Science

University of York

York, United Kingdom

radu.calinescu@york.ac.uk

Abstract—Hadoop is a widely-used software platform for the
development, deployment and execution of Big Data applications.
Leading technology companies such as Yahoo and Facebook are
regularly employing Hadoop to process large datasets. Neverthe-
less, running Hadoop applications with effective performance-
cost trade-offs is very challenging due to the large number of
Hadoop parameters that need to be appropriately configured.
The challenge is compounded by the frequent practice of de-
ploying Hadoop applications on public cloud infrastructure, as
this also requires the selection of suitable cloud configuration
parameters (e.g., types and number of virtual machines) for
each application. To address this challenge, our work-in-progress
paper proposes an approach for the multi-objective optimisation
of the Hadoop and cloud parameters of Hadoop 2.x applications
deployed on public clouds. Our approach uses Hadoop and cloud
infrastructure models to synthesise sets of configurations that
achieve Pareto-optimal trade-offs between the execution time and
the cost of Big Data applications, enabling users to select optimal
deployments that meet their time and/or budget constraints.

Index Terms—Big Data, Hadoop, MapReduce, Cloud comput-
ing, Multi-objective Optimisation.

I. INTRODUCTION

The fast development of cloud, mobile, IoT and other

technologies has led to a significant rise in the generation,

exchange, storing and processing of data [1]–[3]. Around 2.5

exabytes (1018 bytes) of data were produced daily in 2012, and

this quantity is almost doubling every forty months [4]. This

increase in the generation of data in many important appli-

cations has greatly surpassed what traditional data processing

tools can handle in acceptable time [5]. Introduced by Google

in 2004, MapReduce [6] is a widely-used programming model

that addresses this problem by supporting the processing of

very large datasets in two main steps [7]. In the former

step, a map function is applied by multiple worker nodes to

subsets of the input data organised into (key, value) pairs.

In the latter step, the intermediate results produced by the

map, also formatted as (key, value) pairs, are shuffled so that

pairs with the same key end up on the same worker node,

and are combined using a reduce function that produces the

final results. Hadoop is an open-source MapReduce imple-

mentation broadly adopted within academia and industry [8],

[9]. This implementation broke a world record in May 2009

by sorting one terabyte in 62 seconds and one petabyte in

16.25 hours [1]. However, the latest stable versions of Hadoop

(i.e., Hadoop 2.x) have over 200 interdependent configuration

parameters [10], most of which influence the performance of

Hadoop applications. Manually initialising these parameters

is a tedious, error-prone process that is further complicated

by the common practice of deploying Hadoop applications on

cost-effective public cloud infrastructure, where the types and

number of virtual machines to use also need to be decided. As

such, configuring cloud-deployed Hadoop 2.x applications to

meet the time and/or budget constraints of their users is very

challenging.

To address this challenge, we propose an approach for

the automated synthesis of optimal configurations for cloud-

deployed Hadoop 2.x applications. Our Hadoop Configuration

Optimizer (HCO) approach uses:

1) a performance model of the Hadoop 2.x application being

deployed and a cloud cost model to accurately predict the

execution time and cost of different configurations;

2) multi-objective optimisation techniques to efficiently

identify configurations that achieve Pareto-optimal trade-

offs between execution time and cost.

This work-in-progress paper provides an overview of the new

approach, and summarises our preliminary results and next

steps of our project.

The rest of the paper is organised as follows. Section II

describes existing research for predicting the cost and exe-

cution time of Hadoop applications, and compares them to

our approach. Next, Section III presents the steps involved

in using our HCO approach, and the internal architecture of

our solution. Sections IV and V conclude the paper with a

summary of the results we obtained so far and with a brief

discussion of the next steps of our project, respectively.

II. RELATED WORK

Several methods have been proposed for predicting or opti-

mising the cost and/or execution time of Hadoop applications.

Chen et al. [11] devised a Hadoop 1.x mathematical model

supporting the cloud execution of a Hadoop job within a

time bound and with the lowest possible cost. Verma et al.

[12] proposed a management decision mechanism enabling

Hadoop 1.x workloads to meet the deadlines constraints of

Hadoop jobs. Furthermore, Zacheilas et al. [13] introduced a

.

Hadoop
Configuration

Optimizer

Pareto
Solution

Set

(1) Provide requirements
 (e.g., budget constraints)

(5) Generate
solutions

User Cloud Model

Parametric
Hadoop 2.x

performance
model

(2) Obtain cost
of resource

(3) Get resource
specifications

(6) Get the
Final result

(4) Input

Fig. 1. Hadoop Configuration Optimizer workflow

Hadoop 1.x scheduler that can achieve Pareto-optimal trade-

offs between cost and performance. However, all these meth-

ods are based on Hadoop 1.x performance models, which

assume static allocation of resources within the MapReduce

steps, whereas Hadoop 2.x resource allocation is dynamic.

Our new approach aims to capture this significant change in

resource allocation between Hadoop 1.x and Hadoop 2.x, and

thus to support the configuration of Big Data applications that

use the latest stable versions of Hadoop.

Other recent solutions do not consider important factors

that influence the performance of cloud-deployed Hadoop

applications. The steady-state non-dominated sorting genetic

algorithm used by [14] tackles the optimisation problem

without taking into account the cost of I/O operations, which

significantly affect on the cost of cloud-deployed Hadoop

applications. Similarly, the performance model introduced by

Lin et al. [15] to predict the performance of MapReduce

tasks does not consider the competition for resources between

concurrent map and reduce tasks. Finally, Song et al.’s method

for predicting the performance of Hadoop jobs by using

locally weighted regression methods [10] does not consider the

cost of executing Hadoop applications. Our approach aims to

tackle these limitations, by considering all major factors that

influence the performance and cost of Hadoop applications.

III. HADOOP CONFIGURATION OPTIMIZER APPROACH

A. User perspective

Fig. 1 shows how a user of the HCO approach can take

advantage of its automated configuration synthesis. In Step 1,

the user provides essential HCO inputs including: the Hadoop

application to be deployed; the location of the dataset to be

processed; a selected public cloud provider; and any budget

and/or execution-time constraints the user may have.

Next, HCO obtains the cost of different types of virtual

machines (VMs) available from the selected cloud provider

and technical specifications for these VM (e.g., number of

CPU cores and the size of RAM) in Steps 2 and 3, respectively.

This information is extracted from a predefined cloud cost

model, available from a HCO repository of such models for

known cloud providers.

Pareto Synthesis Engine

Cloud

Model

Hadoop

Parameters

Instantiations

Dataset

Characteristics

(e.g., size)

Parametric

Hadoop

Generic Model

Cloud

Variables

Properties

to analyze

Model

Analysis

Component

Model Synthesis

component
Model

Instance

Analysis

Result

Pareto

Solutions

Fig. 2. HCO architecture

In Step 4, our HCO approach builds a performance model

for the Hadoop application under deployment. This model

is obtained by using the user-provided information from

Step 1 and the cloud resource cost and specification infor-

mation from Steps 2 and 3 to initialise the relevant pa-

rameters of a generic HCO parametric performance model

of cloud-deployed Hadoop 2.x applications. The result is

an application-specific, partial instantiation of the generic

parametric Hadoop 2.x performance model, and still contains

two types of yet-to-be-determined parameters: the Hadoop

configuration parameters and the cloud resource parameters

for the deployment of the application.

Pareto-optimal combinations of values for the two types of

parameters mentioned above are then synthesised in Step 5 of

our HCO approach. Finally, the resulting set of Pareto-optimal

configurations is presented to the users in Step 6, so they can

select a configuration that not only meets their initial time

and/or budget constrains, but also achieves the most attractive

performance-cost trade-off.

B. Hadoop Configuration Optimizer Architecture

Fig. 2 depicts the internal architecture of our Hadoop

Configuration Optimizer, with its three core components, each

of which is briefly described below.

1) The Model Synthesis Component combines

• inputs received from the user (i.e., application and dataset

characteristics)

• inputs from the HCO Pareto-front synthesis engine (i.e.,

specific Hadoop 2.x and cloud infrastructure configurations

for which execution time and cost predictions are needed)

to produce a fully instantiated performance model of the

Hadoop application to be deployed. Our HCO approach is not

prescriptive about the modelling paradigm used to formally

model the behaviour of a Hadoop application, and can equally

support the use of stochastic models (e.g., continuous-time

Markov chains or queueing networks) or (as illustrated in

Section IV) analytical models.

2) The Model Analysis Component predicts the execution time

and cost of the Hadoop application configuration specified by

the model instance sythesised by the previous HCO compo-

nent. The analysis result is sent to the Pareto Synthesis Engine.

3) The Pareto Synthesis Engine generates a set of Pareto-

optimal configurations that achieve optimal trade-offs between

the performance and cost of cloud-deployed applications.

To explore the very large configuration space of a Hadoop

application, the component uses multi-objective optimisation

metaheuristics (e.g., evolutionary algorithms) as in our recent

work on the synthesis of stochastic models [16]–[19]. These

are optimisation methods where a population of solutions is

improved over a number of iterations (called generations) by

retaining and combining the best solutions from each step, i.e.,

the solutions that satisfy the user constrains, and are either

Pareto-optimal or belong to an under-represented area of the

configuration space. The search process is executed until a

termination criterion is met. Typical termination criteria for

metaheuristic optimisation include stopping after a predeter-

mined number of iterations, or stopping after several succes-

sive iterations that provide only negligible improvements.

IV. PRELIMINARY MODEL AND EXPERIMENTAL RESULTS

A. Initial Analytical Model

We have so far devised a simple parametric Hadoop 2.x

performance model (cf. Fig. 1) to assess the effectiveness of

our HCO approach. This model uses the 15 key Hadoop 2.x

parameters shown in Table I, first to compute a set of derived

Hadoop application parameters (also listed in Table I), and

then to predict the execution time and cost of the application

under deployment.

Our model supports both methods used by Hadoop to

compute the number of containers for a Big Data application.

The first method, called deFault Resource Calculator (FRC),

calculates the number of map containers (Mcont) and the

number of reduce containers (Rcont) based solely on the total

size of memory for the cluster; the number of CPU cores

is not used in the calculation. The second method, called

Dominant Resource Calculator (DRC), takes into account both

the memory size and the number of CPU cores. Thus, given

a type of calculation method Caltype ∈ {FRC,DRC}, these

numbers of containers are defined by:





Mcont = Ccapacity

⌊
NMm

max(Mm,Yminm)

⌋

Rcont = Ccapacity

⌊
NMm

max(Rm,Yminm)

⌋ (1)

if Caltype = FRC, and by





Mcont = Ccapacity min

{⌊
NMm

max(Mm,Yminm)

⌋
,

⌊
NMc

max(Mc,Yminc)

⌋}

Rcont = Ccapacity min

{⌊
NMm

max(Rm,Yminm)

⌋
,

⌊
NMc

max(Rc,Yminc)

⌋}

(2)

TABLE I
PARAMETERS OF THE INITIAL HADOOP 2.X PERFORMANCE MODEL

Parameter Notation
Hadoop configuration parameters

yarn.scheduler.capacity.resource-calculator Caltype

yarn.scheduler.minimum-allocation-mb Yminm

yarn.scheduler.minimum-allocation-vcores Yminc

yarn.scheduler.maximum-allocation-mb Ymaxm

yarn.scheduler.maximum-allocation-vcores Ymaxc

yarn.nodemanager.resource.memory-mb NMm

yarn.nodemanager.resource.cpu-vcores NMc

mapreduce.map.memory.mb Mm

mapreduce.map.cpu.vcores Mc

mapreduce.reduce.memory.mb Rm

mapreduce.map.cpu.vcores Rc

dfs.blocksize Bsize

mapred.max.split.size Splitmax

mapred.min.split.size Splitmin

mapreduce.job.reduces Rjob

Application parameter
Dataset size D

Cloud parameters
Cluster Capacity (number of nodes) Ccapacity

Cost of node per hour Ncost

Derived parameters
Allocated containers for Map Mcont

Allocated containers for Reduce Rcont

Number of Map tasks Mtask
Number of Reduce tasks Rtask

Rounds for Map RoundMap

Rounds for Reduce RoundReduce
Execution time Etime

Average Execution time for map Mtime

Average Execution time for reduce Rtime

Cost of execution time cost

otherwise (i.e., if Caltype = DRC), where the parameters

from (1) and (2) are defined in Table I.

Once the number of containers is determined, the number

of map tasks is computed as

Mtask =

⌈
D

max(Splitmin,min(Splitmax, Bsize)

⌉
, (3)

Bsize, Splitmax , and Splitmin are configurable Hadoop parame-

ters, and D is the size of dataset to be processed by the Hadoop

application. Next, the numbers of rounds of map and reduce

tasks are determined as

RoundMap =

⌈
Mtask

Mcont

⌉
, RoundReduce =

⌈
Rtask

Rcont

⌉
. (4)

Finally, we estimate the application execution time Etime based

on the average times of map and reduce phases:

Etime = (Mtime ∗ RoundMap) + (Rtime ∗ RoundReduce) + α, (5)

where α represents the expected time consumed for setting up

and releasing the containers, and for communication.

The cost paid for using the resources of cloud computing

can then be calculated as:

cost = Etime ∗ Ncost ∗ Ccapacity. (6)

TABLE II
HCO PREDICTIONS VS. ACTUAL EXECUTION TIME

Setting Id Real time Estimated time Error percentage

2 365.518 414.640 13.44%
3 366.503 361.829 1.28%
6 193.721 192.889 0.43%
8 198.812 171.240 13.87%
12 154.256 137.100 11.12%
13 227.485 265.600 16.75%

B. Preliminary Results

We carried out a set of experiments using six VMs with

4GB of RAM and 2 CPU cores each (i.e., one Name Node

and five Data Nodes). To this end, we initially ran the Hadoop

benchmark application WordCount with a 3GB dataset in one

DataNode to get the times for map and reduce tasks, and

the calibration factor α. The Hadoop configuration parameters

were: Caltype = FRC, NMm = 3072MB, Bsize and Splitmax

= 128MB, Mm, Rm and Yminm = 1028MB, the number of

reduce job is one. We obtained the cost of the single node per

hour based on AWS calculator1. The cost was $0.0464 (For

the simplicity, we multiply it by 100). Then, we supplied the

model with the following combination of parameter values:

Splitmax = 64MB,128MB, 256MB, Mm = 1024MB, 2048MB,

Yminm = 1024MB (in addition to the map and reduce task

times that we obtained experimentally).

Running our prototype HCO implementation using these

parameters generated the execution time and cost predictions

from Fig. 3 for 27 possible Hadoop configurations. Four of

these predictions (shown by filled circles) are Pareto optimal.

To assess the accuracy of the HCO predictions, we randomly

selected six Hadoop configurations from Fig. 3, and ran real

experiments using these configuration. The actual execution

times from these experiments, compared to the HCO pre-

dictions in Table II, show that HCO achieved an acceptable

accuracy even using the simple analytical model from our

preliminary implementation.

V. CONCLUSION AND FUTURE WORK

MapReduce and its implementation Hadoop support the

execution of Big Data applications on cloud computing infras-

tructure. However, achieving acceptable trade-offs between the

cost and execution time of these applications is challenging.

In this paper, we presented an approach that uses a generic

performance model of Hadoop 2.x to predict the execution

time and cost of cloud-deployed Big Data applications. Based

on these predictions, our approach generates an approximate

Pareto-optimal set of Hadoop configurations.

The paper described our progress so far, and presented

promising preliminary results. In our future work, we will

experiment with larger volumes of data and multiple Big Data

applications. Furthermore, we plan to develop a stochastic per-

formance model of Hadoop 2.x and to compare its predictive

power to that of the simple analytical model.

1https://calculator.s3.amazonaws.com/index.html

Fig. 3. Predicted execution time and cost for Hadoop configurations
REFERENCES

[1] A. O’Driscoll, J. Daugelaite, and R. D. Sleator, “’big data’, hadoop
and cloud computing in genomics,” Journal of biomedical informatics,
vol. 46, no. 5, pp. 774–781, 2013.

[2] X. Zheng, P. Martin, K. Brohman, and L. D. Xu, “Cloud service
negotiation in internet of things environment: A mixed approach,” IEEE

Transactions on Industrial Informatics, vol. 10, pp. 1506–1515, May
2014.

[3] C. Wang, Z. Bi, and L. Da Xu, “IoT and cloud computing in automa-
tion of assembly modeling systems,” IEEE Transactions on Industrial

Informatics, vol. 10, no. 2, pp. 1426–1434, 2014.
[4] A. McAfee, E. Brynjolfsson, T. H. Davenport, D. Patil, and D. Barton,

“Big data: the management revolution,” Harvard Business Review,
vol. 90, no. 10, pp. 60–68, 2012.

[5] L. D. Xu and L. Duan, “Big data for cyber physical systems in industry
4.0: a survey,” Enterprise Information Systems, pp. 1–22, 2018.

[6] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Comm. of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[7] O. Hegazy, S. Safwat, and M. El Bakry, “A mapreduce fuzzy techniques
of big data classification,” in SAI’16, pp. 118–128, IEEE, 2016.

[8] N. Verma and J. Singh, “A comprehensive review from sequential
association computing to hadoop-mapreduce parallel computing in a
retail scenario,” Journal of Management Analytics, vol. 4, no. 4, pp. 359–
392, 2017.

[9] S. Papadimitriou and J. Sun, “Disco: Distributed co-clustering with map-
reduce: A case study towards petabyte-scale end-to-end mining,” in
ICDM’08, pp. 512–521, IEEE, 2008.

[10] G. Song, Z. Meng, F. Huet, F. Magoules, L. Yu, and X. Lin, “A Hadoop
Map-Reduce performance prediction method,” in HPCC_EUC’13,
pp. 820–825, IEEE, 2013.

[11] K. Chen, J. Powers, S. Guo, and F. Tian, “CRESP: Towards optimal
resource provisioning for mapreduce computing in public clouds,” IEEE

Trans. Parallel & Distrib. Systems, vol. 25, no. 6, pp. 1403–1412, 2014.
[12] A. Verma, L. Cherkasova, V. S. Kumar, and R. H. Campbell, “Deadline-

based workload management for mapreduce environments: Pieces of the
performance puzzle,” in NOMS’12, pp. 900–905, IEEE, 2012.

[13] N. Zacheilas and V. Kalogeraki, “Pareto-based scheduling of mapreduce
workloads,” in ISORC’16, pp. 174–181, IEEE, 2016.

[14] S. Imai, S. Patterson, and C. A. Varela, “Cost-efficient high-
performance internet-scale data analytics over multi-cloud environ-
ments,” in CCGrid’15, pp. 793–796, 2015.

[15] X. Lin, Z. Meng, C. Xu, and M. Wang, “A practical performance model
for hadoop mapreduce,” in CLUSTER’12, pp. 231–239, IEEE, 2012.

[16] R. Calinescu, M. Ceska, S. Gerasimou, M. Kwiatkowska, and N. Pao-
letti, “Efficient synthesis of robust models for stochastic systems,”
Journal of Systems and Software, vol. 143, pp. 140–158, 2018.

[17] S. Gerasimou, R. Calinescu, and G. Tamburrelli, “Synthesis of proba-
bilistic models for quality-of-service software engineering,” Automated

Software Engineering Journal, May 2018.
[18] R. Calinescu, M. Ceska, S. Gerasimou, M. Kwiatkowska, and N. Pao-

letti, “Designing robust software systems through parametric Markov
chain synthesis,” in ICSA’17, pp. 131–140, 2017.

[19] S. Gerasimou, G. Tamburrelli, and R. Calinescu, “Search-based synthesis
of probabilistic models for quality-of-service software engineering,” in
ASE’15, pp. 319–330, 2015.

