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The maximum coercivity that can be achieved for a given hard magnetic alloy is estimated by

computing the energy barrier for the nucleation of a reversed domain in an idealized microstructure

without any structural defects and without any soft magnetic secondary phases. For Sm1–zZrz
(Fe1–yCoy)12–xTix based alloys, which are considered an alternative to Nd2Fe14B magnets with a

lower rare-earth content, the coercive field of a small magnetic cube is reduced to 60% of the

anisotropy field at room temperature and to 50% of the anisotropy field at elevated temperature

(473K). This decrease of the coercive field is caused by misorientation, demagnetizing fields, and

thermal fluctuations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4999315]

Permanent magnets are an important material for energy

conversion in modern technologies. Wind power and hybrid

and electric vehicles require high performance permanent

magnets. In motor applications, the magnet should retain a

high magnetization and coercive field at an operating tempera-

ture around 450K. At this temperature, the magnetization and

the anisotropy field of Sm1–zZrz(Fe1–yCoy)12–xTix are higher

than those of Nd2Fe14B.
1 In addition, the rare earth to transi-

tion metal ratio of the SmFe12 based magnets is lower.

Therefore, magnets based on this phase are considered as a

possible alternative to Nd2Fe14B magnets.2 At high tempera-

ture, thermal fluctuations may reduce the coercive field. In this

work, we numerically compute the reduction of coercivity by

thermal fluctuations in Sm1–zZrz(Fe1–yCoy)12–xTix. For compar-

ison, we also include results for Nd2Fe14B. The letter is orga-

nized as follows. We first review the different effects that

reduce the coercive field in permanent magnets. Then, we pre-

sent a numerical method for the computation of the coercive

field including thermal fluctuations, which is based on finite

element micromagnetics. We introduce the concept of the acti-

vation volume which is widely used in the experimental analy-

sis of coercivity in permanent magnets. Then, we present

numerical results for Nd2Fe14B and Sm1–zZrz(Fe1–yCoy)12–xTix.

Besides thermal fluctuations, several other effects

reduce the coercive field of modern permanent magnets.

Kronm€uller et al.3 refer to the difference between the anisot-

ropy field of a magnet and its coercive field as a discrepancy

from theory. Aharoni4 predicted that the coercive field of a

hard magnet decreases with increasing width of surface

defects with zero anisotropy. The corresponding minimum

coercive field is 1/4 of the anisotropy field which is reached

for a defect width greater than 5
ffiffiffiffiffiffiffiffiffi

A=K
p

, where A is the

exchange constant and K is the anisotropy constant. Even

smaller coercive fields may occur if the anisotropy increases

gradually from zero to its maximum value as shown by

Becker and D€oring5 and Hagedorn.6

In addition to defects, local demagnetizing fields reduce the

coercivity of permanent magnets. Gr€onefeld and Kronm€uller7

show that the local demagnetizing field may reach values of the

order of the saturation magnetization, Ms, near the edges of a

hard magnetic grain. The total field which is essential for the

switching of a grain is the sum of the local demagnetizing field

and the external field. Therefore, the local demagnetizing field

leads to a further reduction of coercivity.

A further reduction of the coercive field as compared to

the ideal nucleation field, HN¼ 2K/(l0Ms), may result from

dynamic effects.8 When the external field or the internal

effective field is changing at a rate much faster than the

energy dissipation in the system, the system cannot follow

fast changes in the energy landscape and thus does not reach

the nearest metastable state. Instead, a path through the

energy landscape that brings the system into a reversed mag-

netic state may be taken. Leineweber and Kronm€uller9 show

that dynamic effects can reduce the ideal nucleation field by

up to 20%.

In this work, we focus on thermal fluctuations and calcu-

late the reduction of coercivity caused by these fluctuations.

Magnetization reversal in a permanent magnet is the process

by which an external field creates a reversed nucleus near

structural defects. Thermal fluctuations assist the formation

of the reversed nucleus and thus reduce the coercive field.

The formation of the nucleus is associated with an energy

barrier. Before magnetization reversal, the system is in a

local energy minimum. With the increasing external field,a)Electronic mail: tschrefl@gmail.com
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the energy barrier that separates the local minimum from the

reversed magnetic state decreases.10 Taking into account

thermal activation, the system can overcome an energy

barrier, E, within a time s ¼ s0 exp ðE=ðkBTÞÞ.
5 Here, kB

¼ 1.38� 10�23 J/K is the Boltzmann constant. The time con-

stant s0 is the inverse of the attempt frequency f0. Often, it is

assumed that the magnet can overcome an energy barrier of

25kBT within the time s¼ 1 s which gives an attempt fre-

quency of f0¼ 7.2� 1010 s�1.11 Then, the coercive field is

the critical value of the external field, H, at which the energy

barrier E(H) reaches 25kBT.

Using numerical micromagnetics, we compute the

energy barrier as a function of the applied field. We discre-

tize the magnet’s microstructure with tetrahedral finite ele-

ments. Minimizing the energy for varying external fields

gives the magnetic states along the demagnetization curve.

For energy minimization, we apply the non-linear conjugate

gradient method as described by Fischbacher and co-work-

ers.12 The coercive field obtained from the computation of

the demagnetization curve is H0. This is the field at which

the energy barrier is zero. We now want to compute the

energy barrier for a field H<H0. We apply the string

method13 in order to compute the minimum energy path that

connects the local minimum at field H with the reversed

magnetic state. A path is called a minimum energy path, if

for any point along the path the gradient of the energy is par-

allel to the path. In other words, the component of the energy

gradient normal to the path is zero. The magnetization con-

figurations along the path are described by images. Each

image is a replica of the total system. The minimum energy

path over a saddle point is found iteratively. A single itera-

tion step consists of two moves. First, each image is

relaxed14 by applying a few steps of the conjugate gradient

method, and then, the images are moved along the path so

that the distance between the images is constant. We use an

energy weighted distance and truncate the path15 so that

there are more images next to the saddle point. We repeat

the computation of the minimum energy path for different

applied fields and obtain E(H). We compute Hc (T) by the

intersection of the E(H) curve with the line E¼ 25kBT (see

Fig. 1).

Path finding algorithms are well established both

in chemical physics and in micromagnetics.13 As shown in

Fig. 1, the applied algorithms are self-consistent. The switch-

ing field obtained by a classical micromagnetic method is

equal to the critical field at which the computed energy barrier

vanishes. Please note that the computation of the demagneti-

zation curve by energy minimization16 and the computation

of the minimum energy path use the same computational grid

and the same numerical minimization algorithm. Thermal

fluctuations at the atomistic level are taken into account by

using temperature dependent intrinsic magnetic properties

such asMs (T), K(T), and A(T).

The above numerical scheme takes into account thermal

activation over finite energy barriers. Skomski et al.17

reported another mechanism of coercivity reduction by ther-

mal fluctuations. Spin waves interact with small soft mag-

netic structural defects which in turn cause a reduction of

coercivity. The corresponding change in coercivity was

found to be less than one percent. In our analysis, this effect

is not taken into account.

We can express the coercive field as

Hc ¼ aHN � NeffMs � Hf : (1)

Expression (1) is reminiscent of the micromagnetic equation3

often used to analyze the temperature dependence of coerciv-

ity in hard magnets. The coefficient a expresses the reduction

in coercivity due to defects, misorientation, and intergrain

exchange interactions.18 The microstructural parameter Neff

is related to the effect of the local demagnetization field near

sharp edges and corners of the microstructure. The fluctua-

tion field Hf gives the reduction of the coercive field by

thermal fluctuations.19 In this work, we will quantify the dif-

ferent effects that reduce the coercivity according to (1). In

particular, we are interested in the limits of coercivity. By

computing a, Neff, and Hf for a perfect hard magnetic particle

without any defect, we can estimate the maximum possible

coercive field for a given magnetic material and microstruc-

ture. This is especially important considering the current

effort to search for new hard magnetic phases with reduced

rare-earth content.2 In addition, one might take into account

the thermal fluctuation field to know how much magnetic

anisotropy is enough for a permanent magnet.20 The coercive

field which would be measured in the absence of thermal

activation is H0¼ aHN�NeffMs.

The height of the energy barrier as a function of field,

E(H), can be derived from viscosity measurements, series

expansion, or micromagnetic simulations. N�eel21 derived a

series expansion of the form E¼ c(H0 – H)m to describe the

field dependence of the energy barrier, where c is a constant.

Analyzing the micromagnetic free energy, Skomski et al.22

showed that physically reasonable exponents are m¼ 3/2 and

m¼ 2. The numerical algorithm presented above does not

make any prior assumption on how the energy barrier changes

with the field. Instead, we compute E(H) for a finite element

model of a magnetic material numerically. For the analysis of

experimental data, the energy barrier is often expressed by a

linear approximation E(H)¼ vl0Ms (H0 –H).
23 The activation

volume v is not necessarily related to a physical volume.

Solving E(H)¼ 25kBT for H gives the coercive field. Thus,

we can write (1) as24

FIG. 1. Left: Computed demagnetization curve for a Nd2Fe14B cube at

T¼ 300K with an edge length of 40 nm. Right: Energy barrier as a function

of the external field. At the coercive field, the energy barrier crosses the

25kBT line.

072404-2 Fischbacher et al. Appl. Phys. Lett. 111, 072404 (2017)



Hc ¼ aHN � NeffMs �
25kBT

vl0Ms

: (2)

The last term in (2) is proportional to the magnetic viscosity

coefficient25,26 Sv ¼ kBT/(vl0Ms), which can be measured

experimentally. Traditionally, equations of form (2) have

been used to analyze the temperature dependence of the

coercivity.27,28

The viscosity coefficient can be written as S
v
¼ –kBT/

(@E/@H).11 Thus, we can define the activation volume as

v ¼ �
1

l0Ms

@E

@H
: (3)

In this work, we will use (3) to compute the activation vol-

ume, whereby E(H) is computed by finite element micro-

magnetic simulations.

From the comparison of the numerical results with

Equation (1), we can numerically determine the microstruc-

tural parameters a, Neff, and the fluctuation field Hf:

(1) We compute the demagnetizing curve but we switch

off the demagnetizing effects by neglecting the magne-

tostatic self-energy in the total energy. This gives

H�
0 ¼ aHN and we can derive a ¼ H�

0=HN.

(2) We compute the demagnetizing curve taking into

account the magnetostatic energy term. This gives

H0 ¼ aHN � NeffMs ¼ H�
0 � NeffMs and we compute

Neff ¼ ðH�
0 � H0Þ=Ms.

(3) We compute the coercive field including thermal activa-

tion by E(Hc)¼ 25kBT. The fluctuation field, Hf¼H0

–Hc, represents the reduction in coercivity due to ther-

mal activation effects.

We are particularly interested in the limits of coercivity

for a given magnetic material. Therefore, we apply the above

procedure for a perfect, nano-sized hard magnetic cube with-

out any defects. The edge length of the cube is 40 nm.

However, we apply the magnetic field one degree off the easy

axis which is parallel to one edge of the cube. First, we apply

the method for Nd2Fe14B. Then, we will show the limits of

coercivity for Sm1–zZrz(Fe1–yCoy)12–xTix magnets. Table I

gives the intrinsic magnetic properties used for the

simulations. For the simulation, the mesh size was 1.5 nm.

Without soft magnetic defects, the numerically calculated

reversal field computed without magnetostatic interactions

corresponds to an analytic switching field estimated by

Stoner and Wohlfarth,31 H�
0 ¼ f ðw0ÞHN. Here, w0 denotes the

angle between the applied field and the negative anisotropy

direction and f ðw0Þ ¼ f cos2=3ðw0Þ þ sin2=3ðw0Þg
�3=2

.32 The

agreement between the finite element results without the

magnetostatic energy term and the Stoner-Wohlfarth switch-

ing field was already shown previously.12 For Nd2Fe14B at

300K, we obtain l0H
�
0 ¼ 6:09T. The self-demagnetizing

field reduces the coercive field to l0H0¼ 5.29T. Finally,

with thermal fluctuations, the coercive field is l0Hc ¼ 3.94T.

Therefore, we can conclude that in Nd2Fe14B, the maximum

possible coercive field of a cubic grain is only 60% of the

ideal nucleation field HN. The values of a, Neff, l0Hf, and

l0Sv are 0.91, 0.5, 1.35 T, and 0.054T, respectively.

Figure 1 shows the computed demagnetizing curve for

the Nd2Fe14B cube and the energy barrier as a function of

the external field computed with the intrinsic magnetic prop-

erties at T¼ 300K. Static energy minimization for the

decreasing external field gives a switching field of

l0H0¼ 5.29 T. This is exactly the field at which the energy

barrier reaches zero. The reduction of coercivity owing to

thermal fluctuations is 25%. Using (3), we can compute the

activation volume, v¼ (4.38 nm)3, from the slope of the

E(H) curve. The activation volume can be compared with

the domain wall width, d ¼ p
ffiffiffiffiffiffiffiffiffi

A=K
p

, which is 4.2 nm, giving

v¼ 1.12d3.33 Figure 2 gives the minimum energy path and

the magnetization configuration at the saddle point of the

energy landscape. At the saddle point, a small nucleus,

which has an extension a, is formed. Interestingly, the vol-

ume of the reversed nucleus, (1/8)(4pa3/3), roughly corre-

sponds to the activation volume v as given by (3). For the

small perfect cube, the computed coercivity, the viscosity

coefficient, and the activation volume are higher than the

experimental values found in Nd2Fe14B based magnets.

For comparison with experiments, we performed a simi-

lar simulation of a granular Nd2Fe14B ensemble consisting

of 64 polyhedral grains with an average grain size of 60 nm.

We generated the grain structure from a centroid Voronoi

tessellation, using the software tool Neper.34 The grains of

the Nd2Fe14B model system were separated by a weakly fer-

romagnetic grain boundary phase with l0Ms¼ 0.5 T. The

thickness of the grain boundary phase was approximately

3 nm. Grain boundaries in hot deformed Nd2Fe14B magnets

were found to contain up to 55 at. % Fe.35 The average

TABLE I. Intrinsic magnetic properties used for the simulations. The table

gives the anisotropy constant K(MJ/m3), the saturation magnetization l0Ms

(T), and the exchange constant A(pJ/m) for different temperatures T(K). For

Nd2Fe14B, the material properties are taken from Hock29 and Durst and

Kronm€uller.30 For Sm1–zZrz(Fe1–yCoy)12–xTix compounds, the material prop-

erties are taken from Kuno et al.1 The exchange constant is estimated.

Material T l0Ms K A

Nd2Fe14B 300 1.61 4.30 7.7

Nd2Fe14B 450 1.29 2.09 4.89

SmFe11Ti 300 1.26 5.17 10

Sm(Fe0.75Co0.25)11Ti 300 1.42 4.67 10

Sm(Fe0.75Co0.25)11.5Ti0.5 300 1.58 4.57 10

(Sm0.8Zr0.2)(Fe0.75Co0.25)11.5Ti0.5 300 1.63 4.81 10

SmFe11Ti 473 1.02 2.80 6.5

Sm(Fe0.75Co0.25)11Ti 473 1.28 2.54 8.1

Sm(Fe0.75Co0.25)11.5Ti0.5 473 1.45 2.61 8.4

(Sm0.8Zr0.2)(Fe0.75Co0.25)11.5Ti0.5 473 1.50 2.79 8.4

FIG. 2. Left: Minimum energy path for a Nd2Fe14B cube at T¼ 300K with

an edge length of 40 nm. Right: Magnetization configuration of the saddle

point with a reversed nucleus of size a.

072404-3 Fischbacher et al. Appl. Phys. Lett. 111, 072404 (2017)



misorientation angle of the grains was 15 degrees. For this

magnet, the values for the coercive field without magneto-

static interactions l0H
�
0 , the intrinsic coercivity l0H0, and the

coercivity computed with thermal activation taken into

account l0Hc were 3.24T, 2.88T, and 2.64T, respectively.

The resulting values of a, Neff, and l0Hf were 0.48, 0.22, and

0.24T, respectively. The reduction of coercivity owing

to thermal fluctuations is 8%. The computed viscosity coeffi-

cient l0Sv¼ 0.0094T and the computed activation volume

v¼ (7.9 nm)3 are very close to values measured by Villas-

Boas et al.28 for a mechanically alloyed Nd15.5Dy2.5Fe65Co10
Ga0.75B6.25 magnet at room temperature. Figure 3 shows the

saddle point configuration computed from the minimum

energy path. The reversed nucleus is formed in the grain

boundary near the edge of the magnet. This is the location

where the demagnetizing fields are the strongest.

A comparison of the numerical results reveals a striking

increase in the activation volume from the small cube to the

multigrain system which is mainly caused by the presence of

the soft magnetic grain boundary phase. Whereas the small

cube is a perfect hard magnetic particle, a 3 nm thick soft

magnetic phase separates the grains in the granular magnet.

In addition, the demagnetizing field from the neighboring

grains is acting on the soft phase where magnetization rever-

sal will be initiated. The soft layer present between hard

grains in the multigrain structure makes the spatial variation

of the magnetic energy more progressive than in the small

cube. Thus, a larger volume (by a factor of 6 in the present

case) corresponds to the 25kBT energy term provided by

thermal activation. As evidenced by Eqs. (1) and (2), the

fluctuation field is subsequently reduced by the same factor.

By moving from the ideal cube to a realistic structure, the

activation volume increases and the thermal reduction of

coercivity decreases. However, the more realistic structure

of the magnet also reduces the intrinsic coercivity H0.

Finally, we computed the limits of coercivity for SmFe-

based magnets which are considered as candidates for high

performance magnets with a rare earth content smaller

than Nd2Fe14B. For various Sm1–zZrz(Fe1–yCoy)12–xTix com-

pounds, we computed the effects that reduce the ideal nucle-

ation field towards the maximum possible coercive field. The

intrinsic material parameters used for the simulations are

listed in Table I. Again, the sample was a cube with an edge

length of 40 nm. The field was applied at an angle of one

degree. Figure 4 shows the ideal nucleation field, the coer-

cive field without demagnetizing effects, the intrinsic coer-

cive field, and the coercivity computed with thermal

activation at room temperature and at elevated temperature.

At T¼ 473K, the maximum possible expected coercive field

for (Sm0.8Zr0.2)(Fe0.75Co0.25)11.5Ti0.5 is l0Hc ¼ 2.61 T. This

can be compared with the computed coercivity limit for

Nd2Fe14B at T¼ 450K which is l0Hc ¼ 1.88 T. These limits

were computed for a small cubic grain without any soft mag-

netic defects. Rounding the edges of the cube will improve

the coercivity owing to a reduction in the local demagnetiz-

ing field near the edges and corners.

Using numerical micromagnetics, we computed the

effects that reduce the ideal nucleation field of permanent

magnets towards the coercive field. We found that even for a

magnet with perfect structure, a small cube without surface

defects, coercivity is reduced to 60% at room temperature and

50% at 473K of the ideal nucleation field by the small mis-

alignment angle (one degree), demagnetizing field, and ther-

mal activation. In the case of a more realistic grain assembly,

the coercive field is reduced by the presence of intergranular

defects (represented here by a soft magnetic layer). However,

the effect of thermal activation is significantly reduced, as

explained above. Therefore, a competition between two

antagonistic effects is revealed: as one approaches ideal hard

magnetic properties, the drop in coercivity due to defects is

FIG. 3. Saddle point of the energy for thermally assisted reversal of a multi-

grain Nd2Fe14B magnet. The reversed nucleus is formed at the grain bound-

ary near the outer edge of the magnet.

FIG. 4. Reduction of the ideal nucleation field in various Sm1–z

Zrz(Fe1–yCoy)12–xTix compounds at T¼ 300K and T¼ 473K of a small mag-

netic cube without structural defects. The fields indicated by stars are the

ideal nucleation fields. Symbol� denotes the field taking into account mis-

orientation. The switching fields computed by Brown’s equation16 are repre-

sented by the symbolþ. The circles indicate the critical field at which the

energy barrier reaches 25kBT. All fields were computed for a cube with an

edge length of 40 nm.

072404-4 Fischbacher et al. Appl. Phys. Lett. 111, 072404 (2017)



reduced but the drop due to thermal activation is increased. In

real materials, defects play a major role, whereas coercive

field reduction due to thermal activation is of secondary

importance at least up to 300K.
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