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An Efficient Quantum Compiler that Reduces T Count

Luke E. Heyfron1, ∗ and Earl T. Campbell1, †

1Department of Physics and Astronomy, University of Sheffield, Sheffield, UK

(Dated: 25th May 2018)

Before executing a quantum algorithm, one must first decompose the algorithm into machine-level
instructions compatible with the architecture of the quantum computer, a process known as quantum
compiling. There are many different quantum circuit decompositions for the same algorithm but it
is desirable to compile leaner circuits. A fundamentally important cost metric is the T count – the
number of T gates in a circuit. For the single qubit case, optimal compiling is essentially a solved
problem. However, multi-qubit compiling is a harder problem with optimal algorithms requiring
classical runtime exponential in the number of qubits. Here, we present and compare several efficient
quantum compilers for multi-qubit Clifford + T circuits. We implemented our compilers in C++
and benchmarked them on random circuits, from which we determine that our TODD compiler
yields the lowest T counts on average. We also benchmarked TODD on a library of reversible logic
circuits that appear in quantum algorithms and found that it reduced the T count for 97% of the
circuits with an average T -count saving of 20% when compared against the best of all previous
circuit decompositions.

Compiling is the conversion of an algorithm into a series of hardware level commands or elementary gates. Better
compilers can implement the same algorithm using fewer hardware level instructions, reducing runtime and other resources.
Quantum compiling or gate-synthesis is the analogous task for a quantum computer and is especially important given the
current expense of quantum hardware. Early in the field, Solovay and Kitaev proposed a general purpose compiler for
any universal set of elementary gates [1–3]. Newer compilers exploit the specific structure of the Clifford+T gate set and
have reduced quantum circuit depths by several orders of magnitude [4–7], often improving the classical compile time.
The Clifford+T gate set is natural since it is the fault-tolerant logical gate set in almost every computing architecture [8].
Moreover, fault-tolerance protocols have been proposed such as magic state distillation [9] that lead to a cost per T
gate which is several hundred times larger than that of Clifford gates [10–12], which suggests T count as the key metric
of compiler performance. Furthermore, the T count is an important metric beyond the standard compiling problem
because it relates to the classical overhead of simulating quantum circuits [16, 40, 41] as well as the distillation cost of
synthillation [24]. For these reasons, it is clear that developing methods for minimizing the T count is crucial for a variety
of applications in quantum computation.
Significant progress has been made on synthesis of single-qubit unitaries from Clifford+T gates. For purely unitary

synthesis, the problem is essentially solved since we have a compiler that is asymptotically optimal and efficient [4, 7].
Although further improvements are possible beyond unitary circuits, by making use of ancilla qubits and measurements [13–
16] or adding an element of randomness to compiling [17, 18]. On the other hand, the multi-qubit problem is much more
challenging. An algorithm for multi-qubit unitary synthesis over the Clifford+T gate set is known that is provably optimal
in terms of the T count but the compile runtime is exponential in the number of qubits [6, 19]. Compilers with efficient
runtimes have been proposed but with no promise of T count optimality [20, 21]. We seek a compiler that runs efficiently
and yields circuits with T counts that are as low as practically achievable.
A useful strategy is to take an initial Clifford+T circuit and split it into subcircuits containing Hadamards and subcircuits

containing CNOT, S and T gates. One can then attempt to reduce the number of T gates within just the latter type
of subcircuit. Amy and Mosca recently showed that this restricted problem is formally equivalent to error decoding on
a class of Reed-Muller codes [22], which is in turn equivalent to finding the symmetric tensor rank of a 3-tensor [23].
Unfortunately, even this easier sub-problem is difficult to solve optimally. Nevertheless, it is more amenable to efficient
solvers that offer reductions in T count. Amy and Mosca proved that an n-qubit subcircuit (containing CNOT, S and
T gates) has an optimal decomposition into n2/2 + O(n) T gates. At the time, known efficient compilers could only
promise an output circuit with no more than O(n3) T gates. Later, Campbell and Howard [24] sketched a compiler
that is efficient and promises an output circuit with at most n2/2 + O(n) T gates. This shows efficient compilers can
in this sense be “near-optimal” with respect to worst case scaling. On the mathematical level, Campbell and Howard
exploited a previously known efficient and optimal solver for a related 2-tensor problem [25] but suitably modified so that
it nearly-optimally solves the required 3-tensor problem.
This paper develops several different compilers that have polynomial runtime in n and are near-optimal in the above

sense when restricted to CNOT+T circuits. We modify the compiler to also accommodate Hadamard gates using a
gadgetisation trick that requires additional resources (measurements, feed-forward and ancillas) and find that it performs
well in practice. We provide the first implementations of such compilers (the source code is available here [44]) and
compare performance against: a family of random circuits; and a library of benchmark circuits that implement actual
quantum algorithms. For random circuits, we observe O(n2) scaling in T count for all variants of our compiling approach
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compared with O(n3) scaling for compilers based on earlier work. Quantum algorithms are highly structured and far from
random, so the number of T gates can not be meaningfully compared with the worst case scaling. Instead, we benchmark
against the best previously known results and found on average a 20% T count reduction. In one instance, our compiler
gave a 51% T count reduction and it performed better than previous results for all but one of the benchmarked circuits.
Of course, the T count is not the only metric relevant to gate synthesis. We discuss the limitations of the T count, as well
as other metrics in section IVC.
All of the near-optimal compilers described in this paper look for inspiration in algorithms for the related 2-tensor

problem, which we call Lempel’s algorithm. We give specific details for a compiler here called TOOL (Target Optimal
by Order Lowering) that comes in two different flavours (with and without feedback). The TOOL compilers can be
considered concrete versions of the approach outlined by Campbell and Howard [24]. Also described in this paper is the
TODD (Third Order Duplicate and Destroy) compiler, which is again inspired by Lempel but in a more direct and elegant
way than TOOL. In benchmarking, we find that TODD often achieved even lower T count than TOOL.

I. PRELIMINARIES

The Pauli group on n qubits Pn is the set of all n-fold tensor products of the single qubit Pauli operators {X,Y, Z, I}
with allowed coefficients ∈ {±1,±i}. The kth level of the Clifford hierarchy Cnk is defined as follows,

Cnk = {U | UPnU† ⊆ Cnk−1}, (1)

with recursion terminated by Cn1 = Pn. The Clifford group on n qubits Cn is the normalizer of Pn. We define Dn
k to be

the diagonal elements of 〈CNOT, T 〉. We will omit the superscript n when the number of qubits is obvious from context.
We define Clifford to be any generating set for the Clifford group on n qubits such as {CNOT,H, S}. We define the
CNOT + T gate set to be {CNOT, S, T}, where we include the phase gate S = T 2 as a separate gate due to the magic
states cost model for gate synthesis [9]. A quantum circuit decomposition for a unitary U is denoted U ; conversely we
say that U implements U . Similarly, a circuit E implements non-unitary channel ρ → ε(ρ). We refer to a circuit U that
implements a U ∈ D3 as a diagonal CNOT + T circuit.
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FIG. 1. The high level work-flow of the T gate optimization protocol is shown. A Clifford + T circuit is converted to the CNOT+T
gate set by introducing ancillas and performing classically controlled Clifford gates. A non-Clifford phase gate is extracted, which
maps to a signature tensor upon which the core optimization algorithm is performed. The optimized symmetric tensor decomposition
is then converted back into a circuit of the form in panel 2) yielding an implementation of the original Clifford + T circuit with
reduced T count.
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II. WORK-FLOW OVERVIEW

In this section, we give a high level work-flow of our approach to compiling as sketched in Fig. 1. In stages 1-3, some
simple circuit preprocessing is performed so that a Clifford+T circuit is converted into a form where the only non-Clifford
part is a diagonal CNOT+T gate (an element of D3). Subsection IIA describes this preprocessing. In stages 4-6, the
technically difficult aspect of compiling is addressed using a series of different algebraic representations of the circuit and
these stages are described in Subsection II B.

A. Circuit preprocessing

The input circuit Uin ∈ 〈Clifford, T 〉 implements some unitary U . It acts on a register we denote x, which is composed
of n qubits and spans the Hilbert space Hx. The output of our compiler is a circuit Eout composed of Clifford and T gates
but additionally allows: the preparation of |+〉 states; measurement in the Pauli-X basis, and classical feedforward. To
account for ancilla |+〉 qubits, we include a register labelled y that is composed of h qubits and spans the Hilbert space
Hy. The circuit Eout will realise the input unitary after the y register is traced out

Try[εout(ρx)] = Try[εpost(V (ρx ⊗ |+〉 〈+|
⊗h

))V †)], (2)

= UρxU
†, (3)

where ρx is the density matrix for an arbitrary input pure state on Hx. Furthermore, V ∈ C3 is the unitary portion of Eout,
and εpost is a quantum channel that is associated with the sequence of Pauli-X measurements and subsequent classically
controlled Clifford gates, C1, C2, . . . , Ch, seen in Fig. 1.
We emphasize that later stages of compiling will make use of a framework valid only for CNOT + T circuits, which

makes Hadamard gates an obstacle. There are two commonly used methods for dealing with Hadamard gates: first, we can
partition the quantum circuit into alternating 〈CNOT, T 〉 and 〈H〉 subcircuits and optimize each CNOT + T subcircuit
independently [20]. The second way is to replace each Hadamard gate with a gadget (see for example references [26, 27])
that makes use of extra resources (ancillas, measurements and feedforward). The central portion of the gadget contains
all of the non-Clifford behaviour and is in the CNOT + T gate set, so is directly compatible with our T -optimizers. The
remainder of this section focusses on the second method (Hadamard gadgetization), but we discuss the Hadamard-bounded
partitioning method in more detail in appendix A.
Each[43] of the h Hadamard gates is replaced by a Hadamard-gadget (as shown in panel 1) of Fig. 2. A Hadamard-gadget

consists of a CNOT + T block followed by a Pauli-X gate conditioned on the outcome of measuring a Hadamard-ancilla
(a qubit in the y register initialized in the |+〉 state) in the Pauli-X basis, so the size of the y register is h. After
Hadamard-gadgetisation, we commute the classically controlled Pauli-X gates to the end of the circuit, starting with the
right-most and iteratively working our way left (see panel 3 of Fig. 2). The end result is a circuit composed of a single
CNOT+T block on n+h qubits, followed by a sequence of classically controlled Clifford operators conditioned on Pauli-X
measurements. The latter sequence of non-unitary gates constitutes the circuit Epost. This method of circumventing
Hadamards is preferred over forming Hadamard-bounded partitions as in previous works [20] because it allows us to
convert most of the input circuit into the optimization-compatible gate set, which we find leads to better performance of
the T-Optimiser subroutine (see appendix A for numerical evidence of this).
Once the internal Hadamards are removed, we are left with a CNOT + T circuit that implements unitary V , whose

action on the computational basis is fully described [20, 22, 24, 28] by two mathematical objects: a phase function,

f : Zn
2 7→ Z8, and an invertible matrix E ∈ Z

(n,n)
2 , such that

V |x〉 = ωf(x) |Ex〉 (4)

where ω = ei
π
4 . It has been shown [22, 24] that V = UEUf where Uf ∈ D3 can be implemented with a diagonal CNOT +

T circuit and gives the phase

Uf |x〉 = ωf(x) |x〉 , (5)

and UE can be implemented with CNOTs.

B. Diagonal CNOT+T Framework

In section IIA, we isolated all the non-Clifford behaviour of a Clifford + T circuit within a diagonal CNOT + T circuit
defined on a larger qubit register. This method allows us to map the T gate optimization problem for any Clifford + T
circuit to the following.
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FIG. 2. Hadamard gates are replaced by Hadamard-gadgets according to the rewrite in the upper part of panel 1). In the lower part,
we define notation for the phase-swap gate and provide an example decomposition into the CNOT + T gate set. Panel 2) shows an
example of a Hadamard gate swapped for a Hadamard-gadget where the classically controlled Pauli-X gate is commuted through
Uf2 to the end. The CNOT + T -only region increases as shown by the dotted lines. As Uf2 ∈ C3, it follows that Uf2XU

†
f2

∈ C2 as

per equation (1), so has a T -count of 0. The example in panel 3) shows the same process as 2) but for 2 internal Hadamards. As
D3 is a group, the operator V ∈ D3 and the second Pauli-X gate can also commute to the end to form a Clifford. This leads to a
decomposition of the form in panel 2) of Fig. 1.

Problem II.1. (T-OPT) Given a unitary Uf ∈ D3, find a circuit decomposition Uf ∈ 〈CNOT, T, S〉 that implements
Uf with minimal uses of the T gate.

This section describes how we map the T-OPT problem from the quantum circuit picture to an algebraic problem following
stages 4-6 of Fig. 1. Throughout this section we use the framework for diagonal CNOT+T circuits (also called linear
phase operators [22]) introduced in reference [28] and built upon in [20, 22, 24]. We proceed by recalling from equation (5)
that the action of any Uf ∈ D3 on the computational basis is given by Uf |x〉 = ωf(x) |x〉 and that Uf is completely
characterized by the phase function, f . A phase function can be decomposed into a sum of linear, quadratic and cubic
monomials on the Boolean variables xi. Each monomial of order r has a coefficient in Z8 and is weighted by a factor 2r−1,
as in the following:

f(x) =
n
∑

α=1

lαxα + 2
n
∑

α<β

qα,βxαxβ + 4
n
∑

α<β<γ

cα,β,γxαxβxγ (mod 8), (6)

where lα, qα,β , cα,β,γ ∈ Z8. We refer to decompositions of f that take the form of equation (6) as weighted polynomials
as in reference [24], in which it was shown that U2f = U2

f ∈ C2 for any weighted polynomial, f . This implies that any
two unitaries with weighted polynomials whose coefficients all have the same parity are Clifford equivalent. Note that the
weighted polynomial can be lifted directly from the circuit definition of Uf if we work in the {T,CS,CCZ} basis, as each
kind of gate corresponds to the linear, quadratic and cubic terms, respectively.

In stage 4 of Fig. 1, we define the signature tensor, S(Uf ) ∈ Z
(n,n,n)
2 , to be a symmetric tensor of order 3 whose elements

are equal to the parity of the weighted polynomial coefficients of Uf according to the following relations:

Sσ(α,α,α) = Sa,a,a = lα (mod 2) (7a)

Sσ(α,β,β) = Sσ(α,α,β) = qα,β (mod 2) (7b)

Sσ(α,β,γ) = cα,β,γ (mod 2) (7c)

for all permutations of the indices, denoted σ. It follows that any two unitaries with the same signature tensor are Clifford
equivalent.

We recall the definition of gate synthesis matrices from reference [24], where a matrix, A in Z
(n,m)
2 , is a gate synthesis

matrix for a unitary Uf if it satisfies,

f(x) = |ATx| (mod 8) =
∑

j

[

⊕

i

Ai,jxi

]

(mod 8) (8)

where |.| is the Hamming weight of a binary vector. Notice that inside the square brackets is evaluated modulo 2 and
outside is evaluated modulo 8.
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Obtaining a gate synthesis matrix from a quantum circuit is best understood via the phase polynomial representation.
A phase polynomial of a phase function, f , is a set, Pf = {{λ1, a1}, {λ2, a2}, . . . , {λp, a|P |}}, of linear boolean functions
λk(x), together with coefficients ak ∈ Z8 such that

f(x) =

|Pf |
∑

k=1

akλk(x) (mod 8). (9)

A phase polynomial can be extracted from a diagonal CNOT + T circuit by tracking the action of each gate on the
computational basis states through the circuit [20, 28]. We then map Pf to an A matrix with a procedure such as the
following. Start with an empty A matrix. Then for each {λk, ak} ∈ Pf ,

1. Define column vector, v ∈ Z
n
2 , such that λk(x) = v1x1 ⊕ v2x2 ⊕ · · · ⊕ vnxn.

2. Add ak copies of v to the right-hand end of A.

We define a proper gate synthesis matrix to be an A matrix with no all-zero or repeated columns, and we define the
function proper such that A′ = proper(A) is the proper gate synthesis matrix formed by removing all all-zero columns
and pairs of repeated columns from A. The purpose of this function is to strip away the Clifford behaviour from the gate
synthesis matrix.

We will exploit the key property of A matrices described in the following lemma, which is a corollary of lemma 2 of
reference [28].

Lemma II.1. Let Uf ∈ D3 be a unitary with phase function f(x) = |ATx| and A′ = proper(A) ∈ Z
(n,m)
2 . It follows that

one can generate a circuit that implements Uf with m = col(A′) uses of the T gate.

Proof. First, we note from the definition of A in equation (8) that the jth column of A leads to a factor of ωλj(x) appearing
in the diagonal elements of Uf as written in equation (5), where λj is a reversible linear Boolean function given by,

λj(x) = A1,jx1 ⊕A2,jx2 ⊕ · · · ⊕An,jxn. (10)

The action of a circuit generated by CNOT gates on computational basis state |x〉 is to replace the value of each qubit
with a reversible linear Boolean function on x1, x2, . . . , xn. Next, we show how to add the phase ωλj(x). We define Bj to
be a CNOT unitary such that after applying Bj the first qubit is mapped |x1〉 → |λj(x)〉. A T gate subsequently applied
to this qubit will now produce the desired phase. We then uncompute Bj by reversing the order of the CNOT gates.
This procedure is repeated for every j until all columns of A have been implemented in this way. Only the columns of
A that also appear in A′ require the use of a T gate as all other columns have duplicates, where any pair of duplicates
can be implemented by replacing the T gate with an S gate in the above procedure. Therefore the T count is equal to
m = col(A′).

The signature tensor of Uf can be determined from an A matrix of Uf using the following relation,

S
(A)
α,β,γ =

m
∑

j=1

Aα,jAβ,jAγ,j (mod 2). (11)

Therefore, the gate synthesis problem T-OPT reduces to the following tensor rank problem.

Problem II.2. (3-STR) Given a symmetric tensor of order 3, S ∈ Z
(n,n,n)
2 , find a matrix A ∈ Z

(n,m)
2 that satisfies

equation (11) with minimal m.

Any algorithm attempting to solve 3-STR can be used in stage 5 of Fig. 1. The observation that T-OPT reduces to 3-STR
is not new as it follows directly from earlier work. Amy and Mosca [22] proved that T-OPT is equivalent to minimum
distance decoding of the punctured Reed-Muller code of order n − 4 and length n (often written as RM∗(n − 4, n)).
Furthermore, in 1980 Seroussi and Lempel [23] recognised that this Reed-Muller decoding problem is equivalent to 3-STR
and conjectured that this is a hard computational task. A non-symmetric generalisation of 3-STR has been proved to be
NP-complete [29], giving further weight to the conjecture. This imposes a practical upper bound on the number of qubits,
nRM , over which circuits can be optimally synthesized.
The problem 3-STR is closely related to

Problem II.3. (2-STR) Given a symmetric tensor of order 2, S ∈ Z
(n,n)
2 , find a matrix A ∈ Z

(n,m)
2 that satisfies

S
(A)
α,β =

m
∑

j=1

Aα,jAβ,j (mod 2). (12)

with minimal m.
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This could also be stated as a matrix factorisation S = AAT problem. As such, we say any A satisfying S = AAT

is a factor of S and a minimal factor is one with the minimum possible number of columns. As is often the case in
complexity theory, the matrix variant of the problem is considerably simpler than the higher order tensor variant. Lempel
gave an algorithm that finds an optimal solution to 2-STR in polynomial time [25]. We call this Lempel’s factoring
algorithm and for completeness describe it in App. B. Our main strategy to T count optimisation is to take insights from
Lempel’s algorithm for 2-STR and apply them to 3-STR. In doing so, our compilers will be efficient but lose the promise
of optimality, instead providing approximate solutions to 3-STR and T-OPT.
In the final stage (see 6 of Fig. 1), we map the output matrix of stage 5 back to a diagonal CNOT + T circuit, Uf ′ ,

that comprises m instances of the T gate using lemma II.1. The circuit Uf ′ implements a unitary Uf ′ = UfUClifford, where
UClifford is a diagonal Clifford factor. The input weighted polynomial stored since step 4 contains sufficient information to

generate a circuit for U
†
Clifford (see appendix D), hence we recover the original unitary, Uf = Uf ′U

†
Clifford. The final part

of step 6 constitutes replacing Uf with (U†
Clifford ◦ Uf ′). At this stage, the protocol terminates returning the final output,

Eout = (U†
Clifford ◦ Uf ′ ◦ UE ◦ Epost).

III. T-OPTIMISER

Until now the T-optimiser subroutine of our protocol has been treated as a black box whose input is a signature tensor
S and the output is a gate synthesis matrix A with few columns. In this section, we describe the inner workings of the
various T-optimisers we have implemented in this work.

A. Reed-Muller decoder (RM)

Although Reed-Muller decoding is believed to be hard, a brute force solver can be implemented for a small number
of qubits. We implement such a brute force decoder and found its limit to be nRM = 6. To gain some intuition for the
complexity of the problem, consider the following. The number of codespace generators for RM∗(n − 4, n) is equal to

NG =
∑n−4

r=1

(

n
r

)

. Therefore, the size of the search space is Nsearch = 2NG . On a processor with a clock speed of 3.20GHz,
generously assuming we can check one codeword per clock cycle, it would take over 91 years to exhaustively search this
space for n = 7. Performing the same back-of-the-envelope calculation for n = 6, it would take ≈ 7 × 10−4 seconds.
In practice, we find the brute force decoder executes in around 10 minutes for n = 6, so the time for n = 7 would be
significantly worse. Clearly, we need to develop heuristics for this problem.

B. Recursive Expansion (RE)

The simplest means of efficiently obtaining an A matrix for a given signature tensor S is to make use of the modulo
identity 2ab = a + b − a ⊕ b. More concretely, for each non-zero coefficient in the weighted polynomial lα, qα,β , cα,β,γ ,
make the following substitutions to the corresponding monomials:

xα → xα, (13)

2xαxβ → xα + xβ − (xα ⊕ xβ), (14)

4xαxβxγ → xα + xβ + xγ − (xα ⊕ xβ)− (xα ⊕ xγ)− (xβ ⊕ xγ) + (xα ⊕ xβ ⊕ xγ), (15)

from which the corresponding A matrix can be easily extracted. We call this the recursive expansion (RE) algorithm,
which has been shown to yield worst-case T counts of O(n3). It is straightforward to understand this cubic scaling because
any proper gate synthesis matrix resulting from the RE algorithm may include any column of Hamming weight 3 or less.
There are

∑3
k=1

(

n
k

)

= O(n3) such columns so from lemma II.1 there can be at most O(n3) T gates in the corresponding
circuit decomposition.

C. Target Optimal by Order Lowering (TOOL)

Campbell and Howard [24] proposed an efficient heuristic for T-OPT that requires at most O(n2) T gates compared
to O(n3) of the best previous (RE) optimizer. In the quantum circuit picture, the algorithm involves decomposing the

input CNOT + T circuit into a cascade of control-U2f̃ operators where f̃ is quadratic rather than cubic. Lowering the
order in this way means that each control-U2f̃ can be synthesized both efficiently and optimally using Lempel’s factoring

algorithm. For this reason we call it the Target Optimal by Order Lowering (TOOL) algorithm. Fig. 3 shows a single
step of how TOOL pulls out a single control-U2f̃ operator, reducing the number of qubits non-trivially affected by the
remaining unitary. The process is repeated until the circuit is small enough to be solved using the RM algorithm. The core



7

select any 

qubit c

which we

draw as the 

�rst qubit

for clarity

Ufc

U
†
fc
Uf

xc T
lc

Uf
U
2f̃c

FIG. 3. A sketch of one round of TOOL (without feedback). We identify a sub-circuit Ufc with a single control qubit and then use

that such a subcirciut can be efficiently and optimally compiled using Lempel’s algorithm. The remaining circuit U
†
fc
Uf contains

one fewer qubit and so the process can be iterated until the circuit is down to 6 qubits when it can be optimally compiled by brute
force.

of the algorithm was already outlined in previous work [24] but for completeness App. C describes both plain TOOL and
a variant called TOOL (with feedback). This paper presents the first numerical results obtained from an implementation
of TOOL.

D. Third Order Duplicate and Destroy (TODD)

In this section, we present an algorithm based on Lempel’s factoring algorithm [25] that is extended to work for order
3 tensors. Since this algorithm does not appear in any previous work, we will provide an extended explanation here. This
algorithm requires some initial A matrix to be generated by another algorithm such as RE or TOOL, then it reduces the
number of columns of the initial gate synthesis matrix iteratively until exit. In section IV, we present numerical evidence
that it is the best efficient solver of the T-OPT problem developed so far. We call this the Third Order Duplicate and
Destroy (TODD) algorithm because, much like the villainous Victorian barber, it shaves away at the columns of the input
A matrix iteratively until the algorithm finishes execution. Pseudo-code is provided in App. E.
We begin by introducing the key mechanism through which TODD reduces the T count of quantum circuits: by

destroying pairs of duplicate columns of a gate synthesis matrix, a process through which the signature tensor is unchanged,
as shown in the following lemma.

Lemma III.1. Let A ∈ Z
(n,m) be a gate synthesis matrix whose ath and bth columns are duplicates. Let Ades ∈ Z

(n,m−2)

be a gate synthesis matrix formed by removing the ath and bth columns of A. It follows that S(A) = S(Ades) for any such
A and Ades.

Proof. We start by writing the signature tensor in terms of the elements of A according to equation (11),

S
(A)
α,β,γ =

m
∑

k=1

Aα,kAβ,kAγ,k (mod 2), (16)

and separating the terms associated with a, b from the rest of the summation,

S
(A)
α,β,γ =





∑

j∈J

Aα,jAβ,jAγ,j



+Aα,aAβ,aAγ,a +Aα,bAβ,bAγ,b (mod 2), (17)

where J = [1,m] \ {a, b}, so that

S
(A)
α,β,γ = S

(Ades)
α,β,γ +Aα,aAβ,aAγ,a +Aα,bAβ,bAγ,b (mod 2), (18)

As stated in the lemma, the ath and bth columns of A are duplicates and so

Ai,a = Ai,b ∀ i ∈ [1, n] . (19)
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Now substitute equation (19) into equation (18),

S
(A)
α,β,γ = S

(Ades)
α,β,γ + 2Aα,aAβ,aAγ,a (mod 2) (20)

= S
(Ades)
α,β,γ (mod 2) (21)

where the last step follows from modulo 2 addition.

Lemma III.1 gives us a simple means to remove columns from a gate synthesis matrix by destroying pairs of duplicates
columns and thereby reducing the T count of a CNOT + T circuit by 2. However, it is often the case that the A matrix
does not already contain any duplicate columns. Therefore, we wish to perform some transformation: A→ A′ such that

(a) A′ has duplicate columns;

(b) the transformation preserves the signature tensor of A.

In the following lemma we introduce a class of transformations that duplicate a particular column of an A matrix such
that property (a) is met. We then use lemma III.3 to establish what conditions must be satisfied for the duplication
transformation to have property (b).

Lemma III.2. Let A ∈ Z
(n,m)
2 be a proper gate synthesis matrix. For some choice of a and b, let ca(A) and cb(A) denote

the ath and bth columns of A and define z = ca(A)⊕cb(A) . Let y ∈ Z
m
2 be any vector such that ya⊕ yb = 1. We consider

duplication transformations of the form A → A′ = A ⊕ zyT . It follows that the ath and bth columns of A′ are duplicates
and so property (a) holds.

Proof. We begin by finding expressions for the matrix elements of A′ in terms of A, z and y,

A′
i,j = Ai,j ⊕ ziyj , (22)

and substitute the definition of z,

A′
i,j = Ai,j ⊕ (Ai,a ⊕Ai,b)yj . (23)

Now we can find the elements of the columns a and b of A′,

A′
i,a = Ai,a ⊕ (Ai,a ⊕Ai,b)ya, (24)

A′
i,b = Ai,b ⊕ (Ai,a ⊕Ai,b)yb. (25)

We substitute in the condition yb = ya ⊕ 1 into equation (25),

A′
i,b = Ai,b ⊕ (Ai,a ⊕Ai,b)(ya ⊕ 1)

= Ai,b ⊕ (Ai,a ⊕Ai,b)ya ⊕Ai,a ⊕Ai,b

= Ai,a ⊕ (Ai,a ⊕Ai,b)ya

= A′
i,a,

(26)

where the two Ai,b terms cancel in the second step of equation (26).

Lemma III.3. Consider a duplication transformation of the form A→ A′ = A⊕zyT where z, y are vectors of appropriate
length. It follows that S(A) = S(A′) (satisfying property (b)) if the following conditions hold true:

C1: |y| = 0 (mod 2)

C2: Ay = 0

C3: χ(A, z) y = 0.

where we define χ(A, z) as follows. Given some gate synthesis matrix, A, and a column vector z ∈ Z
n
2 let χ be a matrix

with rows labelled by (α, β, γ) and of the form

Rα,β,γ = (zαrβ ∧ rγ)⊕ (zβrγ ∧ rα)⊕ (zγrα ∧ rβ) (27)

where rα is the αth row of A, and x ∧ y is the element-wise product of vectors x and y. The order of the rows in χ is
unimportant, but must include every choice of α, β, γ ∈ Zn with no pair of indices being equal.
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Proof. We begin by finding an expression for S(A′) using equation (11),

S
(A′)
α,β,γ =

m
∑

j=1

(Aα,j ⊕ zαyj) (Aβ,j ⊕ zβyj) (Aγ,j ⊕ zγyj) (mod 2), (28)

and expanding the brackets,

S
(A′)
α,β,γ =

m
∑

j=1

(Aα,jAβ,jAγ,j ⊕ zαzβzγyj

⊕ zαzβAγ,jyj ⊕ zβzγAα,jyj ⊕ zγzαAβ,jyj

⊕ zαAβ,jAγ,jyj ⊕ zβAγ,jAα,jyj ⊕ zγAα,jAβ,jyj) (mod 2).

(29)

We can see that the first term of equation (29) summed over all j is equal to S(A), by definition. The task is to show that
the remaining terms sum to zero under the specified conditions. Next, we sum over all j and substitute in the definitions
of |y|, Ay and χ(A, z) y,

S
(A′)
α,β,γ = S

(A)
α,β,γ ⊕ zαzβzγ |y| ⊕ zαzβ [Ay]γ ⊕ zβzγ [Ay]α ⊕ zγzα [Ay]β ⊕ (Rα,β,γ · y). (30)

By applying condition C1, the second term is eliminated; by applying condition C2, the next three terms are eliminated,
and by applying condition C3, the final term is eliminated.

Having shown how to duplicate and destroy columns of a gate synthesis matrix, we are ready to describe the TODD
algorithm, presented as pseudo-code in algorithm 1. Given an input gate synthesis matrix A with signature tensor S, we
begin by iterating through all column pairs of A given by indices a, b. We construct the vector z = ca ⊕ cb where cj is
the jth column of A, as in lemma III.2. We check to see if the conditions in lemma III.3 are satisfied for z by forming the
matrix,

Ã =





A

χ(A, z)



 . (31)

Any vector, y, in the null space of Ã simultaneously satisfies C2 and C3 of lemma III.3. We scan through the null space
basis until we find a y such that ya ⊕ yb = 1. At this stage we know that we can remove at least one column from A,
depending on the following cases

i : If |y| = 0 (mod 2) then condition C1 is satisfied and we can perform the duplication transformation from lemma
III.3;

ii : If |y| = 1 (mod 2) then we force C1 to be satisfied by appending a 1 to y and an all-zero column to A before
applying the duplication transformation.

Finally, we use the function proper as in App. E to destroy all duplicate pairs to maximize efficiency. In case i, at least
two columns have been removed and in case ii at least one column has been removed [45]. This reduces the number of
columns of A and therefore the T count of Uf . We now start again from the beginning, iterating over columns of the new
A matrix. The algorithm terminates if every column pair has been exhausted without success.

IV. RESULTS & DISCUSSION

We implemented our compiler, which we call TOpt, in C++ including each variant of T-Optimiser described in sec-
tion III, and tested it on two types of benchmark. First, we performed a random benchmark, in which we randomly
sampled signature tensors from a uniform probability distribution for a range of n and used them as input for the four
versions of T-optimiser : RE, TOOL (feedback), TOOL (without feedback) and TODD. The results for the random bench-
mark are shown in Fig. 4. Second, we tested the compiler on a library of benchmark circuits taken from Dmitri Maslov’s
Reversible Logic Synthesis Benchmarks Page [30], Matthew Amy’s GitHub repository for T-par [42] and Nam et al’s
GitHub repository [32] for reference [21]. These circuits implement useful quantum algorithms including Galois Field
multipliers, integer addition, nth prime, Hamming coding functions and the hidden weighted bit functions. The results for
the quantum algorithm benchmark are listed in Table I. For all benchmarks, the results were obtained on the University
of Sheffield’s Iceberg HPC cluster[31].
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A. Random Circuit Benchmark

We performed the random benchmark in order to determine the average case scaling of the T -count with respect to
n for each computationally efficient version of T-optimiser with results shown in Fig. 4. For both versions of TOOL,
we find that the numerical results for the T count follow the expected analytical scaling of O(n2) and correspondingly
the results for RE scales as O(n3). We see that TODD slightly outperforms the next best algorithm, TOOL (without
feedback) and is therefore the preferred algorithm in settings where classical runtime is not an issue. Furthermore, for
all compilers the distribution of T -counts (for fixed n) concentrates around the mean value. Fig. 4 includes error bars
showing the distribution but they are too small to be clearly visible, so for one data point we highlight this with an inset
histogram. Therefore, TODD performs better, not just on average, but on the vast majority of random circuits so far
tested. While both have a polynomial runtime, we found TOOL runs faster than TODD. Therefore, TOOL may have
some advantage for larger circuits that are impractically large for TODD. However, TODD can always partition a very
large circuit into several smaller circuits at the cost of being slightly less effective at reducing T count. Consequently, for
very large circuits, it is unclear which compiler will work best and running both is recommended.
The random benchmark effectively uses diagonal CNOT + T circuits. This gate set is not universal and therefore is

computationally limited. However, these circuits are generated by {T,CS,CCZ}, which all commute. This means such
circuits lie in the computational complexity class IQP (which stands for instantaneous quantum polynomial-time) that
feature in proposals for quantum supremacy experiments [26, 34, 35]. Low cost designs of IQP circuits provided by our
compiler would therefore be an asset for achieving quantum supremacy.
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FIG. 4. Circuits generated by the CNOT and T gate were randomly generated for varying number of qubits n then optimized
by our implementations of RE, TOOL and TODD. The average T -count for each n over many random circuits are shown on the
vertical axis. TODD produces circuit decompositions with the smallest T -counts on average but scales the same as the next best
algorithm, TOOL (Feedback). Both of these algorithms are better than RE by a factor n. The difference between the T -counts for
TODD and TOOL (Feedback) seem to converge to a constant 5.5± 0.7 for large n.

B. Quantum Algorithms Benchmark

The results in Table I show that the TODD algorithm reduced or preserved the T count for every input quantum circuit
upon which it was tested, as expected. Additionally, TODD yields a positive saving over the best previous algorithm for
all benchmarks except Mod 54 with an average and maximum saving of 20% and 51%, respectively. This is immediately
useful due to the lower cost associated with solving these problems.
Crucially, the output circuits of our protocol often require a considerable number of ancilla qubits due to our use of

Hadamard gadgets. This space-time trade-off is justifiable when the cost of introducing an additional qubit is small in
comparison to that of performing an additional T gate [39]. Furthermore, our compilers can be executed with a cap, hcap,
on the size of the ancilla register by dividing the circuit into subcircuits containing no more than hcap Hadamard gates.
A larger number of Hadamard gates generally leads to an increased classical compilation time for TODD as well as an
increased T count for TODD-part (see appendix A), which naturally motivates future investigation into Hadamard gate
optimization as a pre-processing step of TOpt-like compilers. Finally, further reductions in the space (and other) resource
requirements may be possible by back-substituting the Hadamard gadget identity from Fig. 2 post-optimization.
The TOOL algorithms (with and without feedback) reduced T counts below those of the best previous result for 18%

and 30% of the benchmark circuits, respectively. But for the majority, we find that TOOL actually results in negative
savings. This seems to contradict the result for the random benchmark (see Fig. 4) in which TOOL (feedback) nearly
performs as well as TODD. We offer the following explanation for this apparent contradiction. The circuits generated as



11

input for the random benchmark typically have optimal T counts close to the worst-case bound of O(n2). TODD yields T
counts very close to optimal because it only terminates when nearly all avenues for T count reduction have been exhausted.
The TOOL algorithm outputs T counts below O(n2), so closely competes with TODD for random circuits. However, for
the Clifford + T benchmark, the optimal T count is typically much less than the worst-case O(n2) bound. It is important
to recall at this stage that TOOL is optimal for the special case where the circuit implements a control-Clifford. But
even for this special case, TOOL needs to know which qubit is the control qubit in order to take advantage of this special
case behaviour. Consequently, a general-purpose automated compiler without prior knowledge about the input quantum
circuit must have access to an additional subroutine which determines the control qubit. For general quantum circuits, the
task is especially challenging because the circuit must also be optimally partitioned into a sequence of control-Cliffords. As
such, we have left this task as an avenue of future work. Our implementation of TOOL uses a naive random control-qubit
selection subroutine, so regardless of the low optimal T count, TOOL will often output T counts that remain close to the
worst-case of O(n2). We suggest that this is the principle cause for the relatively poor performance seen in Table I, which
has lead to negative savings not only over the best previous result and TODD, but sometimes also over the input circuit,
and conclude that a better control-qubit selector would unlock more of TOOL’s T -optimizing potential.

C. The T Count and Other Metrics

We acknowledge that the T count does not account for the full space-time cost of quantum computation. Recall that
we justified neglecting the cost of Clifford gates due to the high ratio between the cost of the T gate and that of Clifford
gates. The full space-time cost is highly sensitive to the architecture of the quantum computer, but for the surface code,
this ratio is estimated to be between 50 and 1000 [12, 36–38], depending on architectural assumptions.
Note that while our protocol leads to circuits with low T count, the final output often has an increased CNOT count.

This is largely due to step 6 of our protocol where we map the phase polynomial back to a quantum circuit using a naive
approach. Although T gates cost significantly more than CNOTs individually, the lower bound on number of CNOT gates
required to implement high complexity reversible functions exceeds the upper bound on the number of T gates required
by an amount that grows exponentially in n [39]. So for large n, our focus should turn instead to CNOT optimization.
In this paper, we focus exclusively on T count optimization, which is relevant not just to circuit optimization but also to
classical simulation runtime [16, 40, 41] and distillation of magic states [24]. For this reason, we omit the CNOT count
from our benchmark tables and leave the problem of optimizing CNOT count as an avenue for future work.

V. CONCLUSIONS & ACKNOWLEDGEMENTS

In this work, we have developed a framework for compiling and optimizing Clifford + T quantum circuits that reduces
the T count. This scheme maps the quantum circuit problem to an algebraic problem involving order 3 symmetric tensors,
for which we have presented an efficient near-optimal solver, and we have reviewed previous methods. We implemented
our protocol in C++ and used it to obtain T count data for quantum circuit benchmarks. Each variant of the compiler
has managed to produce quantum circuits for quantum algorithms with lower T -counts than any previous attempts known
to us. However, we find that the TODD compiler with Hadamard gadgets performs the best in practice. This lowers the
cost of quantum computation and takes us closer to achieving practical universal fault-tolerant quantum computation.
We acknowledge support by the Engineering and Physical Sciences Research Council (EPSRC) through grant EP/M024261/1.

We thank Mark Howard and Matthew Amy for valuable discussions, and Dmitri Maslov for comments on the manuscript.
We thank Quanlong Wang for spotting an error in an earlier draft of the manuscript.
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TABLE I. T -counts of Clifford + T benchmark circuits for the TODD, TOOL(F) (with feedback) and TOOL(NF) (without feedback)
variants of the TOpt compiler are shown. Results for other variants can be seen in Table II of appendix A. Columns n and nh show
the number of qubits for the input circuit and the number of Hadamard ancillas, respectively. The T -count for the circuit is given:
before optimization (Pre-Opt.); after optimization using the best previous algorithm (Best prev.); and post-optimization using our
implementation of TODD, TOOL(F) and TOOL(NF). The best previous algorithm is given in the Alg. column where: T-par is
from [20]; RMm and RMr are the majority and recursive Reed-Muller optimizers, respectively, both from [22]; and AutoH is the
heavy version of the algorithm from [21]. We show the T -count saving for each TOpt variant over the best previous algorithm in the
s columns and the execution time as run on the Iceberg HPC cluster in the t columns. Results where the execution time is marked
with † were obtained using an alternative implementation of TODD that is faster but less stable. The row Positive saving shows
the proportion of the benchmark circuits, as a percentage, for which the corresponding compiler yields a positive saving over the
best previous result.

Pre-Opt. Best prev. TOpt TODD TOOL(F) TOOL(NF)

Circuit n T T Alg. nh T t (s) s(%) T t (s) s(%) T t (s) s(%)

Mod 54[42] 5 28 16 T-par 6 16 0.04 0 19 0.38 −18.75 19 0.37 −18.75

8-bit adder[42] 24 399 213 RMm 71 129 40914.1 39.44 279 71886.1 −30.99 284 55574.6 −33.33

CSLA-MUX3
[32] 16 70 58 RMr 17 52 30.41 10.34 84 122.95 −44.83 73 84.54 −25.86

CSUM-MUX9
[32] 30 196 76 RMr 12 72 587.21 5.26 83 2081.13 −9.21 104 340.19 −36.84

GF(24)-mult[42] 12 112 68 T-par 7 54 8.88 20.59 75 5.96 −10.29 75 2.38 −10.29

GF(25)-mult[42] 15 175 101 RMr 9 87 66.83 13.86 109 17.6 −7.92 107 28.27 −5.94

GF(26)-mult[42] 18 252 144 RMr 11 126 521.86 12.50 165 82.52 −14.58 157 60.16 −9.03

GF(27)-mult[42] 21 343 208 RMr 13 189 2541.4 9.13 277 226.4 −33.17 209 122.17 −0.48

GF(28)-mult[42] 24 448 237 RMr 15 230 36335.7 2.95 370 379.97 −56.12 281 322.83 −18.57

GF(29)-mult[42] 27 567 301 RMr 17 295 50671.1 1.99 454 1463.02 −50.83 351 816.04 −16.61

GF(210)-mult[42] 30 700 410 T-par 19 350 15860.3† 14.63 550 7074.29 −34.15 434 988.04 −5.85

GF(216)-mult[42] 48 1792 1040 T-par 31 - 1723 75204.8 −65.67 1089 30061.1 −4.71

Grover5[42] 9 52 52 T-par 23 44 17.07 15.38 106 110.29 −103.85 83 117.39 −59.62

Hamming15 (low)[42] 17 161 97 T-par 34 75 902.69 22.68 161 2787 −65.98 132 1041.22 −36.08

Hamming15 (med)[42] 17 574 230 T-par 85 162 12410.8† 29.57 727 176275 −216.09 277 59112.2 −20.43

HWB6
[30] 7 105 71 T-par 24 51 55.66 28.17 189 140.79 −166.20 149 59.24 −109.86

Mod-Mult55[42] 9 49 35 RMm&r 10 17 0.26 51.43 35 5.45 0 19 0.92 45.71

Mod-Red21[42] 11 119 73 T-par 17 55 25.78 24.66 68 40.82 6.85 71 19.76 2.74

nth-prime6[30] 9 567 400 RMm&r 97 208 37348† 48 830 205869 −107.50 344 135165 14

QCLA-Adder10[42] 36 238 162 T-par 28 116 5496.66 28.40 167 7544.58 −3.09 180 4560.78 −11.11

QCLA-Com7
[42] 24 203 94 RMm 19 59 198.55 37.23 79 420.95 15.96 125 465.41 −32.98

QCLA-Mod7[42] 26 413 235 AutoH 58 165 46574.3 29.79 295 35249.2 −25.53 310 22355.4 −31.91

QFT4
[42] 5 69 67 T-par 39 55 93.65 17.91 67 1602.91 0 59 2756.34 11.94

RC-Adder6[42] 14 77 47 RMm&r 21 37 18.72 21.28 48 1238.12 −2.13 44 81.77 6.38

NC Toff4
[42] 5 21 15 T-par 2 13 < 10−2 13.33 14 0.02 6.67 14 0.01 6.67

NC Toff5
[42] 7 35 23 T-par 4 19 0.06 17.39 22 0.24 4.35 22 0.12 4.35

NC Toff6
[42] 9 49 31 T-par 6 25 0.4 19.35 31 1146.04 0 29 0.67 6.45

NC Toff10
[42] 19 119 71 T-par 16 55 44.78 22.54 65 1357.98 8.45 67 110.44 5.63

Barenco Toff4
[42] 5 28 16 T-par 3 14 < 10−2 12.50 16 0.02 0 16 0.03 0

Barenco Toff5
[42] 7 56 28 T-par 7 24 0.45 14.29 26 0.88 7.14 27 0.56 3.57

Barenco Toff6
[42] 9 84 40 T-par 11 34 1.94 15 42 12.6 −5 42 2.59 −5

Barenco Toff10
[42] 19 224 100 T-par 31 84 460.33 16 120 1938.01 −20 122 1269.03 −22

VBE-Adder3[42] 10 70 24 T-par 4 20 0.15 16.67 24 1639.76 0 38 1.93 −58.33

Mean 19.76 −31.59 −14.13

Standard error 2.12 8.87 4.69

Min 0 −216.09 −109.86

Max 51.43 15.96 45.71

Positive saving (%) 96.88 18.18 30.30
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Appendix A CLIFFORD + T BENCHMARKS FOR TODD-PART AND TODD-hcap

TABLE II. T -counts of Clifford + T benchmark circuits for the TODD-part and TODD-hcap variants of TOpt are shown. TODD-part uses
Hadamard-bounded partitions rather than Hadamard gadgets and ancillas and TODD-hcap sets a fixed cap, hcap, on the number of Hadamard
ancillas available to the compiler. Starting at hcap = 1, we iteratively incremented the value of hcap by 1 until obtaining the first result with
a positive T -count saving over the best previous algorithm. The value of hcap for which this occured is reported in the hcap column, and the
number of partitions, T -count, execution time and percentage saving for this result are detailed by column group TODD-hcap. TODD-hcap

results that yield a positive saving for hcap = 0 correspond to results for TODD-part and results that require hcap = nh Hadamard ancillas
correspond to results for TODD. As we are strictly interested in intermediate values of hcap, we omit these data and refer the reader to the
appropriate result. The number of Hadamard partitions is given by the Np columns. As in Table I, n is the number of qubits for the input
circuit; T are T -counts: for the circuit before optimization (Pre-Opt.); due to the best previous algorithm (Best prev.); and post-optimization
using variants of our compiler. The best previous algorithm is given in the Alg. column where: T-par is from [20]; RMm and RMr are the
majority and recursive Reed-Muller optimizers, respectively, both from [22]; and AutoH is the heavy version of the algorithm from [21]. We
show the T -count saving for each TOpt variant over the best previous algorithm in the s columns and the execution time as run on the Iceberg
HPC cluster in the t columns. Results where the execution time is marked with † were obtained using an alternative implementation of TODD
that is faster but less stable. Positive saving shows the proportion of the benchmark circuits, as a percentage, for which the corresponding
compiler yields a positive saving over the best previous result.

Pre-Opt. Best prev. TODD-part TODD-hcap

Circuit n T T Alg. Np T t (s) s(%) hcap Np T t (s) s(%)

Mod 54[42] 5 28 16 T-par 7 18 < 10−2
−12.50 1 4 16 < 10−2 0

8-bit adder[42] 24 399 213 RMm 20 283 12.63 −32.86 13 5 212 227.81 0.47

CSLA-MUX3
[32] 16 70 58 RMr 7 62 0.38 −6.90 5 3 54 3.73 6.90

CSUM-MUX9
[32] 30 196 76 RMr 3 76 20.31 0 4 2 74 36.57 2.63

Cycle 173[42] 35 4739 1944 RMm 573 2625 1001.11 −35.03 43 15 1939 25507.5† 0.26

GF(24)-mult[42] 12 112 68 T-par 3 56 0.55 17.65 0 See result for TODD-part

GF(25)-mult[42] 15 175 101 RMr 3 90 6.96 10.89 0 See result for TODD-part

GF(26)-mult[42] 18 252 144 RMr 3 132 121.16 8.33 0 See result for TODD-part

GF(27)-mult[42] 21 343 208 RMr 3 185 153.75 11.06 0 See result for TODD-part

GF(28)-mult[42] 24 448 237 RMr 3 216 517.63 8.86 0 See result for TODD-part

GF(29)-mult[42] 27 567 301 RMr 3 301 2840.56 0 8 2 295 3212.53 1.99

GF(210)-mult[42] 30 700 410 T-par 3 351 23969.1 14.39 0 See result for TODD-part

GF(216)-mult[42] 48 1792 1040 T-par 3 922 76312.5† 11.35 -

Grover5[42] 9 52 52 T-par 18 52 0.02 0 5 4 50 0.3 3.85

Hamming15 (low)[42] 17 161 97 T-par 22 113 0.53 −16.49 5 6 93 2.93 4.12

Hamming15 (med)[42] 17 574 230 T-par 59 322 1.57 −40 11 7 226 58.08 1.74

Hamming15 (high)[42] 20 2457 1019 T-par 256 1505 16.84 −47.69 13 24 1010 595.8 0.88

HWB6
[30] 7 105 71 T-par 15 82 0.01 −15.49 3 6 68 0.13 4.23

HWB8
[30] 12 5887 3531 RMm&r 709 4187 6.53 −18.58 9 110 3517 259.14 0.40

Mod-Adder1024 [42] 28 1995 1011 T-par 234 1165 98.8 −15.23 10 27 978 665.5 3.26

Mod-Adder1048576[42] 0 0 7298 T-par 2030 9480 89486.5† −29.90 -

Mod-Mult55[42] 9 49 35 RMm&r 6 28 0.02 20 0 See result for TODD-part

Mod-Red21[42] 11 119 73 T-par 15 85 0.06 −16.44 4 5 69 0.59 5.48

nth-prime6[30] 6 567 400 RMm&r 63 402 0.17 −0.50 2 29 384 0.98 4

nth-prime8[30] 12 6671 4045 RMm&r 774 5034 8.4 −24.45 12 105 4043 898.98 0.05

QCLA-Adder10[42] 36 238 162 T-par 6 184 223.25 −13.58 5 3 157 366.1 3.09

QCLA-Com7
[42] 24 203 94 RMm 7 135 11.62 −43.62 16 2 81 170.77 13.83

QCLA-Mod7[42] 26 413 235 AutoH 15 305 34.76 −29.79 23 3 221 289.77† 5.96

QFT4
[42] 5 69 67 T-par 38 67 < 10−2 0 2 13 63 0.02 5.97

RC-Adder6[42] 14 77 47 RMm&r 13 59 0.11 −25.53 6 3 45 0.97 4.26

NC Toff3
[42] 5 21 15 T-par 3 15 < 10−2 0 2 = nh See result for TODD

NC Toff4
[42] 7 35 23 T-par 5 23 < 10−2 0 4 = nh See result for TODD

NC Toff5
[42] 9 49 31 T-par 7 31 0.01 0 5 2 29 0.2 6.45

NC Toff10
[42] 19 119 71 T-par 17 71 0.74 0 10 3 69 12.48 2.82

Barenco Toff3
[42] 5 28 16 T-par 4 22 < 10−2

−37.50 2 2 14 < 10−2 12.50

Barenco Toff4
[42] 7 56 28 T-par 8 38 0.01 −35.71 4 2 26 0.06 7.14

Barenco Toff5
[42] 9 84 40 T-par 12 54 0.03 −35 6 2 38 0.35 5

Barenco Toff10
[42] 19 224 100 T-par 32 134 2.27 −34 16 2 98 54.75 2

VBE-Adder3[42] 10 70 24 T-par 5 36 0.04 −50 4 = nh See result for TODD

Mean −13.19 9 4.05

Standard error 3.15 1.65 0.64

Min −50 1 0

Max 20 43 13.83

Positive saving (%) 20.51 96.30
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In order to investigate the relative effectiveness of the Hadamard gadget and Hadamard-bounded partition methods for
dealing with Hadamard gates, we repeated the benchmarks from Table I but for the latter method. The results are shown
in the TODD-part column group of Table II. For the Hadamard partition method, we found that the compiler runtime is
significantly decreased, making the optimization of larger quantum circuits feasible. However, the performance is worse
in terms of raw T count reductions, often leading to higher T counts than the best previous result. It is important to
note that for a given input circuit, the T count is highly sensitive on the choice of Hadamard partitioning, of which, in
general, there are many. Our implementation does not optimize over Hadamard partitioning choices, so there is potential
for developing a more powerful version of TODD-part that makes use of an advanced Hadamard partitioning algorithm,
which may lead to greater T count reductions.
The TODD compiler completely gadgetizes each Hadamard gate, whereas the TODD-part compiler completely partitions

the circuit into Hadamard-bounded partitions. It is possible to interpolate between these two approaches using a parameter
hcap that enforces a cap on the number of available Hadamard ancillas. Upon reaching this cap, the compiler synthesises the
circuit encountered so far, freeing up the Hadamard ancillas for the subsequent Hadamard partition. We have implemented
this feature, and in order to quantify the overhead required to see a T count reduction, we ran each benchmark repeatedly,
incrementing the value of hcap until we saw a reduction over the best previous result. The results for this experiment
are presented in Table II. We found that the relationship between hcap and T count savings is favourable: relatively few
Hadamard gadgets are required to see a reduction over the best previous result. Over all the benchmark circuits, where
the number of qubits and the T count ranges up to n = 36 and T = 6671, respectively, we found that on average 9
Hadamard ancillas are required to see positive saving and at most 23 ancillas are needed for all but one exceptional result
(Cycle 173), which requires 43. This suggests that, while TODD combined with full Hadamard gadgetization is clearly
the forerunner amongst our compilers for reducing the T count, a modest improvement in the Hadamard partitioning
scheme, or adding a pre-processing step that looks for Hadamard gate reductions may lead to a better version of TODD
that requires no non-unitary gadgets, has feasible compiler runtimes for large circuits, and yields positive T count savings.

Appendix B LEMPEL’S FACTORING ALGORITHM

We describe Lempel’s factoring algorithm (originally from reference [25]) using conventions consistent with our descrip-
tion of the TODD algorithm to more easily see how TODD generalizes Lempel’s algorithm for order 3 tensors. Lempel’s

factoring algorithm takes as input a symmetric tensor of order 2 (a matrix), which we denote S ∈ Z
(n,n)
2 and outputs a

matrix A ∈ Z
(n,m)
2 where the elements of A and S are related as follows:

Sα,β =
m
∑

k=1

Aα,kAβ,k (mod 2). (32)

Lempel proved that the minimal value of m is equal to

µ(S) = ρ(S) + δ(S), (33)

where ρ(S) is the rank of matrix S and

δ(S) =

{

1 if Sα,α = 0 ∀ α ∈ [1, n]

0 otherwise
. (34)

Lempel’s algorithm solves the problem of finding an A matrix that obeys equation (32) for a given S matrix such that
m = µ(S). Such an A matrix is referred to as a minimal factor of S.
In the following, we denote the number of columns of A as c(A) and the jth column of A as cj(A). Lempel’s algorithm

is the following:

1. Generate an initial (necessarily suboptimal) A matrix for S.

2. Check if c(A) = µ(S). If true, exit and output A. Otherwise, perform steps 3 to 7.

3. Find a y ∈ Z
m
2 such that Ay = 0 and 0 < |y| < c(A).

4. If |y| = 1 (mod 2) then update y→ (yT , 1)T and A = (A 0).

5. Find a pair of indices a, b ∈ [1,m], a 6= b such that ya ⊕ yb = 1.

6. Apply transformation A→ A⊕ zyT , where z = ca(A)⊕ cb(A).

7. Remove the ath and bth columns from A, then go to step 2.

Note that the key difference between the Lempel and TODD algorithm is that TODD additionally requires condition
C3 from lemma III.3 to be satisfied.
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Appendix C TOOL ALGORITHM

Here we give a detailed description of TOOL, with the main idea illustrated by Fig. 3. TOOL is best explained in
terms of weighted polynomials (recall equation (6)). The algorithm is iterative, where each round consists of the five steps

detailed below. Before the first round, we initialize an ‘empty’ output gate synthesis matrix, Aout ∈ Z
(n,0)
2 .

1. Choose an integer c ∈ [1, n] such that there is at least one term in f with xc as a factor. If no such c exists, the
algorithm terminates and outputs Aout.

2. Find f̃c, the target polynomial of f with respect to xc (see equation 35 below).

3. Determine the order 2 signature tensor, S̃, of f̃c.

4. Find Ã, a minimal factor of S̃, using Lempel’s factoring algorithm.

5. Recover an order 3 gate synthesis matrix, A, for Ã, and append it to Aout. Replace f with f − |ATx|.

Each round of TOOL gives a new f that depends on fewer x variables. When f depends on only nRM or fewer variables,
we switch to the optimal brute force optimizer, RM.
We will now explain each step of the above description in detail, unpacking the contained definitions. In step 1, we

select an index c, which corresponds to the control qubit of the control-U2f̃c
operator shown in Fig. 3. The order that we

choose c for each round can affect the output and therefore is a parameter of TOOL. For all results, we randomly selected
c with uniform probability from the set of all indices {c} for which xc is a factor of at least one term in f .
Next, we observe that any f can be decomposed into f = fc+f ′

c, where we define fc as a weighted polynomial containing
all terms of f with xc as a factor. The former part, fc, can be further decomposed as follows,

fc = 2xcf̃c + lcxc (35)

where f̃c is quadratic and so can be optimally synthesized efficiently. In step 2, we extract f̃c, which is implicitly fixed by
the above equations. We refer to f̃c as a target polynomial because it corresponds to the target of a control-U2f operator,

where f = f̃c and |xc〉 is the control qubit.
As an aside, we remark that the target polynomial is related to Shannon cofactors that appear in Boole’s expansion

theorem. Specifically, we have

f̃c =
f+
c − f−

c − lc

2
, (36)

where f+
c and f−

c are the positive and negative Shannon cofactors, respectively, of f with respect to xc, and lc is the linear
coefficient of f associated with xc.
In step 3, we map f̃c to a signature tensor of order 2 (a matrix) for use with Lempel’s factoring algorithm. Let l̃α, q̃α,β

be the linear and quadratic coefficients of f̃c, respectively. For each α, β 6= c, the elements of S̃ are obtained as follows.

S̃α,β =

{

l̃α (mod 2) if α = β

q̃α,β (mod 2) if α 6= β
. (37)

Finding a minimal factor of S̃α,β is the problem 2-STR. Therefore, we can use Lempel’s algorithm (see appendix B) to

find a matrix Ã ∈ Z
(n,m̃)
2 , which is a minimal factor of S̃ such that

f̃c = |Ã
Tx| =

m̃
∑

j=1

[

n
⊕

i=1

Ãi,jxi

]

(mod 8). (38)

By substituting equation (38) into equation (35) we obtain

fc = 2xc|Ã
Tx|+ lcxc, (39)

=
m̃
∑

j=1

2xc

[

n
⊕

i=1

Ãi,jxi

]

+ lcxc (mod 8), (40)
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where we have taken the factor 2xc within the Hamming weight summation. Next, we use the modular identity 2ab =
a+ b− a⊕ b with a = xc and b as the contents of the square brackets. This gives

fc =

m̃
∑

j=1

(

xc +

[

n
⊕

i=1

Ãi,jxi

]

− xc ⊕

[

n
⊕

i=1

Ãi,jxi

])

+ lcxc (mod 8), (41)

= xc(m̃+ lc) +
m̃
∑

j=1

[

n
⊕

i=1

Ãi,jxi

]

−

m̃
∑

j=1

xc ⊕

[

n
⊕

i=1

Ãi,jxi

]

(mod 8), (42)

= xc(m̃+ lc) + |Ã
Tx| − |(Ã⊕Bc)

Tx| (mod 8), (43)

where Bc ∈ Z
(n,m)
2 is a matrix with elements

[Bc]i,j =

{

1 if i = c

0 otherwise
. (44)

This is now in the form of a phase polynomial (e.g. see equation (8)) with no more than 1 + 2m̃ terms, where m̃ was the
optimal size of the factorisation found using Lempel’s algorithm.
There are two versions of TOOL: with and without feedback. The difference between these versions determines whether

all of equation (43) is put into Aout or whether parts are ‘fed back’ into f for subsequent rounds. This leads to two distinct
definitions of the A matrix referred to in step 5 of TOOL:

|ATx| =

{

(m̃+ lc)xc − |(Ã⊕Bc)
Tx| feedback

(m̃+ lc)xc − |(Ã⊕Bc)
Tx|+ |ÃTx| without feedback

. (45)

Notice that both (m̃ + lc)xc and |(Ã ⊕ Bc)
Tx| depend on xc, so must be sent to output. Furthermore, they comprise

all the terms that depend on xc, which is why sending |ÃTx| to output is optional, and why the number of dependent

variables is reduced by at least 1 each round. For the feedback version, |ÃTx| is kept within f during step 5, whereas it is
sent to output Aout in the without feedback version.

Appendix D CALCULATING CLIFFORD CORRECTION

We will now describe how to determine the Clifford correction required to restore the output of T-Optimiser to the
input unitary. Let the input of T-Optimiser be a weighted polynomial f that implements unitary Uf ∈ D3, and let the
output be a weighted polynomial g. Any f can be split into the sum

f = f1 + f2, (46)

where the coefficients of f1 are in Z2 and those of f2 are even. From the definition of T-Optimiser, we know the coefficients
of f and g have the same parity i.e.

g = g1 + g2 = f1 + g2, (47)

where g1, g2 are similarly defined for g. Using equations (46) and (47) we find,

g = f + (g2 − f2). (48)

Equation (48) implies that UClifford = U(g2−f2) ∈ D2. Therefore, the Clifford correction is U†
Clifford = U

†
(g2−f2)

= U(f2−g2).

We can map (f2 − g2) to a phase polynomial and subsequently to a quantum circuit, U†
Clifford.
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Appendix E TODD PSEUDOCODE

Algorithm 1 Third Order Duplicate-then-Destroy (TODD) Algorithm

Input: Gate synthesis matrix A ∈ Z
(n,m)
2 .

Output: Gate synthesis matrix A
′ ∈ Z

(n,m′)
2 such that m′ ≤ m and S

(A′) = S
(A).

• Let colj(A) be a function that returns the jth column of A.

• Let cols(A) be a function that returns the number of columns of A.

• Let nullspace(A) be a function that returns a matrix whose columns generate the right null space of A.

• Let proper(A) be a function that returns matrix A with every pair of identical columns and every all-zero column removed.

procedure TODD

Initialize A′ ← A
start :

for all 1 ≤ a < b ≤ cols(A′) do
z← cola(A

′) + colb(A
′)

Ã←





A′

χ(A′, z)





N ← nullspace(Ã)
for all 1 ≤ k ≤ cols(N) do

y← colk(N)
if ya ⊕ yb = 1 then

if |y| = 1 (mod 2) then

A′ ←
(

A′ 0

)

y←





y

1





A′ ← A′ + zyT

A′ ← proper(A′)
goto start

Appendix F COMPUTATIONAL EFFICIENCY OF TODD

In this appendix, we calculate an upper-bound on the worst-case computational efficiency of the TODD algorithm as
described in appendix E, in terms of the number of arithmetic operations on GF (2) required.
Let A be a gate synthesis matrix with n rows and m columns that is used as input for the TODD algorithm. The loop,

L1, over each column pair (a, b) requires at most
(

m
2

)

= O(m2) iterations to complete. Inside L1, there are four lines of
pseudocode: a column addition, requiring no more than n operations; a matrix concatenation and calculation of χ(A, z),
requiring E1 operations; a nullspace calculation, requiring O(n3) + O(m2n) operations using Gaussian elimination; and
finally a nested loop L2, requiring E2 operations.
From equation (27), we see that each row of χ(A, z) can be calculated with O(m) operations. There are a maximum of

(

n
3

)

rows in χ(A, z) so the total number of operations required to calculate χ is O(n3m). Combining this with the matrix

concatenation, we find that E1 = O(n3m) + nm = O(n3m).
The loop L2 executes in at most

cols(nullspace(Ã)) := colrank(nullspace(Ã)) = m− rank(Ã) ≤ m− rank(A) ≤ m− n (49)

iterations. The identity between the column rank and the number of columns follows from the assertion that the nullspace
function outputs a matrix whose columns are a linearly independent basis for the nullspace of A.
The loop L2 is composed of a conditional that requires 1 addition (by merging the first line of L2 and the conditional).

The content of the conditional is only evaluated once, so can be considered as part of L1 for this calculation. Therefore,
the number of operations performed in L2 is E2 = m− n.
The nested conditional requires at most m+ n+ 1 operations, where the terms are due to the Hamming weight of |y|,

concatenating an all-zero column to A′ and concatenating a one to y, respectively. The line A′ ← A′ + zyT requires
at most n(m + 1) operations and the proper function can be computed using at most m operations by keeping track of
all-zero columns with a Boolean array, for a small physical overhead of m.
The outermost loop (between start and goto start) by definition executes in no more than m−m′ iterations where m′

is the number of columns of the output. In this worst-case calculation, we assume m′ = 0.
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So the TODD algorithm can be executed using

O(m
[

n+O(n3m) +O(n3) +O(m2n) + (m− n) + (m+ n+ 1) + n(m+ 1) +m
]

) (50)

= O(m
[

O(n3m) +O(n3) +O(m2n)
]

) (51)

= O(n3m2) +O(nm3) (52)

operations.
Therefore, given a family of Clifford + T circuits with n qubits, h Hadamard gates and t T gates, we would expect our

compiler to execute in time asymptotically upper-bounded by a function of the following form

O((n+ h)3t2) +O((n+ h)t3) (53)

= O(n3t2) +O(h3t2) +O(nt3) +O(ht3), (54)

where we have made the reasonable assumption that the computational bottleneck is due to the TODD algorithm, rather
than the circuit preprocessing stages or mapping between different circuit representations, for instance.
In practice, the actual runtimes for the benchmark quantum circuits seen in Table I are much lower than this worst-case

upper-bound. Furthermore, the compiler runtime is dependent on the structure of the input quantum circuit, rather than
simply the number of qubits and gates from which it is composed. Consequently, we do not see a simple relation between
circuit parameters n, t, h and the runtime for the benchmarks in Table I.
Note that in our calculation of the complexity, we assumed that we must calculate every row of χ(A, z). In practice,

we find that many of the rows are identical. An algorithm that calculates only the unique rows may lead to improved
computational efficiency.
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