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1 Height-from-Polarisation with Unknown
2 Lighting or Albedo

3 William A. P. Smith ,Member, IEEE, Ravi Ramamoorthi, Fellow, IEEE, and Silvia Tozza

4 Abstract—We present a method for estimating surface height directly from a single polarisation image simply by solving a large,

5 sparse system of linear equations. To do so, we show how to express polarisation constraints as equations that are linear in the

6 unknown height. The local ambiguity in the surface normal azimuth angle is resolved globally when the optimal surface height is

7 reconstructed. Our method is applicable to dielectric objects exhibiting diffuse and specular reflectance, though lighting and albedo

8 must be known. We relax this requirement by showing that either spatially varying albedo or illumination can be estimated from the

9 polarisation image alone using nonlinear methods. In the case of illumination, the estimate can only be made up to a binary ambiguity

10 which we show is a generalised Bas-relief transformation corresponding to the convex/concave ambiguity. We believe that our method

11 is the first passive, monocular shape-from-x technique that enables well-posed height estimation with only a single, uncalibrated

12 illumination condition. We present results on real world data, including in uncontrolled, outdoor illumination.Q1

13 Index Terms—Polarisation, shape-from-x, bas-relief ambiguity, illumination estimation, albedo estimation

Ç

14 1 INTRODUCTION

15 WHEN unpolarised light is reflected by a surface it
16 becomes partially polarised [1]. This applies to both
17 specular reflections [2] and diffuse reflections [3] caused by
18 subsurface scattering. The angle and degree of polarisation
19 of reflected light conveys information about the surface ori-
20 entation and, therefore, provide a cue for shape recovery.
21 There are a number of attractive properties to this ‘shape-
22 from-polarisation’ (SfP) cue. It requires only a single
23 viewpoint and illumination condition, it is invariant to illu-
24 mination direction and surface albedo and it provides infor-
25 mation about both the zenith and azimuth angle of the
26 surface normal. Like photometric stereo, shape estimates
27 are dense (surface orientation information is available at
28 every pixel so resolution is limited only by the sensor) and,
29 since it does not rely on detecting or matching features, it is
30 applicable to smooth, featureless surfaces.
31 However, there are a number of drawbacks to using SfP in
32 a practical setting. First, the polarisation cue alone provides
33 only ambiguous estimates of surface orientation. Hence, pre-
34 vious work focussed on developing heuristics to locally dis-
35 ambiguate the surface normals. Even having done so, the
36 estimated normal fieldmust be integrated in order to recover

37surface height (i.e. relative depth) [4] or combined with a
38depth map from another cue [5]. This two-step approach of
39disambiguation followed by integration means that the inte-
40grability constraint is not enforced during disambiguation
41and also that errors accumulate over the two steps. Second,
42diffuse polarisation provides only a weak shape cue for
43regions of the surface with small gradient and so methods
44that operate locally are very sensitive to noise.

451.1 Contributions and Applicability of the Method

46In this paper, we make a number of contributions to the SfP
47problem. After introducing notations and preliminaries in
48Section 3, in Section 4 we present our SfP method. This con-
49tains a number of novel ingredients. First, in contrast to
50prior work, we compute SfP in the height, as opposed to the
51surface normal, domain. Instead of disambiguating the
52polarisation normals, we defer resolution of the ambiguity
53until surface height is computed. To do so, we express the
54azimuthal ambiguity as a collinearity condition that is
55satisfied by either interpretation of the polarisation meas-
56urements. Second, we express polarisation and shading con-
57straints as linear equations in the unknown surface height
58enabling efficient and globally optimal height estimation.
59We show an overview of our method and a sample result
60for unknown, outdoor illumination and uniform albedo in
61Fig. 1. In Sections 5 and 6 we explore what information can
62be obtained without disambiguating the polarisation nor-
63mals. If illumination is unknown and albedo unknown but
64uniform then we show that illumination can be determined
65up to a binary ambiguity from the ambiguous normals and
66the unpolarised intensity. We make a theoretical contribu-
67tion by showing that this ambiguity corresponds to a partic-
68ular generalised Bas-relief [6] transformation (the convex/
69concave ambiguity). On the other hand, if illumination is
70known and albedo spatially varying and unknown, then we
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71 show that per-pixel albedo can be determined from the
72 ambiguous normals and the unpolarised intensity. Finally,
73 in Section 7, we introduce a novel hybrid diffuse/specular
74 polarisation and shading model, allowing us to handle
75 glossy surfaces. Experimental results on synthetic and real
76 data are reported in Sections 8 and 9 provides conclusions
77 and future perspectives.
78 Although we make a variety of assumptions, the result-
79 ing methods are still useful in practice. Combining the
80 methods in Sections 4, 5 and 7, our approach can be applied
81 to glossy objects under uncalibrated directional illumina-
82 tion. In practice, this means that the method works outdoors
83 on a sunny day (see Figs. 1 and 11) or indoors in a dark
84 room setting (see Figs. 9, 10 and 12). In the former case, sun-
85 light can be approximated by a point source and skylight
86 can be neglected since it is orders of magnitude weaker. In
87 the latter case, we require only a single uncalibrated light
88 source and so the practical requirements are much less than
89 for methods such as photometric stereo [7] or those that
90 require multiple polarised light sources [8]. Other more
91 niche applications could include polarised laparoscopy [9]
92 or in general biomedical applications [10].

93 2 RELATED WORK

94 Previous SfP methods can be categorised into three groups:
95 1. those that use only polarisation information, 2. those that
96 combine polarisation with shading cues and 3. those that
97 combine a polarisation image with an additional cue. Those
98 techniques that require only a single polarisation image (of
99 which our proposed method is one) are passive and can be

100 considered ‘single shot’ methods (single shot capture devi-
101 ces exist using either polarising beamsplitters1 or by com-
102 bining micropolarisation filters with CMOS sensors2). More
103 commonly, a polarisation image is obtained by capturing a
104 sequence of images in which a linear polarising filter is
105 rotated in front of the camera (possibly with unknown rota-
106 tion angles [11]). SfP methods can also be classified accord-
107 ing to the polarisation model (dielectric versus metal,
108 diffuse, specular or hybrid models) and whether they com-
109 pute shape in the surface normal or surface height domain.
110 Shape-from-polarisation. The earliest work focussed on
111 capture, decomposition and visualisation of polarisation
112 images was by Wolff [12]. Both Miyazaki et al. [4] and

113Atkinson and Hancock [3] used a diffuse polarisation model
114with assumed known refractive index to estimate surface
115normals from the phase angle and degree of polarisation.
116Disambiguation begins on the object boundary by choosing
117the azimuth angle that best aligns with the outward facing
118direction (an implicit assumption of object convexity). The
119disambiguation is then propagated inwards such that
120smoothness is maximised. This greedy approach will not
121produce globally optimal results, limits application to
122objects with a visible occluding boundary and does not con-
123sider integrability constraints. Morel et al. [13] took a similar
124approach but used a specular polarisation model suitable
125for metallic surfaces. Huynh et al. [14] also assumed convex-
126ity to disambiguate the polarisation normals; however, their
127approach can also estimate unknown refractive index.
128Shape-from-polarisation and Shading. A polarisation image
129contains an unpolarised intensity channel which provides
130a shading cue. As in our proposed method, Mahmoud
131et al. [15] exploited this via a shape-from-shading cue. With
132assumptions of known light source direction, known albedo
133and Lambertian reflectance, the surface normal ambiguity
134can be resolved. We avoid all three of these assumptions
135and, by strictly enforcing integrability, impose an additional
136constraint that improves robustness to noise. An earlier ver-
137sion of the work in this paper was originally presented
138in [16]. Here, we have extended the method to handle
139unknown, spatially varying albedo and introduced an
140explicit specular reflectance model.
141An alternative is to augment a polarisation image with
142additional intensity images in which the light source direc-
143tion varies, providing a photometric stereo cue. Such meth-
144ods are no longer passive and usually require calibrated
145light sources. Atkinson and Hancock [17] used Lambertian
146photometric stereo to disambiguate polarisation normals.
147Recently, Ngo et al. [18] derived constraints that allowed
148surface normals, light directions and refractive index to be
149estimated from polarisation images under varying lighting.
150However, this approach requires at least 4 light directions
151in contrast to the single direction required by our method.
152Atkinson [19] combines calibrated two source photometric
153stereo with the phase information from polarisation and
154resolves ambiguities via a region growing process.
155Polarisation with Additional Cues. Rahmann and Canterakis
156[2] combined a specular polarisation model with stereo cues.
157Similarly, Atkinson and Hancock [20] used polarisation nor-
158mals to segment an object into patches, simplifying stereo
159matching. Stereo polarisation cues have also been used for

Fig. 1. Overview of method: from a single polarisation image in unknown (possibly outdoor) illumination, we estimate lighting and compute surface
height directly (rightmost image shows result on real data, a piece of fruit).

1. http://www.fluxdata.com/imaging-polarimeters
2. https://www.4dtechnology.com/products/polarimeters/
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160 transparent surfacemodelling [21]. Huynh et al. [22] extended
161 their earlier work to use multispectral measurements to esti-
162 mate both shape and refractive index. Drbohlav and Sara [23]
163 showed how the Bas-relief ambiguity [6] in uncalibrated pho-
164 tometric stereo could be resolved using polarisation. How-
165 ever, this approach requires a polarised light source. Coarse
166 geometry obtained by multi-view space carving [24], [25] has
167 been used to resolve polarisation ambiguities. Kadambi
168 et al. [5], [26] combined a single polarisation image with a
169 depth map obtained by an RGBD camera. The depth map is
170 used to disambiguate the normals and provide a base surface
171 for integration. Cui et al. [27] used multiview stereo with a
172 mixed polarisation model. A coarse reconstruction is pro-
173 vided by structure-from-motionwhich is used to partially dis-
174 ambiguate polarisation phase information. The remaining
175 ambiguity is resolved as the phase information is propagated
176 through a dense, multiview stereo surface reconstruction.
177 This approach does not exploit degree of polarisation or
178 shading information.

179 3 PRELIMINARIES

180 In this section we list the basic assumptions common to all
181 the following sections, we introduce the notations we will
182 adopt throughout the whole paper and we explain how we
183 construct our data, which is a polarisation image [12].

184 3.1 Assumptions

185 Our method relies on several assumptions. The following
186 are assumed throughout the whole paper:

187 1) Orthographic camera projection
188 2) Smooth (i.e. C2 continuous) object
189 3) Dielectric (i.e. non-metallic) material
190 4) Refractive index known
191 5) Illumination is provided by a distant point source
192 6) No interreflections.
193 Some later sections make additional assumptions. These
194 are listed in the relevant section.

195 3.2 Notations

196 We parameterise surface height by the function zðuÞ, where
197 u ¼ ðx; yÞ is an image point. Foreground pixels belonging to
198 the surface are represented by the set F , jF j ¼ K. We
199 denote the unit surface normal by nðuÞ. This vector can be
200 expressed in spherical world coordinates as

nðuÞ ¼
nxðuÞ
nyðuÞ
nzðuÞ

2

4

3

5 ¼
sin ðaðuÞÞ sin ðuðuÞÞ
cos ðaðuÞÞ sin ðuðuÞÞ

cos ðuðuÞÞ

2

4

3

5; (1)

202202

203 where aðuÞ and uðuÞ are the azimuth and zenith angle
204 respectively. The surface normal can be formulated via the
205 surface gradient as follows

nðuÞ ¼
�pðuÞ;�qðuÞ; 1½ �T
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðuÞ2 þ qðuÞ2 þ 1

q ; (2)

207207

208 where pðuÞ ¼ @xzðuÞ and qðuÞ ¼ @yzðuÞ, so that rzðuÞ ¼

209 ½pðuÞ; qðuÞ�T .

2103.3 Polarisation Image

211When unpolarised light is reflected from a surface, it
212becomes partially polarised. There are a number of mecha-
213nisms by which this process occurs. The two models that
214we use are described in Sections 4.3 and 7.3 and are suitable
215for dielectric materials. A polarisation image (Figs. 2b, 2c, and
2162d) can be estimated by capturing a sequence of images
217(Fig. 2a) in which a linear polarising filter in front of the
218camera is rotated through a sequence of P � 3 different
219angles #j, j 2 1; . . . ; Pf g. The measured intensity at a pixel
220varies sinusoidally with the polariser angle

i#jðuÞ ¼ iunðuÞ 1þ rðuÞ cos 2#j � 2fðuÞ
� �� �

þ t: (3)

222222

223The three parameters of the sinusoid form the three quanti-
224ties of a polarisation image [12]. These are the phase angle,
225fðuÞ, the degree of polarisation, rðuÞ, and the unpolarised inten-
226sity, iunðuÞ. The quantity t models a stochastic process repre-
227senting quantisation, sensor noise etc.
228Under the assumption that t is normally distributed, a
229least squares fit to the measured data provides the maxi-
230mum likelihood solution for the three parameters of the
231sinusoid. In practice, this can be done using nonlinear least
232squares [3], linear methods [14] or via a closed form solution
233[12] for the specific case of P ¼ 3, # 2 f0�; 45�; 90�g.

2344 LINEAR HEIGHT-FROM-POLARISATION

235In this section we show how to directly estimate a surface
236height map from a single polarisation image. Moreover, we
237show how this can be formulated as a sparse linear least
238squares problem for which the globally optimal solution
239can be computed efficiently.

2404.1 Additional Assumptions

241Throughout the whole Section 4, we require the following
242assumptions in addition to those introduced in Section 3.1

Fig. 2. Polarimetric capture (a) and decomposition to polarisation image
(b-d) from captured data of a piece of fruit.
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243 7) Lambertian reflectance and diffuse polarisation
244 8) Known or uniform albedo
245 9) Known point light source
246 10) Light and viewing directions different, i.e. s 6¼ v.
247 Assumptions 7-9 will be subsequently relaxed in
248 Sections 5, 6 and 7.

249 4.2 Finite Difference Formulation

250 The surface gradient can be approximated numerically from
251 the discretised surface height function by finite differences.
252 If the surface heights are written as a vector z 2 RK , then
253 the gradients, g 2 R2K , can be approximated by

g ¼

pðu1Þ

..

.

pðuKÞ
qðu1Þ

..

.

qðuKÞ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

¼
Dx

Dy

� �

zðu1Þ

..

.

zðuKÞ

2

6

4

3

7

5
¼ Dz; (4)

255255

256 where Dx 2 RK�K and Dy 2 R
K�K evaluate the finite differ-

257 ence gradients in the horizontal and vertical directions
258 respectively. Each row of D computes one gradient. In the
259 simplest case, this could be done using forward differences
260 in which case only two elements of the row are non-zero.
261 Hence, given a system of equations that are linear in the
262 unknown surface gradients, Ag ¼ b, this can be rewritten
263 as a system of equations that are linear in the unknown sur-
264 face height as ADz ¼ b. Regardless of which finite differ-
265 ence approximation is used, rankðDÞ ¼ K � 1. This reflects
266 the fact that constraints on the surface gradient alone can
267 only recover orthographic surface height up to a translation
268 in z, i.e. the constant of integration is unknown. So, even if
269 A is full rank, AD is not and so z cannot be estimated from
270 this set of equations alone. This is easily resolved by intro-
271 ducing an additional equation that, for example, sets the
272 mean height to zero

AD
1K

� �

z ¼
b
0

� �

; (5)

274274

275 where 1K is the lengthK row vector of ones.

276 4.3 Diffuse Polarisation Model

277 A polarisation image provides a constraint on the surface
278 normal direction at each pixel. The exact nature of the con-
279 straint depends on the polarisation model used. We begin
280 by assuming a diffuse polarisation model [3]. Diffuse polar-
281 isation arises due to subsurface scattering. Here, the Fresnel
282 transmission out of the surface results in partial polarisation
283 of the light. Exploitation of this cause of polarisation has
284 the advantage that we do not need to assume that the illu-
285 mination is unpolarised. Subsurface scattering has a de-
286 polarising effect such that the polarisation of the remitted
287 light can be assumed to have arisen entirely due to trans-
288 mission out of the surface.
289 For diffuse reflection, the degree of polarisation is related
290 (Fig. 4a, red curve) to the zenith angle uðuÞ 2 ½0; p

2
� of the nor-

291 mal in viewer-centred coordinates (i.e. the angle between
292 the normal and viewer)

rðuÞ ¼

sin uðuÞð Þ2 h� 1
h

	 
2

4 cos uðuÞð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2� sin uðuÞð Þ2
q

� sin uðuÞð Þ2 hþ1
h

	 
2

þ2h2þ2

;

(6) 294294

295where h is the refractive index. The dependency on h is weak
296[3] and typical values for dielectrics range between 1.4 and 1.6.
297We assume h ¼ 1:5 for the rest of this paper. This expression
298can be rearranged to give a closed form solution for the zenith
299angle in terms of a function, fðrðuÞ; hÞ, that depends on the
300measured degree of polarisation and the refractive index

cos ðuðuÞÞ ¼ nðuÞ � v ¼ fðrðuÞ; hÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h4ð1�r2Þþ2h2ð2r2þr�1Þþr2þ2r�4h3r
ffiffiffiffiffiffiffiffiffiffiffiffi

1�r2
p

þ1

ðrþ 1Þ2 ðh4 þ 1Þ þ 2h2ð3r2 þ 2r� 1Þ

s

;
(7)

302302

303where we drop the dependency of r on u for brevity. Since
304we work in a viewer-centred coordinate system, the view-
305ing direction is v ¼ ½0; 0; 1�T and we have simply: nzðuÞ ¼
306fðrðuÞ; hÞ; or, in terms of the surface gradient,

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðuÞ2 þ qðuÞ2 þ 1

q ¼ fðrðuÞ; hÞ: (8)

308308

309The phase angle determines the azimuth angle of the
310surface normal aðuÞ 2 ½0; 2p� up to a 180� ambiguity:
311aðuÞ ¼ fðuÞ or ðfðuÞ þ pÞ. This means that the measured
312degree of polarisation (via (7)) and phase angle determine
313the surface normal up to an ambiguity as either nðuÞ ¼ �nðuÞ
314or nðuÞ ¼ T�nðuÞwhere

�nðuÞ ¼
sin ðfðuÞÞ sin ðuðuÞÞ
cos ðfðuÞÞ sin ðuðuÞÞ

cos ðuðuÞÞ

2

4

3

5; (9)
316316

317and

T ¼ Rzð180
�Þ ¼

�1 0 0

0 �1 0

0 0 1

2

4

3

5: (10)

319319

320See Fig. 3 for a visualisation of these two constraints (shown
321in red and blue).

Fig. 3. Visualisation of constraints on surface normal provided by polar-
isation image: phase angle (red), unpolarised intensity (green) and
degree of polarisation (blue). In non-degenerate cases, the three con-
straints uniquely determine the surface normal direction and we show
how to express these constraints directly in terms of surface height.
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322 4.4 Shading Constraint

323 The unpolarised intensity provides an additional constraint
324 on the surface normal direction via an appropriate reflectance
325 model. Following Assumption 7, we use the Lambertian
326 model and fromAssumption 8, albedo is either: 1. known and
327 has been divided out, or 2. uniform and factored into the light
328 source vector s 2 R3. Hence, unpolarised intensity is related
329 to the surface normal by

iunðuÞ ¼ cos ðuiðuÞÞ ¼ nðuÞ � s; (11)
331331

332 where uiðuÞ is the angle of incidence (angle between light
333 source and surface normal). In terms of the surface gradient,
334 this becomes

iunðuÞ ¼
�pðuÞsx � qðuÞsy þ sz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðuÞ2 þ qðuÞ2 þ 1

q : (12)

336336

337 Note that if the light source and viewer direction coincide then
338 this equation provides nomore information than the degree of
339 polarisation. This explains the need for Assumption 10. The
340 addition of the shading cue uniquely determines the surface
341 normal at a pixel (see Fig. 3, shading cue shown in green; in
342 this example the solution isT�n).

343 4.5 Polarisation Constraints as Linear Equations

344 In practice, the polarisation image quantities will be noisy
345 and an exact solution may not exist. A least squares solution
346 at each pixel independently leads to surface normal
347 estimates that are first noisy and second will not satisfy
348 the integrability constraint. Both of these problems can be
349 addressed by posing the problem in terms of estimating sur-
350 face height and solving a system of equations globally. With
351 this goal in mind, we start by showing that the polarisation
352 shape cues can be expressed as per pixel equations that are
353 linear in terms of the surface gradient.
354 First, we note that the phase angle constraint can be writ-
355 ten as a collinearity condition. This condition is satisfied by
356 either of the two possible azimuth angles implied by the
357 phase angle measurement. Writing it in this way is advanta-
358 geous because it means we do not have to disambiguate the
359 surface normals explicitly. Instead, when we solve the linear
360 system for height, the azimuthal ambiguities are resolved in
361 a globally optimal way. Specifically, we require the projec-
362 tion of the surface normal into the x-y plane, ½nx; ny�, and a
363 vector in the image plane pointing in the phase angle direc-
364 tion, ½ sin ðfÞ; cos ðfÞ�, to be collinear. These two vectors are
365 collinear when the following condition is satisfied:

nðuÞ � ½ cos ðfðuÞÞ; � sin ðfðuÞÞ; 0�T ¼ 0: (13)
367367

368Substituting (2) into (13), we obtain

�pðuÞ cos ðfðuÞÞ þ qðuÞ sin ðfðuÞÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðuÞ2 þ qðuÞ2 þ 1

q ¼ 0: (14)

370370

371Noting that the nonlinear term in (2) is always greater
372than zero, we obtain our first linear equation in the surface
373gradient

�pðuÞ cos ðfðuÞÞ þ qðuÞ sin ðfðuÞÞ ¼ 0: (15)

375375

376This condition exhibits a natural weighting that is useful in
377practice. The phase angle estimates are more reliable when
378the zenith angle is large (i.e. when the degree of polarisation
379is high and so the signal to noise ratio is high). When the
380zenith angle is large, the magnitude of the surface gradient
381is large, meaning that disagreement with the estimated
382phase angle is penalised more heavily than for a small
383zenith angle where the gradient magnitude is small.
384The second linear constraint is obtained by combining
385the expressions for the unpolarised intensity and the degree
386of polarisation. To do so, we take a ratio between (12) and
387(8) which eliminates the nonlinear normalisation factor

iunðuÞ

fðrðuÞ; hÞ
¼ �pðuÞsx � qðuÞsy þ sz; (16)

389389

390yielding our second linear equation in the surface gradient.

3914.6 Linear Least Squares Formulation

392We can now write the polarisation constraints in Section 4.5
393as a linear system of equations in terms of the unknown sur-
394face height, ADz ¼ b, where

A ¼
Ac As

�sxIK �syIK

� �

; b ¼

0K
iunðu1Þ=fðrðu1Þ; hÞ � sz

..

.

iunðuKÞ=fðrðuKÞ; hÞ � sz

2

6

6

6

4

3

7

7

7

5

; (17)
396396

397

Ac ¼ diag � cosfðu1Þ; . . . ;� cosfðuKÞð Þ; (18)
399399

400

As ¼ diag sinfðu1Þ; . . . ; sinfðuKÞð Þ; (19)
402402

4030K is the length K zero vector and IK is the K �K identity
404matrix. The upper half of A evaluates the phase angle linear
405Equation (15) and the lower half evaluates the shading/
406degree of polarisation ratio linear Equation (16).
407In general, A is full rank and, in the presence of no noise,
408a unique, exact solution to (5) exists. From a theoretical per-
409spective, A is rank deficient in the special case where
410sx ¼ �sy 6¼ 0 and f ¼ p=4 in at least one pixel.
411In practice, the polarisation image and light source vector
412will be noisy. Hence, we do not expect an exact solution and
413formulate a least squares cost function for z

"dataðzÞ ¼
AD
1K

� �

z�
b
0

� ��

�

�

�

�

�

�

�

2

: (20)

415415

416For robust performance on real world data, we find it
417advantageous (though not essential) to include two priors
418on the surface height that are explained in the following
419sections.

Fig. 4. (a) Relationship between degree of polarisation and zenith angle,
for specular and diffuse dielectric reflectance with h ¼ 1:5. (b) Zenith
angle estimated from Fig. 2b. (c) Visualisation of the cosine of estimated
zenith angle.
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420 4.7 Laplacian Smoothness Prior

421 The first prior is a Laplacian smoothness term. This takes
422 the form of a smoothness penalty, "sm

"smðzÞ ¼ kwsmLzk
2; (21)

424424

425 where wsm weights the influence of the prior and L 2
426 R

C�K is a matrix, each row of which evaluates the convo-
427 lution of a 3� 3 Laplacian kernel with one of the C 	 K
428 pixels whose local 3� 3 neighbourhood is included in F .
429 This prior encourages a pixel to have a height close to the
430 average of its neighbours. It is minimised by locally pla-
431 nar regions, so can lead to oversmoothing of curved
432 regions, but has the advantage of being linear in the sur-
433 face height.

434 4.8 Convexity Prior

435 The second prior (applicable only to objects with a fore-
436 ground mask) is a convexity prior that encourages the azi-
437 muth angle of the surface normal to align with the azimuth
438 of outward facing boundary normals. This is helpful for
439 data that is noisy close to the occluding boundary, for exam-
440 ple when some background is included in the image due to
441 an inaccurate foreground mask.
442 We compute unit vectors in the image plane that are
443 normal to the boundary and outward facing and propagate
444 these vectors into the interior. We convert these vectors to
445 boundary-implied azimuth angles, abðuÞ. See supplementary
446 material, which can be found on the Computer Society
447 Digital Library at http://doi.ieeecomputersociety.org/
448 10.1109/TPAMI.2018.2868065, for details. Now, to exploit this
449 prior we penalise deviation in the azimuth angle of the esti-
450 mated surface normals from those provided by the boundary
451 cue, abðuÞ. We wish to measure this deviation in a way that is
452 linear in the unknown surface gradients. To achieve this, we
453 construct a surface normal vector nbðuÞ using abðuÞ and the
454 zenith angle estimated by polarisation, uðuÞ (using (7))

nbðuÞ ¼ ½ sinabðuÞ sin uðuÞ; cosabðuÞ sin uðuÞ; cos uðuÞ�T : (22)
456456

457 Combining (2) and (22) and rearranging, we can express the
458 surface derivatives according to nbðuÞ as

pðuÞ ¼
sinabðuÞ sin uðuÞ

cos uðuÞ
and qðuÞ ¼

cos abðuÞ sin uðuÞ

cos uðuÞ
: (23)

460460

461 For numerical stability, we multiply both sides of these
462 equations by cos uðuÞ (this avoids the magnitude of the
463 equation becoming very large when uðuÞ is close to p=2).
464 Finally, we weight this prior such that it has high influence
465 close to the boundary but the weight falls off rapidly as dis-
466 tance to the boundary increases. The per-pixel weights are
467 defined as follows:

wconðuÞ ¼
maxv2F dbðvÞ½ � � dbðuÞ

maxv2FdbðvÞ

� m

2 ½0; 1�; (24)

469469

470 where dbðuÞ is the euclidean distance from u to the bound-
471 ary pixel closest to u. The scalar m determines how quickly
472 the weight reduces with distance from the boundary.
473 We can now compute a cost that measures the discrep-
474 ancy between the gradients of the reconstructed surface,

475g ¼ Dz, and those implied by the boundary normal (23),
476weighted by (24)

"conðzÞ ¼
X

K

i¼1

wconðuiÞ
2½ gi cos uðuiÞ � sinabðuiÞ sin uðuiÞ
� �2

þ gKþi cos uðuiÞ � cosabðuiÞ sin uðuiÞ
� �2

�:

(25)

478478

479

4804.9 Implementation

481We can now combine the height-from-polarisation cost (20)
482with the cost functions associated with the two priors (21), (25)
483to form a single systemof equations in linear least squares form

"ðzÞ ¼ "dataðzÞ þ "smðzÞ þ "conðzÞ ¼

A
B

� �

D

wsmL
1K

2

6

6

4

3

7

7

5

z�

b
c
0C
0

2

6

6

4

3

7

7

5

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

2

; (26)

485485

486where

B ¼
diag wconðu1Þ cos uðu1Þ; . . . ; wconðuKÞ cos uðuKÞð Þ
diag wconðu1Þ cos uðu1Þ; . . . ; wconðuKÞ cos uðuKÞð Þ

� �

; (27) 488488

489

c ¼

wconðu1Þ sinabðu1Þ sin uðu1Þ

..

.

wconðuKÞ sinabðuKÞ sin uðuKÞ
wconðu1Þ cosabðu1Þ sin uðu1Þ

..

.

wconðuKÞ cosabðuKÞ sin uðuKÞ

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

: (28)

491491

492Finally, we solve for the optimal height map using linear
493least squares

z
 ¼ arg min
z2RK

"ðzÞ: (29)

495495

496Although the system of equations is large, it is sparse and so
497can be solved efficiently. We use a sparse QR solver. For the
498height derivative operator, D, for each row we compute a
499smoothed central difference approximation of the deriva-
500tive equivalent to convolving the height values with a
501Gaussian kernel and then convolving with the central differ-
502ence kernel. At the boundary of the image or the foreground
503mask, not all neighbours may be available for a given pixel.
504In this case, we use unsmoothed central differences (where
505both horizontal or both vertical neighbours are available)
506or, where only a single neighbour is available, single for-
507ward/backward differences. We use a value of wsm ¼ 0:1
508andm ¼ 5 in all of our experiments.

5095 ILLUMINATION ESTIMATION FROM AN

510UNCALIBRATED POLARISATION IMAGE

511In this section, we describe how to use the polarisation
512image to estimate illumination, assuming uniform albedo.
513Hence, we retain the same assumptions as the previous sec-
514tion but remove Assumption 9. This means that our SfP
515method described in Section 4 can be applied in an uncali-
516brated lighting scenario. We start by showing that the prob-
517lem of light source estimation is subject to an ambiguity.
518Next, we derive a method to compute the light source direc-
519tion (up to the ambiguity) from ambiguous normals using
520the minimum possible number of observations. Finally, we
521extend this to an efficient optimisation approach that uses
522the whole image and is applicable to noisy data.
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523 5.1 Relationship to the Bas-relief Ambiguity

524 From the measured degree of polarisation and phase angle,
525 the surface normal at a pixel can be estimated up to a local
526 binary ambiguity via (9) and (10) (see green versus red in
527 Fig. 5). Hence, there are 2K possible disambiguations of the
528 polarisation normals in a K pixel image. In Section 4.4, we
529 showed how shading information can be used to resolve
530 this ambiguity locally if the light source direction is known
531 (see Fig. 3). We now consider the setting in which the light
532 source direction is unknown.
533 For the true light source direction, s, one of the following
534 equalities holds:

iunðuÞ ¼ �nðuÞ � s or iunðuÞ ¼ ðT�nðuÞÞ � s: (30)
536536

537 Hence, the polarisation measurements for a single pixel
538 place one of two possible linear constraints on s, depending
539 on which disambiguation of the surface normal is chosen.
540 Suppose that we know the correct disambiguation of
541 the normals and that we stack them to form the matrix
542 Ntrue 2 R

K�3 and stack the unpolarised intensities in the

543 vector i ¼ ½iunðu1Þ . . . iunðuKÞ�
T . In this case, the light

544 source s that satisfiesNtrues ¼ i is given by

s ¼ Nþ
truei; (31)

546546

547 where Nþ
true is the pseudoinverse of Ntrue. However, for any

548 invertible 3� 3 linear transform G 2 GLð3Þ, it is also true
549 that NtrueG

�1Gs ¼ i, and so Gs is also a solution using the
550 transformed normals NtrueG

�1. The only such G where
551 NtrueG

�1 would remain consistent with the zenith and
552 phase angles implied by the polarisation image is G ¼ T,
553 i.e. where the azimuth angle of every true surface normal is
554 shifted by p. Hence, if we did not know the correct disam-
555 biguation then s is a solution with normals Ntrue but Ts is
556 also a solution with normalsNtrueT. Note that T is a general-
557 ised Bas-relief (GBR) transformation [6] with parameters
558 m ¼ 0, n ¼ 0 and � ¼ �1. In other words, it corresponds to
559 the binary convex/concave ambiguity. Hence, from a polar-
560 isation image with unknown lighting, we will be unable to
561 distinguish the true normals and lighting from those trans-
562 formed by T. Since T is a GBR transformation, the trans-
563 formed normals remain integrable and correspond to a
564 negation of the true surface. This is a global, binary ambigu-
565 ity. In Fig. 5, either the black or orange interpretation corre-
566 sponds to Ntrue, but from the polarisation image alone we

567do not know which. To transform from black to orange or
568vice versa, all the normals are transformed by T.

5695.2 Minimal Solutions

570In practice, we will not have the correct disambiguations to
571hand. We consider the minimum number of observations
572necessary to find the light source direction (up to the binary
573ambiguity) when only the ambiguous polarisation normals
574are known. Suppose that N 2 RK�3 contains one of the
5752K possible disambiguations of the K surface normals, i.e.
576Nj ¼ �nðujÞ or Nj ¼ T�nðujÞ. If N is a valid disambiguation
577(i.e.N ¼ Ntrue orN ¼ NtrueT), then (with no noise) we expect:
578Ns ¼ NNþi ¼ i. We can see in a straightforward way that
579three pixels will be insufficient to distinguish a valid from
580an invalid disambiguation. When K ¼ 3, Nþ ¼ N�1 and so
581NNþ ¼ I3 and hence the condition is satisfied by any combi-
582nation of disambiguations. The reason for this is that s has
583three degrees of freedom and so, apart from degenerate
584cases, any three linear equations in swill have a solution, i.e.
585any combination of transformed or untransformed normals
586will allow an s to be found that satisfies all three equations.
587However, the problem becomes well posed for K > 3.
588We now require that the system of linear equations is con-
589sistent and has a unique solution. If some, but not all, of the
590normals are transformed from their true directions then the
591system of equations will be inconsistent. By the Rouch�e–
592Capelli theorem3 [28], consistency and uniqueness requires
593rankðNÞ ¼ rank N i½ �ð Þ ¼ 3. This suggests an approach for
594simultaneous disambiguation and light source estimation
595for the minimal case of K ¼ 4. We consider each of the 16
596possible normal matricesN in turn until we find one satisfy-
597ing the rank condition. For this N we find s by (31) and the
598true light source is either s or Ts. The pseudocode for this
599approach is given in Algorithm 1.

600Algorithm 1.Minimal Solution for Lighting

601Inputs:
602Vector of unpolarised intensities, i 2 R4

603Ambiguous polarisation normals, �nj 2 R
3, j 2 f1; . . . ; 4g

604Output: Estimated light source, s 2 R3

6051: // Generate all binary strings4 of length 4
6062: P :¼ binaryStrings ð4Þ
6073: // Pi;j is the jth digit of the ith string
6084: for i :¼ 1 to 24 do
6095: // Generate ith disambiguation
6106: for j :¼ 1 to 4 do

6117: Nj :¼
�nj if Pi;j ¼ 0

T�nj otherwise

�

6128: end for
6139: if rankðNÞ ¼ rank N i½ �ð Þ ¼ 3 then
61410: s :¼ Nþi
61511: return s
61612: end if
61713: end for

Fig. 5. Illustration of ambiguity using a 1D surface viewed from above.
Polarisation normals are locally ambiguous (green versus red), leading
to 24 possible disambiguations. With unknown lighting direction, the
introduction of shading information reduces the ambiguity to a global,
binary one. For the shading images at the bottom, the two possible
disambiguations are black versus orange with the resulting local disam-
biguations shown in green.

3. The Rouch�e–Capelli theorem states that a system of linear equa-
tions Qx ¼ y, y 2 Rd, has a solution if and only if rankðQÞ ¼
rankð Q y½ �Þ and the solution is unique if and only if rankðQÞ ¼ d.

4 The function binaryStringsðKÞ returns a 2K �K matrix containing
all binary strings of length K such that each element of the matrix con-
tains 0 or 1 and the ith row of the matrix contains the ith string.
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618 5.3 Least Squares Combinatorial Lighting
619 Estimation

620 With real data, we expect �n and i to be noisy. Therefore, the
621 minimal system of equations corresponding to the correct
622 disambiguation may not permit an exact solution. Instead, a
623 least squares solution using all data is preferable. Following
624 the combinatorial approach in Section 5.2, we could build
625 all 2K possible systems of linear equations, i.e.

�nðu1Þ �nðu2Þ . . . �nðuKÞ½ �T s ¼ i;

T�nðu1Þ �nðu2Þ . . . �nðuKÞ½ �T s ¼ i;

�nðu1Þ T�nðu2Þ . . . �nðuKÞ½ �T s ¼ i;

..

.

T�nðu1Þ T�nðu2Þ . . . T�nðuKÞ½ �T s ¼ i;

(32)

627627

628 solve them in a least squares sense and take the one with
629 minimal residual as the solution. Pseudocode for this
630 approach is given in Algorithm 2. However, this is NP-hard
631 and impractical for any non-trivial value ofK.

632 Algorithm 2. Least Squares Combinatorial Lighting
633 Estimation

634 Inputs:
635 Vector of unpolarised intensities, i 2 RK ,K � 4

636 Ambiguous polarisation normals, �nj 2 R
3, j 2 f1; . . . ;Kg

637 Output: Estimated light source, s
 2 R3

638 1: "
 :¼ 1
639 2: P :¼ binaryStrings ðKÞ
640 3: for i :¼ 1 to 2K do
641 4: for j :¼ 1 toK do

642 5: Nj :¼
�nj if Pi;j ¼ 0
T�nj otherwise

�

643 6: end for
644 7: s :¼ Nþi
645 8: " :¼ kNs� ik2

646 9: if " < "
 then
647 10: "
 :¼ "
648 11: s
 :¼ s
649 12: end if
650 13: end for
651 14: return s


652 5.4 Alternating Optimisation and Assignment

653 Since the unknown illumination is only 3D and we have a
654 polarisation observation for every pixel, the systems of
655 equations in (5.3) are highly over-constrained since K � 3,
656 hence the least squares solutions are very robust. We can
657 write a continuous optimisation problem whose global min-
658 ima would coincide with the lowest residual system in (5.3)

s
 ¼ arg min
s2R3

X

K

j¼1

min rjðsÞ
2; tjðsÞ

2
h i

; (33)

660660

661 where rj is the residual with the untransformed normal

rjðsÞ ¼ �nðujÞ � s� iunðujÞ; (34)663663

664and tj the residual with the transformed normal

tjðsÞ ¼ ðT�nðujÞÞ � s� iunðujÞ: (35)

666666

667An expression of this form is non-convex since the mini-
668mum of two convex functions is not convex [29]. However,
669(33) can be efficiently optimised using alternating assign-
670ment and optimisation. We find that, in practice, this almost
671always converges to the global minimum even with a ran-
672dom initialisation. In the assignment step, given an estimate
673for the light source at iteration w, sðwÞ, we choose from each
674ambiguous pair of normals (i.e. �n or T�n) the one that yields
675minimal error under illumination sðwÞ

N
ðwÞ
j :¼

�nðujÞ if rjðs
ðwÞÞ2 < tjðs

ðwÞÞ2;
T�nðujÞ otherwise:

�

(36)

677677

678At the optimisation step, we use the selected normals to
679compute the new light source by solving the linear least
680squares system via the pseudo-inverse

sðwþ1Þ :¼ ðNðwÞÞþi: (37)

682682

683These two steps are iterated to convergence. In all our experi-
684ments, this converged in < 10 iterations. This approach can
685be extended to spherical harmonic illumination [16].
686Note that the assignment step (36) disambiguates each
687surface normal locally (i.e. choosing between red and green
688in Fig. 5). The global convex/concave ambiguity described
689in Section 5.1 remains. To resolve this (i.e. to choose
690between black and orange in Fig. 5), we arbitrarily choose
691from the two possible light source directions the one that
692gives the surface height map with maximal volume.
693The alternating optimisation procedure can be viewed
694as simultaneously estimating illumination and shape. Since
695the assignment step resolves the ambiguity at each pixel,
696upon convergence we have a surface normal estimate for
697each pixel. However, this does not perform well because
698the surface normal estimates use only local information,
699are made independently at each pixel and the integrabil-
700ity constraint is only imposed during surface integration.
701These factors motivate the global method proposed in
702Section 4.

7036 ALBEDO ESTIMATION FROM A CALIBRATED

704POLARISATION IMAGE

705In Section 5, we assumed that albedo was uniform and
706estimated unknown lighting. We now present an alternative
707for the case of an object with spatially varying albedo. This
708requires that the illumination direction (but not necessarily
709its intensity) is known. Note that if we know only the
710direction of the illumination, but not its intensity, we can
711arbitrarily set ksk ¼ 1 and albedo is estimated up to an
712unknown global scale. Once albedo has been estimated, it
713can be divided out of the unpolarised intensity image
714and linear height estimation performed as in Section 4.
715We retain the same assumptions as Section 4.1 but can
716remove Assumption 8 since we now estimate spatially
717varying albedo.
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718 6.1 Locally Ambiguous Albedo Estimation

719 Introducing a spatially varying albedo aðuÞ 2 ½0; 1� to (30),
720 the unpolarised intensity with no noise is given by

iunðuÞ ¼ aðuÞ�nðuÞ � s or iunðuÞ ¼ aðuÞðT�nðuÞÞ � s: (38)
722722

723 With illumination known, we can estimate the local albedo
724 up to a binary ambiguity: aðuÞ ¼ a1ðuÞ or a2ðuÞwhere

a1ðuÞ ¼
iunðuÞ

�nðuÞ � s
; and a2ðuÞ ¼

iunðuÞ

ðT�nðuÞÞ � s
: (39)

726726

727 Note that, for pixels where the light source lies on the plane
728 bisecting the two possible surface normal directions, i.e.
729 �nðuÞ � s ¼ ðT�nðuÞÞ � s, the two expressions are equal and the
730 albedo is well-defined. Note also that the bound can be
731 tightened since aðuÞ � iunðuÞ=ksk.
732 However, in general there will be two possible solutions.
733 We cannot use the same approach as for lighting estimation
734 where the unknown lighting vector is only 3D but every
735 pixel provided a pair of possible constraints. Instead we
736 must exploit spatial smoothness and solve an optimisation
737 problem over the whole albedo map simultaneously. From
738 Assumption 2 and since the diffuse shading function (11) is
739 smooth, we can conclude that the shading itself is smooth
740 with no further assumptions. To emphasise: we do not need
741 to assume that the albedo itself is smooth.

742 6.2 Nonlinear Albedo Optimisation

743 The polarisation normals and, to a lesser extent, the lighting
744 and unpolarised intensities will be noisy. Hence, neither of
745 the two solutions in (39) may be a good estimate. For this
746 reason, we pose albedo estimation as a nonlinear optimisa-
747 tion problem in which (39) is only a data term which need
748 not be satisfied exactly

"dataðaÞ ¼
X

u2F

min aðuÞ � a1ðuÞð Þ2; aðuÞ � a2ðuÞð Þ2
h i

: (40)

750750

751 As with the objective function for lighting estimation, this is
752 non-convex. We augment the data term by a penalty that
753 measures the smoothness of the shading implied by the esti-
754 mated albedo, encouraging spatial smoothness of the solu-
755 tion. We evaluate this by convolving a Laplacian smoothing
756 kernel with the implied shading, d 2 RK

"smoothðaÞ ¼ kLdk2; with di ¼ iunðuiÞ=aðuiÞ; (41)
758758

759 where L performs the convolution, as in (21).
760 The overall optimisation problem is

a
 ¼ arg min
a

"dataðaÞþ�"smoothðaÞ;

s:t: iunðuÞ=ksk 	 aðuÞ 	 1;
(42)

762762

763 where � is the regularisation weight. We compute the cost
764 function gradient analytically, use sparse finite differences
765 to compute the Hessian and solve the minimisation prob-
766 lem with bound constraints on the albedo using the trust
767 region reflective algorithm. Since the data term is non-
768 convex we require a good initialisation. This is provided
769 by using a global convexity assumption to disambiguate

770the polarisation normals, as in [3], [4], and using this dis-
771ambiguation to select from (39).

7727 SPECULAR REFLECTION AND POLARISATION

773Many dielectric materials, including porcelain, skin, plastic
774and surfaces finished with gloss paint, exhibit “glossy”
775reflectance, i.e. in addition to subsurface diffuse reflectance,
776some light is reflected specularly through direct reflection at
777the air/surface interface. In order to allow surface height
778(Section 4) and albedo (Section 6) estimation to be applied
779to such objects, we propose some simple modifications
780to handle specular reflections. For lighting estimation on
781a glossy object, we simply apply the method in Section 5
782only to diffuse-labelled pixels.

7837.1 Additional Assumptions

784Weadd the following assumptions to those listed in Section 4.1,
785but in so doing remove the need forAssumption 7:

78611) Reflectance can be classified as diffuse dominant or
787specular dominant
78812) Specular reflection follows the Blinn-Phong model
789[30] with known uniform parameters
79013) Light source s is positioned in the same hemisphere
791as the viewer, i.e. v � s > 0.
792Assumption 11 is consistent with recent work [5], [7].

7937.2 Specular Labelling

794We label pixels as specular or diffuse dominant by thresh-
795olding a combination of three heuristics: 1. the degree of
796polarisation (r > 0:4 implies specular reflection), 2. the
797specular coefficient estimated by the dichromatic reflec-
798tance model [31], 3. the rank order of the intensity (we
799consider only the top 10 percent brightest pixels). We
800divide the foreground mask into two sets of pixels. A
801pixel u belongs either to the set of diffuse pixels, D;
802jDj ¼ D, or the set of specular pixels, S; jSj ¼ S, with
803F ¼ D [ S; jF j ¼ Dþ S. It follows from Assumptions 5
804and 2 (i.e. a point source illuminating a smooth surface)
805that specular-labelled pixels will be sparse.

8067.3 Specular Polarisation Model

807For specular reflection, the degree of polarisation is again
808related to the zenith angle (Fig. 4a, blue curve) as follows:

rsðuÞ ¼
2 sin ðuðuÞÞ2 cos ðuðuÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

h2 � sin ðuðuÞÞ2
q

h2 � sin ðuðuÞÞ2 � h2 sin ðuðuÞÞ2 þ 2 sin ðuðuÞÞ4
: (43)

810810

811This expression is problematic for two reasons: 1. it cannot
812be analytically inverted to solve for zenith angle, 2. there are
813two solutions. The first problem is overcome simply by
814using a lookup table and interpolation. The second problem
815is not an issue in practice. Specular reflections occur when
816the surface normal is approximately halfway between
817the viewer and light source directions. From Assumption
81813, specular pixels will never have a zenith angle > 45�.
819Hence, we can restrict (43) to this range and, therefore, a sin-
820gle solution. Based on this inversion of (43) we define the
821function fsðrsðuÞ; hÞ, similarly to (7), as
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fsðrsðuÞ; hÞ ¼ cos uðuÞ ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðuÞ2 þ qðuÞ2 þ 1

q : (44)
823823

824

825 In contrast to diffuse reflection, maximal polarisation for
826 specular reflection occurs when the polariser’s transmission
827 axis is perpendicular to the plane of incidence/reflection.
828 This means that the azimuth angle of the surface normal is
829 perpendicular to the phase of the specular polarisation [32]
830 leading to a p

2
shift

u 2 S ) aðuÞ ¼ fðuÞ � p=2ð Þ or fðuÞ þ p=2ð Þ: (45)
832832

833 Fig. 4b shows zenith angle estimates using the diffuse/
834 specular model on D/S respectively. In Fig. 4c we show the
835 cosine of the estimated zenith angle, a visualisation corre-
836 sponding to a Lambertian rendering with frontal lighting.

837 7.4 Specular Surface Gradient Constraints

838 In our earlier presentation of this work [16], we assumed that
839 specular-labelled pixels simply had a surface normal equal
840 to the halfway vector h ¼ ðsþ vÞ=ksþ vk. Here, we use an
841 explicit specular reflectance model-the Blinn-Phong model.
842 Although this is a non-physical model, it enables us to arrive
843 at linear equations in the surface gradient. Accordingly, the
844 unpolarised intensity for specular-labelled pixels is

u 2 S ) iunðuÞ ¼ nðuÞ � sþ ksðnðuÞ � hÞ
&; (46)

846846

847 where & is the shininess, ks the specular reflectivity and the
848 halfway vector h is constant across the image. Since diffuse
849 reflectance varies slowly with normal direction, we can use
850 the approximation nðuÞ � h to compute and subtract the
851 diffuse intensity from the unpolarised intensity of a specu-
852 lar pixel. Substituting this approximation into (46) and
853 rewriting it in terms of the surface gradient we obtain

ðiunðuÞ � h � sÞ
1
&

k
1=&
s

¼
�pðuÞhx � qðuÞhy þ hz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pðuÞ2 þ qðuÞ2 þ 1

q : (47)
855855

856

857 Expressing the polarisation and shading constraints for
858 specular pixels as linear equations is very similar to the dif-
859 fuse case. The phase angle provides exactly the same linear
860 constraint as (15), though we must substitute in the p

2
-shifted

861 phase angles. To obtain the linear equation analogous to
862 (16), we take a ratio between (47) and (44) yielding

ðiunðuÞ � h � sÞ
1
&

k
1=&
s fsðrsðuÞ; hÞ

¼ �pðuÞhx � qðuÞhy þ hz: (48)
864864

865Hence, we obtain two linear equations per pixel that can be
866combined with the diffuse equations and solved in a single
867linear least squares system of the form in (29).

8687.5 Diffuse Albedo Estimation in Specular Pixels

869We treat diffuse albedo estimation in specular pixels as an
870inpainting problem. This entails making a stricter assump-
871tion about spatial smoothness than in diffuse regions where
872we only needed to assume that the albedo-free shading was
873smooth. Specifically, we use an isotropic total variation
874prior [33] on the estimated albedo

"TVðaÞ¼
X

u2S[DS

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðuÞ � aðHðuÞÞ½ �2þ aðuÞ � aðV ðuÞÞ½ �2
q

; (49)

876876

877whereDS � D is the set of diffuse-labelled pixels that have a
878specular neighbour. HðuÞ is the coordinate of the horizontal
879neighbour of pixel u and V ðuÞ is the coordinate of its verti-
880cal neighbour. Total variation minimisation has proven to
881be a highly effective generic prior for tasks such as denoising
882[33] and inpainting [34]. In our case, it amounts to encourag-
883ing the albedo to be piecewise smooth in specular regions
884where we cannot use the smoothness prior on the shading.
885We add this prior to the nonlinear albedo objective in (42).
886We initialise diffuse pixels as described in Section 6.2 and
887then initialise specular pixels with the albedo value of the
888diffuse pixel that is closest in terms of euclidean distance in
889the image plane.

8908 EXPERIMENTAL RESULTS

891We now evaluate our illumination, albedo and surface
892height estimation methods on both synthetic and real data.
893We implement our methods in Matlab (full source code is
894available5) and run experiments on a MacBook Pro 2.7 GHz
895with 16 GB RAM. To construct and solve the linear system
896of equations required to estimate surface height takes
897around 1 second. The alternating optimisation to estimate
898illumination also takes around 1 second. Albedo estimation
899is the most computationally expensive part of our method,
900with the nonlinear optimisation taking around 20 seconds.
901For synthetic data, we render images of the Stanford
902bunny with a physically-based reflectance model appropri-
903ate for smooth dielectrics (Fig. 6a). For diffuse reflectance
904we use the Wolff model [35]. For specular reflectance we
905use Fresnel-modulated perfect mirror reflection. We vary
906the light source direction s ¼ ½ sin ðalÞ sin ðulÞ; cos ðalÞ sin

Fig. 6. Typical surface normal estimates (c-e) from noisy synthetic data (a). The inset sphere in (b) shows how surface orientation is visualised as a
colour. Results obtained by [3], [4] in (d) and [15] in (e) for comparison.

5. https://github.com/waps101/depth-from-polarisation
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907 ðulÞ; cos ðulÞ�
T over ul 2 f15�; 30�; 60�g and al 2 f0�; 90�; 180�;

908 270�g. We simulate the effect of polarisation according to (3),
909 (6) and (43) with varying polariser angle, add Gaussian noise
910 of standard deviation s, saturate and quantise to 8 bits. Illumi-
911 nation is modelled as a dense aggregate of 1,000 point sources,
912 distributed around s, and we aggregate the polarisation fields
913 over these sources. We estimate a polarisation image for each
914 noise/illumination condition and use this as input.
915 In order to evaluate our method on real world images,
916 we capture two datasets using a Canon EOS-1D X with an
917 EdmundOptics glass linear polarising filter. The first dataset
918 is captured in a dark room using a Lowel Prolight.We exper-
919 iment with both known and unknown lighting. For known
920 lighting, the approximate position of the light source is mea-
921 sured and to calibrate for unknown light source intensity
922 and surface albedo, we use the method in Section 5.4 to
923 compute the length of the light source vector, fixing its
924 direction to the measured one. The second dataset is cap-
925 tured outdoors on a sunny day using natural illumination.

926 8.1 Illumination Estimation

927 Table 1 (uniform albedo) shows the quantitative accuracy of
928 our light source estimate on synthetic data with s ¼ 0:5%

929(results with varying noise in supplementary material, avail-
930able online). We report mean angular error as a function of
931ul, averaging over al and 100 repetitions. There is a small
932increase in error with the zenith angle of the light source.

9338.2 Albedo Estimation

934We generate synthetic data in the same way as for lighting
935estimation, however this time we use a simple stripe pattern
936as the diffuse albedo map. A sample result is in Fig. 7 where
937an image from the input sequence is shown in (a), our result
938in (b) and ground truth in (c). The result is largely devoid of
939shading and successfully inpaints the albedo in specular
940regions. Once the estimated albedo is divided out from the
941unpolarised intensity image, we are able to estimate a
942height map, the surface normals of which are shown in
943Fig. 7d. The edges in the albedo map cause no artefacts in
944the estimated surface. Table 1 (varying albedo part) shows
945quantitative results for albedo estimation, in terms of the
946Root-Mean-Square (RMS) error between estimated and
947ground truth albedo. We show two qualitative albedo esti-
948mation results for real images in Figs. 8 and 12. Again, the
949albedo maps appear largely invariant to shading and suc-
950cessfully inpaint texture in specular regions.

9518.3 Surface Height Estimation

952Finally, we evaluate surface height estimation using our
953method in Section 4. We compare to the only previous
954methods applicable to a single polarisation image: 1. bound-
955ary propagation [3], [4] and 2. Lambertian shading disam-
956biguation [15]. The second method requires known light
957source direction and albedo and so for both this and for our

TABLE 1
Quantitative Results on Synthetic Data (s ¼ 0:5%)

ul
Light

(degrees)
Albedo Method

Height
(pixels)

Normal
(degrees)

Uniform albedo

15� 0:62� N/A

Oursgt 10.9 8.50
Oursest 10.8 8.49

[15]gt 54.8 29.6
[15]est 48.8 26.8
[3], [4] 44.4 9.16

30� 1:03� N/A

Oursgt 9.80 6.86
Oursest 9.66 6.81

[15]gt 70.1 27.9
[15]est 62.0 25.1
[3], [4] 56.3 13.3

60� 8:14� N/A

Oursgt 9.66 6.88

Oursest 8.66 7.07
[15]gt 217 29.7
[15]est 213 28.5
[3], [4] 205 20.3

Varying albedo

15� N/A 0.075
Ours 14.72 19.89

[3], [4] 69.3 24.7

30� N/A 0.11
Ours 17.79 21.96

[3], [4] 176 35.6

60� N/A 0.17
Ours 14.09 17.44

[3], [4] 240 38.4

Fig. 7. From noisy synthetic data (a) we estimate a spatially varying albedo
map (b). Ground truth is shown in (c). Surface normals (d) of height map
estimated from (a) once estimated albedo has been divided out.

Fig. 8. Qualitative estimation results on a real teapot with varying albedo.
Input (left), estimated albedo (middle), estimated surface normals (right).

Fig. 9. Qualitative comparison against [3], [4] and [15] on real world data. Light source direction = ½2 0 7�. For our method we show estimated surface
height, normals, relit surface and texture mapped surface. For the comparison methods we show normals and relit surface.
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958 method,we provide resultswith ground truth lighting/albedo
959 (“gt”) and lighting/albedo estimated using the methods
960 described in Section 5/Section 6 (“est”). For the comparison
961 methods,we compute a heightmapusing least squares surface
962 integration, as in [36]. For our method, we compute surface
963 normals using a bicubic fit to the estimated heightmap.

964We show typical results in Figs. 6c, 6d, and 6e and quan-
965titative results in Table 1 (RMS height error and mean angu-
966lar surface normal error averaged over al and 100 repeats
967for each setting; best result for each setting emboldened).
968The boundary propagation methods [3], [4] assume convex-
969ity, meaning that internal concavities are incorrectly recov-
970ered. The Lambertian method [15] exhibits high frequency
971noise since solutions are purely local. Both methods also
972contain errors in specular regions and propagate errors
973from normal estimation into the integrated surface. Quanti-
974tatively, the result with estimated lighting is slightly better
975than with ground truth. We believe that this is because it
976enables the method to partially compensate for noise. Per-
977formance is worse in the presence of varying albedo. The
978flattening artefacts visible in Figs. 6c, 7d and 8 (right) is a
979limitation of SfP. For small zenith angles, polarisation pro-
980vides only a weak cue and the smoothness prior dominates.
981We show a qualitative comparison between our method
982and the two reference methods in Fig. 9 using known light-
983ing. The comparison methods exhibit the same artefacts as
984on synthetic data. Some of the noise in the normals is
985removed by the smoothing effect of surface integration but
986concave/convex errors in [3], [4] grossly distort the overall
987shape, while the surface details of the wings are lost by [15].
988In Figs. 10, 11 and 12 we show qualitative results of our
989method on a range of material types, under a variety of
990known or estimated illumination conditions (both indoor
991point source and outdoor uncontrolled) and with uniform

Fig. 10. Qualitative results indoorswith point light source and uniformalbedo.

Fig. 11. Qualitative results outdoors on a sunny day and uniform albedo.

12 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. X, XXXXX 2018



992 or varying albedo. Note that our method is able to recover
993 the fine surface detail of the skin of the lemon and orange
994 under both point source and natural illumination. For the
995 varying albedo example in Fig. 12, note that there are no tex-
996 ture transfer artefacts in the estimated shape (i.e. changes in
997 albedo are not interpreted as changes in surface orientation).
998 To evaluate the influence of the priors described in
999 Sections 4.7 and 4.8, we conducted an ablation study (see sup-

1000 plementary material, available online). On synthetic data, in
1001 the presence of noise, removing the smoothness prior typically
1002 increases surface normal error by around 20 percent. Remov-
1003 ing the boundary prior increases the error by 5 percent and
1004 removing both priors increases the errors by 30 percent. See
1005 Figs. 13 and 14 for a qualitative visualisation of their influence.
1006 The smoothness prior helps reduce sensitivity to high fre-
1007 quency noise but also avoids a “checkerboard” effect resulting
1008 from central difference gradient approximations The convex-
1009 ity prior is helpful for data that are noisy close to the occluding
1010 boundary, for example when some background is included
1011 in the foregroundmask. This is commonwith real data.

1012 9 CONCLUSIONS

1013 We have presented the first SfP technique in which polarisa-
1014 tion constraints are expressed directly in terms of surface

1015height. Moreover, through careful construction of these
1016equations, we ensure that they are linear and so height esti-
1017mation is simply a linear least squares problem. The SfP cue
1018is often described as being locally ambiguous. We have
1019shown that, in fact, even with unknown lighting the diffuse
1020unpolarised intensity image restricts the uncertainty to a
1021global convex/concave ambiguity. Our method is practi-
1022cally useful, enabling monocular, passive surface height
1023estimation even in outdoor lighting.
1024There are many ways that this work can be extended and
1025improved. First, we would like to relax some of the assump-
1026tions. Rather than assuming that pixels are specular or dif-
1027fuse dominant, we would like allow for mixtures of the two
1028polarisation models. Instead of assuming Lambertian and
1029Blinn-Phong reflectance models, an alternative would be to
1030fit a BRDF model directly to the ambiguous polarisation
1031normals, potentially allowing single shot BRDF and shape
1032estimation. Second, linearising the objective functions by
1033taking ratios means that we are solving a somewhat
1034different optimisation problem to that addressed in previ-
1035ous literature. The linear solution could be used as an initi-
1036alisation for a subsequent nonlinear optimisation over all
1037unknowns of an objective function that can be directly
1038related to a model of noise in the original data. Third, the
1039minimal solution for light source estimation in Section 5.2
1040may lend itself to a robust light source estimation method,
1041for example using RANSAC. This may improve robustness
1042to outliers. Finally, we would like to explore combining our
1043method with other cues. Since we directly compute height
1044(or relative depth) it would be easy to combine the method
1045with cues such as stereo or structure-from-motion that
1046directly provide metric depth estimates.
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