
This is a repository copy of Recreating Sheffield's Medieval Castle in situ using Outdoor
Augmented Reality.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/id/eprint/136412/

Version: Accepted Version

Proceedings Paper:
Hadley, Dawn orcid.org/0000-0001-5452-5265, Leach, M, Maddock, S et al. (8 more
authors) (2018) Recreating Sheffield's Medieval Castle in situ using Outdoor Augmented
Reality. In: Virtual Reality and Augmented Reality:15th EuroVR International Conference,
EuroVR 2018, London, UK, October 22–23, 2018, Proceedings. 15th EuroVR International
Conference, 22-23 Oct 2018 Lecture Notes in Computer Science. Springer, GBR, pp. 213-
29.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/id/eprint/136412/
https://eprints.whiterose.ac.uk/

Recreating Sheffield’s Medieval Castle in situ

using Outdoor Augmented Reality

Matthew Leach(�)1[0000−0002−8901−5609], Steve Maddock1[0000−0003−3179−0263],
Dawn Hadley1[0000−0001−5452−5265], Carolyn Butterworth1, John Moreland1,

Gareth Dean1, Ralph Mackinder1, Kacper Pach1, Nick Bax2, Michaela
Mckone2, and Dan Fleetwood2

1 University of Sheffield, UK
{mileach1,s.maddock,d.m.hadley,c.butterworth,

j.moreland,g.dean,r.mackinder,kpach1}@sheffield.ac.uk
2 Human, Sheffield, UK

{nick,michaela,dan}@humanstudio.com

Abstract. Augmented Reality (AR) experiences generally function well
indoors, inside buildings, where, typically, lighting conditions are stable,
the scale of the environment is small and fixed, and markers can be easily
placed. This is not the case for outdoor AR experiences. In this paper, we
present practical solutions for an AR application that virtually restores
Sheffield’s medieval castle to the Castlegate area in Sheffield city centre
where it once stood. A simplified 3D model of the area, together with
sensor fusion, is used to support a user alignment process and subsequent
orientation tracking. Rendering realism is improved by using directional
lighting matching that of the sun, a virtual ground plane and depth
masking based on the same model used in the alignment stage. The
depth masking ensures the castle sits correctly in front of or behind
real buildings, as necessary, thus addressing the occlusion problem. The
Unity game engine is used for development and the resulting app runs
in real-time on recent high-spec Android mobile phones.

Keywords: Augmented Reality · Outdoor Augmented Reality · Mobile
Augmented Reality · Location-based Augmented Reality · Smartphones
· Occlusion culling · Cultural heritage

1 Introduction

Sheffield’s medieval castle is long gone, destroyed during the English Civil War
in the mid-seventeenth century. However, the legacy of the castle endures in
the landscape of the city: the location of the castle, Castlegate, was developed
for industry and then for various markets. It now lies abandoned, after Castle
Market was relocated in 2013, and awaits redevelopment. This paper presents
research on using Augmented Reality (AR) to visualise a 3D model of medieval
Sheffield Castle embedded in the Castlegate site.

Outdoor AR experiences which attempt to embed 3D content into an en-
vironment are more complex than AR experiences inside buildings. Potential

2 M. Leach et al.

solutions are complicated by real world complexities such as dynamic environ-
ments (e.g. people and traffic movement and lighting changes) and solving the
occlusion problem, i.e. showing a 3D model with some parts in front of and some
parts behind different buildings. Specialist hardware, with depth cameras, can
help, as can remote server power, but real-time SLAM (simultaneous localisation
and mapping) is beyond consumer mobile phones for outdoor AR.

This paper presents a set of practical solutions to the challenges of producing
an outdoor AR experience in a city centre site. The scale of the problem is
constrained by using prior knowledge of the site, a user-controlled alignment
process and the fusion of a range of sensor data. GPS is used to locate the
user at one of a few set viewing points, which helps to optimise subsequent
rendering speed for the 3D castle model. A virtual model of the 3D area is then
overlaid on the mobile phone’s video feed and the user aligns the model with
the real world, giving a solid fix on position and orientation, before the virtual
castle is displayed. The 3D model of the area is also used to address the occlusion
problem. This knowledge-based depth masking process means that the castle sits
in front of and behind different buildings, accordingly, based on user position.
The mobile phone’s sensors (GPS, gyroscope and accelerometers) are used to
deal with continuous viewing changes; the compass sensor is also used as part
of initial orientation setting. In addition, the sun’s approximate position is used
to change the lighting for the virtual castle, thus better integrating it into the
real world environment. Whilst previous solutions have dealt with the occlusion
problem for AR, our research work uses a virtual object (the castle) that is much
bigger than its surrounding buildings, and, at the same time, deals with partial
occlusion by those buildings in real-time on a consumer smartphone.

The remainder of this paper is organised as follows. Section 2 will consider
related work, looking at the range of issues that affect outdoor AR experiences.
Section 3 will present the system, covering the data required (models of the castle
and the relevant area of the city and photographs of landmark buildings), the
user processes (alignment and viewing) and rendering, including the approach for
solving the occlusion problem. Section 4 will present the results and discussion.
Finally, Section 5 presents conclusions.

2 Related Work

AR works best indoors, with various toolkits available to support the creation of
indoor AR experiences: ARToolKit 3, ARKit and ARKit 2 4 [2], ARCore5, Vufo-
ria6, and Wikitude7. Both marker-based and markerless tracking are supported,
with ground plane detection being a key part of markerless solutions [15]. How-
ever, markerless tracking is difficult to achieve on outside scales, as the ground

3 https://www.hitl.washington.edu/artoolkit/
4 https://developer.apple.com/arkit/
5 https://developers.google.com/ar/
6 https://www.vuforia.com/
7 https://www.wikitude.com/

AR for an in situ Medieval Castle 3

is often uneven and may have obstacles in the way which frustrate the detection
process. Nonetheless, there has been successful outdoor AR work. Verykokou et
al [16] use a tablet PC in their computer-vision based work, but they only detect
a specific almost-planar object in the scene before augmentation. Seo et al [14]
use an image registration technique but further work is needed for the method
to be applicable to smartphones. The ideal solution for outdoor tracking is a
process known as simultaneous localisation and mapping (SLAM) [4]. This fam-
ily of methods uses computer vision to build a virtual map of the surroundings,
in which features are detected and tracked to position and orientate the user.
The approach is commonly used in robotics, but only works well with special-
ist hardware such as depth sensors and also requires complex computer vision
processing, which would be too slow on a consumer grade mobile device.

Practical AR applications can be produced on consumer mobile devices, al-
beit with compromises. Perhaps the best known example of this is Pokémon

GO8, which became wildly popular across the UK and in many other countries
after its release in 2016 [13]. This takes advantage of a multiscale approach,
where the map view only uses GPS to roughly locate the user and then marker-
less detection is used to place a virtual Pokémon on the ground level in front of
the user. As the locations are controlled and the Pokémon only appear near to
the user, it is (reasonably) certain that the ground plane will be easy to detect
and that there isn’t much integration required to make the Pokémon appear as
part of the scene.

Cirulis and Brigmanis [3] also make use of a phone’s GPS. They compute
the relative position of virtual buildings and display them based on the GPS
location, however, with GPS results being relatively inaccurate this could easily
cause alignment issues and jittering. Huang et al [8] use a virtual model of an area
with dedicated hardware to perform outdoor registration, but they compromise
on precise tracking, instead focusing on information display. Vlahakis et al [17]
also use GPS, and enhance this with a Differential GPS beacon located at a
known position to improve accuracy. CityViewAR [11] uses GPS for geolocation
of city buildings. This works outdoors but is constrained by not dealing with
anything in front of the virtual building.

Marker based techniques have been used in outdoor applications [12, 10].
For example, Kim et al [10] use the Vuforia AR plugin9 for Unity10 to provide
information about three Korean cultural heritage sites. All of the sites have good
features for marker based detection, although they are focusing on information
display rather than augmenting the sites themselves. As such they only need to
detect whether one of the sites is visible, rather than obtain any solid tracking
information.

An issue common to many AR experiences is producing correct occlusion
of virtual objects. Without depth information, even if a virtual object should
appear behind a real world object, it will still appear in front of it. Techniques

8 https://www.pokemongo.com/
9 https://unity3d.com/partners/vuforia

10 https://unity3d.com/

4 M. Leach et al.

for obtaining depth information either rely on stereo/depth cameras, or using
prior knowledge of the scene combined with location of the user in a virtual
environment. At present, depth cameras have insubstantial range for outdoor use,
and produce low resolution data. This requires further processing to construct
an environment mesh from point cloud data. This can be done using traditional
mesh reconstruction algorithms, although more recently neural network based
approaches are being experimented with and producing promising results [7]. In
outdoor applications, the prior knowledge approach is more commonly used [5,
9]. We also use prior information, which is a 3D model of the environment that
the virtual object is embedded into. The virtual object is a castle displayed at
real scale. Occlusion with surrounding, smaller, real buildings is also addressed.

3 Data and Methods

Figure 1 shows the various components of our AR application and the data
required for each stage. Stage 1 provides instructions to the user, including a map
of the area and recommended viewing points. Stage 2 includes the alignment
process where, after an initial coarse check on viewing position and direction
using the GPS and compass sensors on the smartphone, the user aligns a virtual
3D model of the area containing various ‘landmark buildings’ with the real world
view. Stage 3 is the viewing stage, where the castle is seen in situ using AR,
correctly aligned and positioned relative to the user. Thereafter, tracking of
orientation is done using the smartphone’s gyroscope and accelerometer sensors.
The app is developed using the Unity game engine and built for Android. The
phone used for development and testing was a Motorola Moto Z (Snapdragon 820
processor, 1.8 GHz Quad-core CPU, Adreno 530 integrated GPU). The following
subsections will describe the components of the system.

3.1 Data

The data required for the application consists of a model of the Castlegate area,
photographs of the front of specific landmark buildings, and a model of the castle.
The 3D model of the Castlegate area was produced by MArch students at The
University of Sheffield’s School of Architecture and is illustrated in Figure 2 using
SketchUp11. The model is made up of approx. 55,000 triangles. This relatively
small memory footprint lessens the burden on the smartphone’s processor and is
sufficient to support the user alignment process and the depth masking aspects
of the AR application. The initial model is untextured – it is the geometry that is
important for the depth masking stage. However, to support the user alignment
process (see later), photographs of the fronts of ‘landmark buildings’ (buildings
that are easily distinguishable within the Castlegate area) are added to relevant
parts of the model as texture maps, as illustrated in Figures 3 and 4.

11 https://www.sketchup.com/

AR for an in situ Medieval Castle 5

Program Flow

(User Processes)

Data/Hardware Requirements

App Start

(Press Continue)
– User Interface Icons

Alignment Screen

(User lines up virtual landmark
buildings with real world scene)
(Press Aligned)

– GPS location
– Landmark building photos
– Known locations for landmark buildings
– Gyroscope data
– Accelerometer data

Landmark buildings hidden, castle
displayed

(UI options)

– Castle model
– Gyroscope data
– Accelerometer data

Fig. 1. An overview of the components of the system.

The model of Sheffield Castle (Figure 5) was created by Human12, a Sheffield-
based creative agency. It is based on archaeological and historical evidence for
what the castle was like, drawn from research on the unpublished archives from
mid-twentieth-century excavations, with inspiration also drawn from surviving
castles of similar type (Richmond, Helmsley and Barnard), for the architectural
details. The castle is modelled as a set of distinct pieces as shown in Figure 6 so
as to support only rendering those that are visible during rendering. Each of the
pieces is hidden or shown depending on the viewing location. The complete model

12 http://humanstudio.com/

Fig. 2. The model of the Castlegate area
viewed in Sketchup. Castlegate, which is
where the castle was situated, is oulined
in red.

Fig. 3. Texture map of a landmark build-
ing in the scene.

6 M. Leach et al.

Fig. 4. The various landmark buildings and their locations. Map data c©2018 Google.

consists of 3100 triangles and uses 69 textures, 50 with resolution 2048x2048, 16
with resolution 1024x1024 and 3 with resolution 512x512. Figure 7 shows how
the castle sits in the Castlegate model from Figure 2. A key part of this stage is
to make sure the ground level of the two models is aligned – this is important for
later stages. The ground heights of each of the area and castle models follows the
current land height for the Castlegate area, although the castle model includes
a moat.

3.2 Alignment Processes

This section focusses on stage 2 in Figure 1. An initial viewpoint is established
using GPS, followed by a user alignment process between the model and the real
world view. Orientation tracking is also required.

GPS for standard smartphones is only accurate to approx. 5-8.5m in good
conditions [19]. In an urban environment, particularly when the scene is being
viewed from pavement level, tall buildings may be close to the user and lead
to even worse performance. We solve this issue by defining specific viewpoints
where the user should stand. The active viewpoint is chosen by selecting the
viewpoint with the minimum Euclidian distance to the reported GPS location.

AR for an in situ Medieval Castle 7

Fig. 5. The textured, full resolution
model of the castle. The model includes a
surrounding landscape and moat (in grey
in this image).

Fig. 6. An exploded view of the separate
parts of the castle.

Fig. 7. The model of Sheffield Castle po-
sitioned at its historic location in the
Castlegate model.

This selection process takes place when the app is started, and every 10 seconds
thereafter – a continuous update would use unnecessary resources, both com-
putationally and in terms of battery power on the user’s device. A time of 10
seconds is considerably shorter than it would take to walk between any of the
defined viewpoints, ensuring that when the user reaches such a point, the app
will have updated their location.

Having established a viewpoint, the next step is a user alignment process.
This involves detecting view orientation and the direction the user is facing. In
theory, the compass could be used to detect the direction the user is facing.
However, mobile device compasses are not particularly accurate, and are also
affected by surrounding magnetic fields. During testing, the reported angle was
often found to be up to twenty or thirty degrees away from the true angle. Thus
an accurate bearing could not be found. However, it gave an initial guess for
the orientation, which roughly aligns the viewpoint direction with the Castle-
gate model so that relevant landmark buildings are in view. Using this initial
information, the landmark buildings can then be used to refine the alignment.

8 M. Leach et al.

Figures 3 illustrates one of the landmark buildings, as described in Section
3.1. From the user’s position, the landmark buildings are displayed in their cor-
rect position relative to the virtual Castlegate model – the white Castlegate
area model is not visible, only the landmark buildings. The user can swipe on
the screen to rotate the scene until the relevant virtual landmark buildings line
up with the real ones, based on the current viewpoint position. The Castlegate
model is now aligned with the real world from the user’s viewpoint. However,
other processes are happening in parallel – user orientation and perspective cor-
rection – which must be considered before the alignment process is complete.

The user’s orientation is tracked so that the correct view of the castle model
can be presented in relation to the real world view. The smartphone’s gyroscope
and accelerometer sensors are used for this. The gyroscope sensors give a very
accurate reading for the angular velocity of the device around each of the main
axes. By integrating this we can determine the total angle the device has moved
through. An issue, however, is that error accumulation in the integration causes
drift. Initial experiments used a Kalman filter [18] to mitigate this. This worked
well for correcting pitch measurements, but absolute heading values from the
compass were incorrect and, since the Kalman filter used these to update its
state, the results were poor, converging to the wrong angle and producing jittery
behaviour. Instead, a complementary filter [6] was used with a small timestep in
the Euler integrator. Since only minor drift corrections were required, this worked
well. In addition, the complementary filter has a lower performance impact than
a Kalman filter requiring only a simple multiplication and addition, rather than
an iterative matrix solve or approximation. This was two orders of magnitude
faster in testing.

Camera perspective must also be considered. From the defined viewpoints
process, the user’s location is known. The roll, pitch and yaw of the smartphone
are tracked by the user orientation process. The roll and pitch can be determined
purely from the accelerometer and gyroscope data, whilst the user has completed
the alignment process to ensure the correct yaw. These transformation values
are applied to the Unity camera. With the real and virtual cameras’ positions
matching, the fields of view must be matched to ensure the same view is seen by
both cameras. To match the field of view, the device camera’s field of view and
aspect ratio are queried. This combined with the aspect ratio of the screen is
sufficient information to produce the correct perspective matrix. As the screen
and camera aspect ratios do not match, the actual camera image is cropped
which affects the field of view. For a screen of wider aspect ratio than camera,
the updated field of view can be computed according to the following formula:

θc
(Wc/Ws)

(Hc/Hs)
(1)

where θc is the reported vertical camera field of view, Wc is the width of the
image returned from the camera, Ws is the width of the screen, Hc is the height
of the image returned from the camera and Hs is the height of the screen. For
our test smartphone, the screen is 16:9, whilst the camera is 4:3, or 16:12. As

AR for an in situ Medieval Castle 9

such the vertical component is scaled by three quarters to match the 16:9 screen
aspect. This also reduces the effective vertical field of view by 3/4. The device
camera reports a 50 degree vertical field of view, so three quarters of this, 37.5,
is used for the vertical field of view of the Unity camera.

Figure 8 shows the alignment process in progress. For the building on the
right in Figure 8a, both the virtual landmark building and its real counterpart
are visible. The user then swipes to rotate the virtual scene until it matches
the real scene as seen in Figure 8b. The user is free to look around during
this process to also compare other buildings for alignment. When the user is
happy with the alignment, a tap on the smartphone screen reveals the virtual
castle model correctly augmented into the real world scene. One final part of
the alignment process worth noting is the slowest part of the whole process was
using Unity ’s WebCamTexture class to handle the video feed. Performance was
improved significantly by using code to natively access the camera.

(a) pre-alignment (b) post-alignment

Fig. 8. User alignment with the frontages of the Market Tavern and the building to its
right.

3.3 Rendering

After user alignment, the virtual castle model is displayed. This involves three
aspects. First, to give a real sense that the castle is augmenting the real world,
real buildings that are behind the castle should not be seen, and real buildings in
front of the castle should obscure the virtual model. Second, the ground planes
of the virtual model and the real world should be aligned. Third, the lighting of
the virtual model should consider the position of the sun in the real world, so as
to better match the lighting of the surrounding real world buildings.

Correctly embedding the virtual 3D model into the real world required a
process to detect what should be in front of, rather than behind, the virtual
object. Standard smartphone cameras do not report any depth information.
Our solution for the occlusion problem makes use of the user’s location and
orientation and knowing what the user’s view should be in the real world, based
on the earlier user alignment process between the virtual Castlegate model’s

10 M. Leach et al.

landmark buildings and the real world. Since we have the full virtual Castlegate
model aligned with the real world, and we know the castle’s position within the
Castlegate model, we can use the Castlegate model to create a depth mask to
stop portions of the virtual castle from being drawn, making it appear hidden
by buildings in the foreground. We call this location knowledge-based depth
masking. It is similar in concept to the approach used in [5, 9], but is extended
to use 3D models. They are only interested in occluding small, ground height
markers, however, for an object the size of a castle, only portions of it may be
occluded, and it is larger than the occluding objects, so their ray based approach
is not sufficient. Our method allows occlusion of only parts of objects.

Fig. 9. The Castlegate model buildings
outlined in orange will act as a mask for
the castle.

Fig. 10. The castle masked by the Castle-
gate model buildings.

A multi-pass rendering approach is used. Initially, the depth and colour
buffers are cleared. In the first pass, the video feed is rendered full screen. This
ensures that a full background is available. In the second pass, occluding build-
ings are rendered using a shader which writes only to the depth buffer. This
masks out regions where the castle should not be drawn because buildings are
present in front of it, as illustrated in Figure 9, and the actual buildings will
be displayed in the correct location in the video feed assuming the alignment
process was carried out correctly. In the final pass, the castle is rendered, with
any masked portions failing the depth test, essentially cutting a hole in the castle
model, as illustrated in Figure 10. Thus the castle will appear to be behind real
foreground buildings.

Making AR objects appear as though they are correctly integrated with the
ground is challenging. For small objects, a simple shadow surrounding it may be
sufficient, but for a large object this is very difficult as correctly computing how
the shadow should appear on the video feed is non-trivial. In addition, without
proper depth information, even portions of the castle model that might be under
the ground are rendered on top. To solve this, we use a virtual ground plane.
The ground is modelled to match the layout of the real land. This approach
means inclusion of the moat is trivial.

To further integrate the castle into the real world, the sun’s position must be
considered so that the lighting of the castle appears to better match that of the

AR for an in situ Medieval Castle 11

surrounding buildings. The sun’s position can be computed from the date, time
of day and longitude and latitude of the area. This calculation involves using
astronomical formulae, based on those found in the Astronomical Almanac13.
Initially, the date is converted to Julian days and centuries. From these, side-
real time is computed. Solar coordinates are determined from the results of the
previous calculations, and these are used to calculate the right ascension and dec-
lination. Finally, these are transformed to Alt/Az coordinates. A more detailed
explanation can be found in the Appendix.

The final aspect of rendering to consider is performance, since a mobile device
has limited processing power. The castle is composed of individual pieces (Figure
6) to help increase performance. Only those parts that are visible from the
defined viewpoints in the application need to be rendered; those pieces that are
entirely blocked by others do not need to be rendered. In addition, mipmapping
and level of detail techniques are used to further reduce the rendering time.

4 Results and Discussion

Figures 11 and 12 show the view when the user is aligning the Old Town Hall
landmark building texture with its real world counterpart. Once this is aligned,
the virtual castle model is then displayed, as shown in Figure 13. Note how the
real old town hall building is seen beyond the virtual castle. The user can then
rotate her mobile device to show other parts of the scene. Figure 14 shows the
scene once the viewpoint is rotated to the right along the castle wall to show
the main gate. The real Market Tavern (also one of the landmark buildings in
the Castlegate model) is shown in front of the castle demonstrating the effect of
the depth masking process. Another example of the alignment process is given in
Figures 15 and 16. Here, the Metropolitan hotel is used as the landmark building
in the alignment process, and the user must then rotate her camera to see the
castle (Figure 17).

Over time, with continuous changes in orientation, some calculation drift can
occur, since this is based on integration of gyroscope data. The virtual model
and the real world can become slightly misaligned. In general, a misalignment of
a few degrees is not an issue at this scale as the castle sits well within the area of
land – a small difference in location won’t be noticed. The drift does, however,
create some problems in conjunction with the depth masking. The cutout in the
castle model for a foreground building requires a good alignment, or the wrong
portion of the video feed can be displayed in the hole (Figure 18). When this
occurs, user alignment must be redone.

Figure 19 shows an enlarged portion of Figure 12. As can be seen, representing
landmark buildings as textured planes works well for the flat frontage of the
building. However, the tower of the old town hall is set back from the building
face and, as such, appears in the wrong place for alignment, since it has been
projected forwards into the textured plane. An alternative solution could use

13 http://astro.ukho.gov.uk/nao/publicat/asa.html

12 M. Leach et al.

Fig. 11. The view of the Old Town Hall
during the alignment process.

Fig. 12. The view of the Old Town Hall
after alignment. The row of shops on the
left is also a landmark texture.

Fig. 13. The virtual castle viewed with
the real Old Town Hall in the background.

Fig. 14. The depth masking technique
cuts a hole in the castle, leaving the image
of the real Market Tavern showing from
the video feed.

Fig. 15. The Metropolitan
hotel before alignment.

Fig. 16. The Metropolitan
hotel after alignment.

Fig. 17. After user align-
ment with the Metropolitan
hotel, the camera view is ro-
tated to show the castle.

AR for an in situ Medieval Castle 13

multiple textured planes, but it is unclear if this extra complication would be
of benefit, since the current alignment process, based on the building frontage,
seems to work well.

Fig. 18. Over time, with continuous
changes in orientation, calculation drift
can occur, producing a slight misalign-
ment between the virtual model and the
real world, which affects the depth mask-
ing process.

Fig. 19. An enlarged view of the Old
Town Hall in Figure 12

5 Conclusions

A practical, working, outdoor AR system that runs on android phones with
appropriate sensors has been presented. A user alignment process, together with
the fusion of a range of sensors, produces a system that is stable and easy to
use. The 3D model of the area is used both in the user alignment process and
also as part of a depth masking process so that the 3D virtual castle is properly
placed in the real world view. There are some drift issues over time, although
these can be rectified by user re-alignment. Further work could consider how to
retain the alignment for longer, perhaps using a lightweight version of SLAM,
as well as how to remove the initial user alignment step.

Initial experiments have been done to add links to social media tools within
the application, with the aim of allowing the general public to share their
thoughts on the restored castle model (thus producing a reconstruction AR ap-
plication, using Bekele’s categorisation [1]). Also, since the Castlegate area will
undergo redevelopment in the future, our intention is to be able to display the
future 3D plans for the area as an alternative user option. We could also offer an
option to display a model of the remaining underground chambers on the site
which preserve some of the archaeological heritage. Both of these would be rel-
atively straightforward since the models would be geolocated in the Castlegate
model in the same way that the castle model was. This would give local people
a chance to use an AR application to be involved in redevelopment of the site,
and make their views known on both the future building plans and the site’s
cultural heritage.

14 M. Leach et al.

Appendix

All trigonmetric functions listed operate in radians. Angles should be corrected
to a range between 0 and 2π throughout unless otherwise noted.

Compute the number of Julian days and Julian centuries since J2000:

dj = 367y −

⌊

7

4
(y + ⌊(m+ 9)/12)⌋

⌋

+

⌊

275m

9

⌋

+ d− 730531.5

Cj =
dj

36525

where dj is the Julian day, y is the year, m is the month in numerical form, d is
the day in numerical form and Cj is the Julian century.

Compute the sidereal time:

Sh = 6.6974 + 2400.0513Cj

Sut = Sh +
366.2422

365.2422
h

S = 15Sut + Lo

where Sh is the sidereal time in hours at midnight, Sut is the sidereal time
in hours including the current time, S is the local sidereal time and Lo is the
longitude.

Update to fractional (including time of day) Julian days and centuries:

dj = dj +
h

24
cj =

dj
36525

Compute solar coordinates:

GMeanLong =
2π

360
(280.466 + 36000.77Cj)

GMeanAnom =
2π

360
(357.529 + 35999.05Cj))

Ecen =
2π

360
((1.915− 0.005Cj) sin(GMeanAnom) + 0.02 sin(2 ∗GMeanAnom))

Leliptic = GMeanLong + Ecen

O =
2π

360
(23.439− 0.013Cj)

where GMeanLong is the mean solar longitude, GMeanAnom is the mean solar
anomaly, E+ cen is the equation of center, Leliptic is the eliptical longitude and
O is the obliquity.

Compute right ascension and declination:

R = atan2(cos(O) sin(Leliptic), cos(Leliptic))

D = arcsin(sin(R) sin(O))

AR for an in situ Medieval Castle 15

where R is the right ascension and D is the declination.
Compute horizontal coordinates. The hour angle, H, should be brought into

the range −π to π.

H =
2π

360
S −R

Alt. = arcsin(sin(
2π

360
La) sin(D) + cos(

2π

360
La) cos(D) cos(H))

where H is the hour angle and Alt. is the altitude.
Compute the azimuth angle:

Az. = arctan

(

− sin(H)

tan(D) cos(2π
360La)− sin(2π

360La) cos(H)

)

where Az. is the azimuth angle.
Finally, adjust the azimuth angle to the correct quadrant.

Acknowledgements

This research was funded by a grant from the AHRC/EPSRC Immersive Experi-
ence scheme (grant no. AH/R009392/1). Research on the archaeological archives
relating to Sheffield Castle was funded by the Pamela Staunton Bequest (Uni-
versity of Sheffield).

References

1. Bekele, M.K., Pierdicca, R., Frontoni, E., Malinverni, E.S., Gain, J.: A sur-
vey of augmented, virtual, and mixed reality for cultural heritage. J. Com-
put. Cult. Herit. 11(2), 7:1–7:36 (Mar 2018). https://doi.org/10.1145/3145534,
http://doi.acm.org/10.1145/3145534

2. Buerli, M., Misslinger, S.: Introducing ARKit-augmented reality for iOS. In: Apple
Worldwide Developers Conference (WWDC17). pp. 1–187 (2017)

3. Cirulis, A., Brigmanis, K.B.: 3D outdoor augmented reality for architec-
ture and urban planning. Procedia Computer Science 25, 71–79 (2013).
https://doi.org/10.1016/j.procs.2013.11.009

4. Durrant-Whyte, H., Bailey, T.: Simultaneous localization and mapping:
part I. IEEE robotics & automation magazine 13(2), 99–110 (2006).
https://doi.org/10.1109/MRA.2006.1638022

5. Galatis, P., Gavalas, D., Kasapakis, V., Pantziou, G., Zaroliagis, C.: Mobile aug-
mented reality guides in cultural heritage. In: Proceedings of the 8th EAI Inter-
national Conference on Mobile Computing, Applications and Services. pp. 11–19
(2016). https://doi.org/10.4108/eai.30-11-2016.2266954

6. Higgins, W.T.: A comparison of complementary and Kalman filtering. IEEE
Transactions on Aerospace and Electronic Systems (3), 321–325 (1975).
https://doi.org/10.1109/TAES.1975.308081

16 M. Leach et al.

7. Höft, N., Schulz, H., Behnke, S.: Fast semantic segmentation of RGB-D scenes
with GPU-accelerated deep neural networks. In: Joint German/Austrian Confer-
ence on Artificial Intelligence (Künstliche Intelligenz). pp. 80–85. Springer (2014).
https://doi.org/10.1007/978-3-319-11206-0 9

8. Huang, W., Sun, M., Li, S.: A 3D GIS-based interactive registration mechanism for
outdoor augmented reality system. Expert Systems with Applications 55, 48–58
(2016). https://doi.org/10.1016/j.eswa.2016.01.037

9. Kasapakis, V., Gavalas, D.: Occlusion handling in outdoors augmented re-
ality games. Multimedia Tools and Applications 76(7), 9829–9854 (2017).
https://doi.org/10.1007/s11042-016-3581-1

10. Kim, H., Matuszka, T., Kim, J.I., Kim, J., Woo, W.: An ontology-based augmented
reality application exploring contextual data of cultural heritage sites. In: 2016 12th
International Conference on Signal-Image Technology & Internet-Based Systems
(SITIS). pp. 468–475. IEEE (2016). https://doi.org/10.1109/SITIS.2016.79

11. Lee, G.A., Dünser, A., Kim, S., Billinghurst, M.: CityViewAR: A mobile out-
door AR application for city visualization. In: 2012 IEEE International Sympo-
sium on Mixed and Augmented Reality (ISMAR-AMH). pp. 57–64. IEEE (2012).
https://doi.org/10.1109/ISMAR-AMH.2012.6483989

12. Murru, G., Fratarcangeli, M., Empler, T.: Practical augmented visualization on
handheld devices for cultural heritage. In: Proc. 21st International Conference on
Computer Graphics, Visualization and Computer Vision. pp. 97–103 (2013)

13. Paavilainen, J., Korhonen, H., Alha, K., Stenros, J., Koskinen, E., Mayra,
F.: The Pokémon GO experience: A location-based augmented reality mo-
bile game goes mainstream. In: Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems. pp. 2493–2498. ACM (2017).
https://doi.org/10.1145/3025453.3025871

14. Seo, B.K., Kim, K., Park, J., Park, J.I.: A tracking framework for augmented
reality tours on cultural heritage sites. In: Proceedings of the 9th ACM SIGGRAPH
Conference on Virtual-Reality Continuum and its Applications in Industry. pp.
169–174. ACM (2010). https://doi.org/10.1145/1900179.1900215

15. Simon, G., Fitzgibbon, A.W., Zisserman, A.: Markerless tracking using pla-
nar structures in the scene. In: Proc. IEEE and ACM International Sympo-
sium on Augmented Reality, 2000 (ISAR 2000). pp. 120–128. IEEE (2000).
https://doi.org/10.1109/ISAR.2000.880935

16. Verykokou, S., Ioannidis, C., Kontogianni, G.: 3D visualization via augmented
reality: The case of the Middle Stoa in the Ancient Agora of Athens. In: Ioan-
nides, M., Magnenat-Thalmann, N., Fink, E., Žarnić, R., Yen, A.Y., Quak, E.
(eds.) Digital Heritage. Progress in Cultural Heritage: Documentation, Preserva-
tion, and Protection. pp. 279–289. Springer International Publishing, Cham (2014).
https://doi.org/10.1007/978-3-319-13695-0 27

17. Vlahakis, V., Ioannidis, M., Karigiannis, J., Tsotros, M., Gounaris, M., Stricker,
D., Gleue, T., Daehne, P., Almeida, L.: Archeoguide: an augmented reality guide
for archaeological sites. IEEE Computer Graphics and Applications 22(5), 52–60
(2002). https://doi.org/10.1109/MCG.2002.1028726

18. Welch, G., Bishop, G.: An introduction to the Kalman filter: SIGGRAPH 2001
course 8. In: Computer Graphics. Annual Conference on Computer Graph-
ics & Interactive Techniques, Los Angeles, CA, USA (August 12-17) (2001),
https://sreal.ucf.edu/wp-content/uploads/2017/02/Welch2001.pdf

19. Zandbergen, P.A., Barbeau, S.J.: Positional accuracy of assisted GPS data from
high-sensitivity GPS-enabled mobile phones. The Journal of Navigation 64(3),
381–399 (2011). https://doi.org/10.1017/S0373463311000051

