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The target and double spin asymmetries of the exclusive pseudoscalar channel �e�p → epπ0 were 
measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron 
beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance 
Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 
four-dimensional bins of Q 2, xB , −t and φ. Large values of asymmetry moments clearly indicate a 
substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. 
The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides 
the first insight on the chiral-odd GPDs H̃T and ET , and complement previous measurements of 
unpolarized structure functions sensitive to the GPDs HT and ĒT . These data provide a crucial input for 
parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical 
calculations based on the handbag formalism.

 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

The introduction of generalized parton distributions (GPDs) 
[1–3] defines a new important and far-ranging theoretical frame-

work that allows for the description of the angular momentum 
components of quarks and gluons in the proton in terms of density 
distributions in both longitudinal momentum fraction and trans-
verse spatial degrees of freedom. They provide information on the 
orbital motion of partons, rendering a three dimensional view of 
hadron structure [4,5]. Therefore, GPDs are the universal functions 
that offer an unprecedented opportunity to investigate the nu-
cleon internal structure and provide insight into the hadron at the 
quark–gluon level.

At leading twist there are eight GPDs [5] for each quark flavor 
q: four correspond to parton helicity conserving (chiral-even) pro-
cesses, denoted as Hq , Eq , H̃q , Ẽq , and the remaining four, Hq

T , 
E
q
T , H̃

q
T , Ẽ

q
T , correspond to parton helicity-flip (chiral-odd) pro-

cesses [6,7]. The conventional ĒT = 2H̃T + ET will be used as 
well hereafter. These GPDs can be accessed from the hard exclu-
sive processes such as deeply virtual exclusive photon and meson 
electroproduction. Deeply virtual pseudoscalar meson electropro-
duction is sensitive to the chiral-odd GPDs which are less-known 
than their chiral-even counterparts, because they are not accessible 
in deeply virtual Compton scattering and, generally, their contribu-
tions are suppressed [8,9]. However, their knowledge opens a new 
avenue to study the partonic structure of the nucleon. In partic-
ular, HT becomes the quark transversity structure function, h1 , in 
the forward limit, and it also integrates into the still unknown ten-
sor charge; the ĒT is related to the Boer–Mulders function with 

its first moment interpreted as the proton’s transverse anomalous 
magnetic moment [10,8].

The unpolarized cross section measurements [11,12] presented 
the first evidence that deeply virtual π0 electroproduction can be 
interpreted in terms of the chiral-odd GPDs. The inclusion of twist-

3 components calculated using the chiral-odd GPD parametriza-

tions leads to sizable transverse virtual photon amplitudes and 
brings theoretical calculations into agreement with experimental 
data. However, while the measurements of the unpolarized struc-
ture functions and beam spin asymmetries for deeply exclusive π0

production have been obtained by the CLAS [11–13] and Hall A 
Collaborations [14,15], there are no experimental data available on 
a longitudinally polarized target. This work presents the first ex-
traction of target and double spin asymmetries for deeply virtual 
π0 production.

The experimental observables in π0 electroproduction are con-
nected to the combinations of the different convolutions, defined 
as [9]

〈F 〉 =
∫

dxH(x, ξ, Q 2)F (x, ξ, t) (1)

where F represents generic GPD, H is a hard subprocess ampli-

tude, t is a momentum transfer to the nucleon and ξ is a longitu-
dinal momentum fraction transfer. The unpolarized cross sections 
contain the combinations of different generalized form factors and, 
similarly to DVCS, require the polarized structure functions to 
perform the separation of individual convolutions. The interpreta-
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tion of single spin asymmetries, however, is more complicated in 
comparison with unpolarized cross-sections. Firstly, the measured 
asymmetries are the ratios of polarized structure functions and the 
unpolarized cross section, so the knowledge of unpolarized struc-
ture functions is necessary to isolate the polarized contribution. 
Secondly, the polarized structure functions are calculated as prod-
ucts of chiral-even and chiral-odd convolutions, complicating the 
separation of the different contributions. On the other hand, the 
double spin asymmetry is well suited for the extraction of chiral-
odd GPDs, namely HT , allowing clean separation of ĒT and HT in 
conjunction with unpolarized target measurements.

Spin asymmetries are defined as a ratio of the difference over 
the sum of cross sections for opposite helicity configurations and 
they can be expressed as:

AU L = A
sin φ
UL sinφ + A

sin 2φ
UL sin2φ

1+ A
cos φ
UU cosφ + A

cos 2φ
UU cos2φ

, (2)

ALL = Aconst
LL + A

cos φ
LL cosφ

1+ A
cos φ
UU cosφ + A

cos 2φ
UU cos2φ

, (3)

where the first index U (L) stands for unpolarized (longitudinally 
polarized) beam, the second index U (L) for the target polarization 
and φ is azimuthal angle between the lepton and hadron scat-
tering planes. Acos φ

UU and Acos 2φ
UU are connected to the unpolarized 

structure functions, common for the beam, target and double spin 
asymmetries, and Asin φ

U L , Asin 2φ
U L , Aconst

LL , Acos φ
LL are connected to the 

polarized structure functions.
We present the first measurements of single target and double 

spin asymmetries for deeply virtual π0 electroproduction off the 
longitudinally polarized protons over a large phase space. The ex-
periment was carried out in 2009 in Hall B at Jefferson Lab, using 
CLAS [16], a longitudinally polarized electron beam with average 
energy of 5.9 GeV and a longitudinally polarized solid ammonia 
target [17]. The target system, based on a 5 T superconducting 
magnet and a 1 K 4He refrigerating bath, was constructed to po-
larize protons in paramagnetically doped 14NH3 along the beam 
direction via the dynamic nuclear polarization method. Simultane-

ously the target’s magnetic field serves as an effective shield from 
Møller electrons by focusing them towards the beam line, while 
allowing detection of photons from 4◦ and maintaining the mini-

mum permitted angle for electrons and protons at 21◦ . The beam 
polarization was frequently monitored in Møller runs, via the mea-

surement of the asymmetry of elastic electron–electron scattering. 
The target polarization was continuously monitored by a Nuclear 
Magnetic Resonance (NMR) system. In addition, data were col-
lected using a 12C target for the purpose of unpolarized nuclear 
background studies.

The large acceptance of CLAS allowed simultaneous detection 
of all four final-state particles of the ep → epπ0 and π0 → γ γ re-

actions. The scattered electron was identified by a reconstructed 
track in the drift chambers and matching it in time with signals 
in the same CLAS sector of the electromagnetic calorimeter (EC) 
and the Čerenkov counter. The cuts on EC energy deposition effec-
tively suppressed the background from negative pions. The proton 
was identified as a positively charged particle track in the mag-

netic field of the superconducting toroidal magnet, passing through 
the drift chambers with the correct time-of-flight information from 
the scintillation counters. The neutral pion decay photons were de-
tected in the EC and the inner calorimeter (IC), which was installed 
downstream of the target and dedicated to the detection of the 
photons emitted in the forward direction. The photons were de-
tected in the angular range between 4◦ to 17◦ in the IC and for 
angles greater than 21◦ in the EC.

Fig. 1. (Color online.) Distributions of missing mass squared of the (ep) system for 
the reaction ep → epπ0 before (a) and after (b) the exclusivity cuts are applied 
(except MM2

X (ep) cut itself). The 12C data (points) are normalized to the 14NH3

data (line).

After the identification of the four particles, the exclusive events 
from the ep → epπ0 reaction were selected. With the 4-momenta 
reconstructed for all final-state particles, the event kinematics is 
fully known, and energy and momentum conservation can be used 
to develop the exclusivity cuts. These constraints allow for the re-
jection of events from unpolarized nuclear background, different 
channels (e.g. η, ρ or ω meson production) and reactions with an 
additional particle present but undetected.

Three photon-detection topologies exist: (i) both photons de-
tected in the IC, (ii) both photons in the EC and (iii) one photon 
in the IC and another in the EC. The experimental resolutions of 
the kinematic quantities for these topologies were different due to 
the superior IC resolution, and thus the exclusivity cuts were deter-
mined independently for each case. To ensure the exclusivity of π0

meson production we used the 3σ cuts extracted from the Gaus-
sian fits of the following four variables: the missing mass squared 
M2

X (ep) of the (epX) system, the invariant mass of the two pho-
tons Mγ γ , the missing energy Eepγ γ of the (epγ γ ) system and 
the angle θπ0 X between the measured and the kinematically re-
constructed π0 meson in the ep → epX system.

Fig. 1 illustrates the effect of the exclusivity cuts on the miss-

ing mass of the ep system in ep → epX . The contaminations from 
different meson production and nuclear background are greatly re-
duced, however even after the application of all exclusivity cuts, 
the events from nuclear background are still present. This remain-

ing contamination from 14N was estimated using the data from 
carbon runs. The data from 12C target were normalized to 14NH3

by the total charge and corrected for the different areal densities 
of the target materials. The variations of the dilution factor with 
kinematics were too small to parameterize accurately, so constant 
dilution factors (0.9, 0.94, 0.91) were applied for three topolo-
gies (EC-EC, IC-IC and EC-IC). The contribution from unpolarized 
nuclear protons was less than 10% for all topologies. The small 
amount of background from accidental photons is visible in Fig. 2
under the invariant mass spectrum of the two photons Mγ γ for 
the three detection topologies. It was subtracted using the data in 
the sidebands (−4.5σ , −3σ ) ∪ (3σ , 4.5σ ) of the Mγ γ distributions 
independently for each kinematic bin and helicity configuration. 
The latter is particularly important because it takes into account 
any polarization dependent background.

To ensure that the selected events were from the deep-inelastic 
regime, the kinematic cuts Q 2 > 1 (GeV/c)2 and W > 2 GeV/c2

were applied. W =
√

(p + q)2 is the γ ∗p invariant mass, where 
q and p are the four-momenta of the virtual photon and nu-
cleon, and Q 2 = −q2 . Then the data were divided into 110 four-
dimensional kinematical bins for each of the 4 possible beam/tar-
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Fig. 2. (Color online.) Distributions of invariant mass of the two-photon system for 
the three different detector configurations: IC-IC, EC-EC and EC-IC from left to right. 
The cyan areas represent the cuts used for event selection. The last two subfigures 
show the factors used to scale the number of events in the histograms to the first 
subfigure.

get helicity configurations. The target and double spin asymmetries 
were calculated for each kinematic bin as follows:

AUL =

∑

i

(

n+−
i + n−−

i

)

− ∑

i

(

n++
i + n−+

i

)

P−
t

∑

i

f i
(

n++
i + n−+

i

)

+ P+
t

∑

i

f i
(

n+−
i + n−−

i

) , (4)

ALL = 1

Pb

∑

i

(

n+−
i + n−+

i

)

− ∑

i

(

n++
i + n−−

i

)

P−
t

∑

i

f i
(

n++
i + n−+

i

)

+ P+
t

∑

i

f i
(

n+−
i + n−−

i

) , (5)

where n±± are the numbers of counts for each beam/target helic-
ity configuration, normalized by the corresponding beam charge. 
The i index refers to the photon detection topology, f i is the cor-
responding dilution factor, and P±

t are the average values for the 
positive/negative target polarizations.

The average target polarizations P±
t (P+

t ≃ 80%, P−
t ≃ 74%)

were extracted by dividing the product of beam and target po-
larizations Pb Pt by the beam polarization Pb . The former was de-
termined by measuring the well-known spin asymmetry in elastic 
ep scattering [18,19]. The latter was measured a few times during 
the experiment using the Møller polarimeter in Hall B. The average 
value was determined to be 84% ± 2% using the beam polarization 
measurements weighted by all the events.

The extraction of target and double spin asymmetries for the 
exclusive ep → epπ0 reaction includes several sources that could 
induce systematic uncertainties. The main source was the event 
selection procedure. The exclusivity cuts were modified from 2.5σ
to 3.5σ , and the spin asymmetries were re-analyzed for every 
cut alteration. The corresponding variations of asymmetries were 
determined to be 4.4% on average. The sideband background sub-
traction procedure accounted for a systematic uncertainty of 1%. To 
avoid systematic uncertainty associated with NMR measurements 
the product of beam and target polarizations was extracted from 
the exclusive ep elastic scattering. Therefore, combined with the 
dilution factor, the uncertainties of the beam and the target po-
larizations lead to an overall normalization uncertainty of 3% for 
double spin asymmetry and 5% for target spin asymmetry. The ac-
ceptance and binning effects were studied through careful Monte-

Carlo simulation, and both effects were found to be negligible. 
The individual uncertainties for each kinematic bin were added in 
quadrature, and their values, with an average of 4.5%, were found 
to be smaller than statistical uncertainties for the most of bins.

The target and double spin asymmetries for exclusive π0 pro-

duction were measured over a wide kinematic range with 1 <
Q 2 < 5 (GeV/c)2 , 0.1 < xB < 0.6, and 0 < −t < 2 (GeV/c)2 , where 

xB = Q 2

2pq
is the Bjorken variable, t = (p − p′)2 is the momentum 

transfer to the nucleon, and p and p′ are the initial and final four-
momenta of the nucleon. The data were divided into two bins 
in the (Q 2, xB) space, five bins in −t and eleven φ bins with 
the measured asymmetries shown as a function of φ in Fig. 3. 
The measurements exhibit strong azimuthal dependence for the 
target spin asymmetries with significant amplitudes of the sinφ

moments and a large constant term for the double spin asymme-

tries.

The measured beam, target and double spin asymmetries were 
fitted simultaneously using six free parameters: A

sin φ
LU , A

sin φ
U L , 

A
sin 2φ
U L , Aconst

LL , Acos φ
LL and Acos 2φ

UU according to the Eqs. (2) and (3)

to describe their azimuthal dependence. Simultaneous fit exploits 
the fact that the three asymmetries have the same denominator 
and constrains the common terms to be the same for the three 
different observables. The beam spin asymmetry was extracted 
in addition to the target and double spin asymmetries. This ob-
servable is important in the simultaneous fit to better constrain 
the unpolarized term Acos 2φ

UU in the denominator common for the 

different polarized observables. Both A
sin φ
LU and A

cos 2φ
UU are by-

products of the measurement and much better constrained from 
previous experiments with an unpolarized hydrogen target. Due 
to the limited statistics, the term Acos φ

UU = √
2ǫ(1+ ǫ)σLT /σ0 was 

fixed using the structure functions reported by CLAS in [11]. The 
correlations of numerator terms with Acos φ

UU and Acos 2φ
UU were stud-

ied and found to be small for all asymmetry moments except 
A
cos φ
LL term. To verify the stability of moments extraction the fit 

was performed with and without Acos φ
UU term. Only Acos φ

LL exhibits 
positive correlation with unpolarized terms as evident from large 
systematic uncertainties on Fig. 4 driven by uncertainties on the 
denominator parameters.

In Fig. 4 the measured asymmetry moments for π0 electro-

production are plotted as a function of −t in each (Q 2, xB ) bin, 
where each kinematic value is calculated as event weighted aver-
age. The theoretical predictions from two GPD-based approaches, 
GK [20] and GGL [21], are also included. They both calculate the 
contributions from the transverse virtual photon amplitudes us-
ing chiral-odd GPDs with −t dependence, incorporated from Regge 
phenomenology, but differ in the GPD parametrization methods. 
GGL provides the chiral-odd GPD parametrization via linear re-
lations to chiral-even GPDs under parity and charge conjugation 
symmetries in a Regge-ized diquark model. This approach allows 
the model to overcome the issue that very few constraints on 
chiral-odd GPDs exist, while chiral-even GPDs can be relatively 
well-constrained using deep inelastic scattering, nucleon form-

factor and DVCS measurements. In the GK model, chiral-odd GPDs 
are constructed from the double distributions and constrained us-
ing the latest results from lattice QCD [22] and transversity parton 
distribution functions [23] with the emphasis on HT and ĒT , while 
the contributions from the other chiral-odd GPDs are considered 
negligible.

Within the approximation of GK model [20] the Aconst
LL compo-

nent is defined as:

Aconst
LL σ0 =

√

1− ǫ2
4πα

k

μ2
π

Q 4
(1− ξ2) |〈HT 〉|2 (6)

A rather straightforward interpretation is obtained for Aconst
LL com-

ponent, which contains contributions from the chiral-odd GPDs 
only. It is expected to be determined by 〈HT 〉 with a negligible 
contribution from 〈H̃T 〉. The data do not decrease near threshold 
which is indicative of 〈HT 〉 dominance, especially at low −t region, 
and both models display a rise of Aconst

LL in the same region since 
they rely on 〈HT 〉 to describe it. Furthermore, the extraction of 
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Fig. 3. Target and double spin asymmetries for deep exclusive π0 production plotted as a function of φ for each kinematic bin in 
(

Q 2, xB
)

space and −t range. The curves 
are simultaneous fit results described in the text. The shaded bands represent the overall systematic uncertainties. The latter exhibits strong variation with φ in certain 
kinematic bins due to unseparable statistical fluctuations inflating the estimate of the systematic errors. The bins with low statistics are particularly affected by them.

Aconst
LL term is very stable due to the absence of φ dependence and, 

therefore, provides a reliable experimental observable to constrain 
GPD HT . Additionally, and perhaps more importantly, the double 
spin asymmetry measurements provide an independent test of the 
existing GPDs models probing the underlying assumption of HT

and ĒT dominance. The first approach to combine Aconst
LL term with 

σ0 and σT T previously measured by CLAS was conducted in [24]. 
The constant term was calculated within GK model framework us-
ing the HT and ĒT convolutions extracted from unpolarized cross 
section measurements [11,12] and compared to the measurements 
presented in this work. The agreement within error bars demon-

strates the major contribution from 〈HT 〉.
The large magnitudes of Acos φ

LL and Asin φ
U L components suggest 

sizable contributions from the chiral-odd GPDs through the inter-
ference of transverse and longitudinal virtual photons amplitudes. 
The calculations of these contributions are complicated, largely 
due to the unknown phases between interfering terms [20,21]. 
The Asin φ

U L term exhibits a relatively flat −t dependence similar to 
the observed dependence of the beam-spin asymmetry [13], but 
with a factor of three larger magnitude. Note that both terms are 
dominated by 〈H̃〉∗〈ET 〉, but the target spin asymmetry is also en-
hanced by 〈H̃〉∗〈H̃T 〉 and the beam spin asymmetry is reduced by 
a kinematic factor. The Asin 2φ

U L component is determined by chiral-
odd GPDs, namely ET and H̃T , providing the means to disentangle 
these two GPDs and improve the parameterization of their combi-

nation ĒT [21].

In conclusion, for the first time target and double spin asym-

metries from deeply virtual π0 meson production were extracted 
over a wide range of Q 2 , xB and −t . The measurements shown 
in Fig. 4 are significantly different from zero in all kinematic bins. 
Our data provide a set of new observables in the kinematic range 
of t/Q 2 where higher twist contributions may be significant. The 
overall comparison of experimental measurements with different 
theoretical calculations using the leading order demonstrates the 
importance of our results to improve parameterization of the GPD 
HT . They indicate strong sensitivity to the practically unknown 
−t dependencies of the underlying chiral-odd GPDs, which may 
shed light on the role of higher twist contributions. Combined 
with the unpolarized structure function measurements and beam 
spin asymmetry results for π0 production from CLAS [13,11,12], 
these data provide important constraints for the parameterizations 
of GPDs HT and ĒT , giving the first insight to the transverse space 
distributions of transversely polarized quarks [25,26].

Acknowledgements

We acknowledge the outstanding efforts of the staff of the Ac-
celerator and Physics Divisions at JLab. This work was supported in 
part by the U.S. Department of Energy and National Science Foun-
dation, the French Centre National de la Recherche Scientifique and 
Commissariat à l’Energie Atomique, the Italian Istituto Nazionale di 
Fisica Nucleare, the National Research Foundation of Korea and the 
U.K. Engineering and Physical Science Research Council. Jefferson 



A. Kim et al. / Physics Letters B 768 (2017) 168–173 173

Fig. 4. The target and double spin asymmetry moments of exclusive π0 electro-

production as a function of −t for 2 bins in the (Q 2, xB ) plane (left and right 
columns). The shaded bands represent the systematic uncertainties (including fit 
uncertainties), and the curves show the predictions from two GPD formalisms: 
GK [20] (dashed) and GGL [21] (solid). Note that the Asin 2φ

UL moment is zero in 
the GK model, and therefore is not shown.

Science Associates (JSA) operates the Thomas Jefferson National Ac-
celerator Facility for the United States Department of Energy under 
contract DE-AC05-06OR23177.

Appendix A. Supplementary material

Supplementary material related to this article can be found on-
line at http://dx.doi.org/10.1016/j.physletb.2017.02.032.

References

[1] D. Müller, D. Robaschik, B. Geyer, F.-M. Dittes, J. Hořejši, Wave functions, evolu-
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