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Abstract: This paper develops and applies a novel method for inferring land cover/land use (LCLU)
change that combines direct multi-date classification with measures from a change vector analysis.
The model predicts change directly rather than the land cover at either time, although these could be
inferred. Unsupervised classifications of bi-temporal imagery were manually labeled and used to
generate reference data for class-to-class changes. These were used to train a Random Forest model
with inputs from the bi-temporal image bands and change vector measures (change vector direction,
angle and the spectral angle) and used to generate a predicted surface of land cover change for a
case study in the Pearl River Delta, China. The overall accuracy of LCLU change prediction was
96% and specific class-to-class changes had errors rates of 0–12.8%. Some errors were related the
semi-automated labeling of the training data. The spectral angle variables and Near Infra-Red image
bands for both years were found to be strong predictors of change. Odd ratios were used to quantify
regional differences in land cover change rates in urban and peri-urban areas. The regional differences
and origins of the observed errors are discussed, along with some areas of further work. The key
contributions of this paper are the focus on change rather than LCLU through the construction
of a model to predict changes directly and the development of an approach that provides quick,
effective and informative analysis of LCLU change in support of policy and planning in rapidly
urbanizing areas.
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1. Introduction

Understanding land cover and land use (LCLU) change is important [1,2]. LCLU changes are
caused by human activity and natural processes [2,3]. Accurate and timely measures of LCLU change
can inform local decision making and planning [4]. Remote sensing data provide an opportunity to
monitor land surfaces both spatially and temporally. This paper proposes and applies a change vector
analysis (CVA) of land cover and land use change. It combines direct multi-date classification [5] with
CVA measures (magnitude, spectral direction and spectral angle) and with image band reflectance
values. These are used to train a Random Forest model of LCLU change. The predictive models of
class-to-class changes are applied to bi-temporal Landsat data to estimate LCLU changes for a case
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study in the Pearl River Delta, China. This paper reflects a shift in emphasis in current approaches to
LCLU monitoring away from a focus of LCLU states towards one of LCLU change processes, although
inevitably the former are associated with the latter. It seeks to quantify change processes and, in so
doing, build on approaches and philosophies being applied in large scale land cover inventories [6,7].
These focus explicitly on process (LCLU change) rather than state (the LCLU class label), and do
not seek to map land cover per se, rather they consider the strength of the signal of difference in
imagery over time. The analysis presented in this paper has a similar focus on the identification of
LCLU change as the primary analysis objective as in [6,7] but does this using methods that can be
used in resource and infrastructure poor situations. The approach is to generate and manually label
bi-temporal unsupervised LCLU layers from which reference data are sampled. These are used to
calculate class-to-class change vectors and image characteristics which are used as inputs to train a
classification model. The model is then used to predict and label land cover change directly and to
quantify rates of urbanization.

There are many different approaches to land cover change detection methods and thorough
reviews of these are provided by Hussain et al. [8], Tewkesbury et al. [9] and Zhu [10]. Commonly
applied approaches include image differencing (e.g., [11]), image ratio and transformation (e.g., [12]),
change vector analysis (CVA) (e.g., [13,14]) and post classification comparison (PCC) (e.g., [15,16]).
The PCC approach is the most widely applied and reported in the literature [9] but requires input
data (classified maps) with accuracies that are beyond operational capacity of most land cover
monitoring initiatives [4,17–20]. Generally, PCC should not be used, even though it is conceptually
elegant. CVA approaches characterize class-to-class change vectors in bi-temporal image feature
space. They require the characteristics of change to be known [8,21] and the trajectories of changes in
multi-dimensional image feature space to be sufficiently distinct and statistically separable. Thus, there
are three core challenges for any direct multi-date approaches to LCLU change, whether supervised or
unsupervised: the need for large amounts of reference data to sufficiently characterize each bi-temporal
change class, the potential for high variability of any given change and the sensitivity of any approach
to image mis-registration including Landsat [22].

Because of these challenges, many large scale operational LCLU inventories have adopted
approaches that first focus on identifying any LCLU change and then update baseline inventories
retrospectively. Gómez et al. [23] provided a theoretical review. This generic approach represents a
significant shift in the way that LCLU inventory and update are undertaken from satellite imagery
(e.g., [24]), aerial photography (e.g., [25]) and historical LCLU data updates (e.g., [26]). Philosophically,
these approaches represent a shift from a focus on the crisp, Boolean, object-based concept of land
cover [27], to one based on processes and fields, in which the attributes or qualities of LCLU are
evaluated (e.g., [21]). The focus on identifying change processes can be seen in many recent reports of
large inventories [6,7] which seek to determine whether the signals of change are sufficiently strong to
be accepted and if so only then are LCLU class labels retrospectively updated. They are underpinned
by access to long, wide and deep archives of time series data [28] that form large spatiotemporal
data cubes [29,30], and by the provision of Analysis Ready Data (ARD). ARD reduce pre-processing
prior to analysis and include the latest image calibration and corrections to improve consistency and
comparability of results. ARD are “stackable” such that a given pixel through time represents the same
physical ground location.

However, the large-scale inventory approaches to LCLU change described above require resources
and infrastructures that may be beyond many applications, especially in less developed countries,
where measures of LCLU change are required to, for example, understand the dynamics of urbanization
processes. PCC approaches require classified LCLU accuracies that are simply not possible, ARD are
not available and the problems of variability in change signals and image co-registration persist. In this
context, pragmatic, reproducible and easily applied approaches for generating reliable snapshots of
LCLU change are needed. There are advantages to methods for determining LCLU change that focus
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only on processes rather than seeking to determine states. A modified Change Vector Analysis (CVA)
offers a method that is potentially able to do this.

Classic CVA [31] determines the change in position in image feature spaces (for example,
composed Landsat image bands) of LCLU objects, usually pixels, over time. At each time, the
object vector from the origin is determined in the feature space. The change vector is the difference
between vectors at different times, with the change vector direction indicative of the type of LCLU
change and its length indicative of the magnitude of change, which together can be used to label
change [32]. Magnitude is usually a simple Euclidean distance measure and is used to quantify
change extent (e.g., [33,34]). The underpinning idea is that vector magnitude indicates changes in
image radiance, but contains only limited thematic information, and the direction indicates the type of
change. The key considerations in CVA are how to define the feature space within which the vectors
are calculated—that is which image bands and variables to include—and whether to transform them.
Carvalho Júnior et al. [13] noted that a 2D feature space is often defined because of the difficulty in
interpreting the vectors calculated over an n-dimensional feature space [35]. However, feature space
selection may be driven by the application. Bovolo and Bruzzone [32], for example, used a 2D feature
space of Landsat bands 3 and 4 to map burnt area changes. Thus, determining which bands to use
requires a degree of prior knowledge of the changes under investigation [35]. Because of the difficulty
of working with change vectors defined in multi-dimensional feature spaces, data transformations
are frequently applied to reduce the dimensionality of the data. Commonly applied transformation
approaches include tasseled cap [36–39] and principle components analysis [3,40]. In both cases, the
original image data are transformed to new sets of variables and care has to be given to both input
selection and interpreting the meaning of the outputs [35]. A final consideration in CVA research
is the use of the Spectral Angle Mapper (SAM) [13]. SAM approaches generate similarity measures
for vectors defined over n-dimensional space from their inner product, and, although they do not
provide information about land cover change, they have been used to inform CVA applications [13].
Bovolo et al. [35] argued that such developments in CVA have the potential for a universal change
detection framework.

The aim of this research was to quantify the LCLU change processes, and not necessarily the
start and end states. Two main approaches to LCLU change have been adopted: supervised and
unsupervised methods [5,41]. Supervised approaches are based on supervised classification methods
and require the availability of multi-temporal reference data. Unsupervised ones make a direct
comparison of the two multispectral images without relying on any additional information. Here,
a hybrid approach was applied which manually labeled broad scale unsupervised classifications of
images at both dates. These reference data were randomly selected from the center of homogenously
classified regions to avoid edge and bi-temporal image mis-registration effects which are well known
in Landsat data [22]. The reference data were used to construct a set of change vectors from which
vector characteristics were calculated (magnitude, spectral direction and spectral angle) for each
labeled change. These were used to train statistical classifier and used to predict class-to-class change,
including no change. Regional variations in LCLU change were determined using the methods
described in Comber et al. [42]. This is a novel approach for determining LCLU change, one that uses
measures derived from change vectors and applied to bi-temporal image data. The analysis has an
explicit focus on the change vector measures, and not the individual vectors at Time 1 and Time 2.

2. Materials and Methods

2.1. Data and Study Area

The Pearl River Delta is located in southern part of China (Figure 1a). It has a humid climate
that results in rainy weather all year around and annual precipitation and average temperature
of ~1500 mm and 23 ◦C, respectively. This region is rich in natural vegetation with a dense river
and drainage network and the climate supports a variety of agricultural systems including banana,
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pineapple, carambola, mango and grapefruit plantations. The urban area is surrounded by natural and
semi-natural land cover types. The region has a number of large, active economic centers including
the cities of Guangzhou, Shenzhen and Hong Kong which have experienced long and sustained
urbanization. Two sub-regions of 400 by 400 pixels with an area of 144 km2 each were selected for
comparison to represent urban and peri-urban contexts (Figure 1b,c). Region 1 was characterized by
high density settlements located in the core urban area and Region 2 by high levels of agricultural
activities located in the peri-urban area. Both regions are subject to highly intensive human activity
and disturbance and provide proto-typical examples of contrasting but common land use mixes. These
two areas were selected to support a deeper discussion of the results.
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Figure 1. (a) The study area of the Pearl River Delta with Landsat 8 imagery for 2017 (in Red (band 4),
Green (band 3), Blue (band 2) true color composites) and 2 sub-regions indicated in red (Region 1) and
blue (Region 2), respectively. The two sub-regions (b) Region 1 and (c) Region 2 are shown in true color.

Medium resolution Landsat data support regional monitoring due to their consistent quality,
radiometric and spectral resolution [43]. Two cloud free Landsat-8 Operational Land Imager scenes
(path/row: 122/44) from 2013 and 2017 were selected for the change analysis with similar seasonal dates
(29 November 2013 and 23 November 2017) to reduce phenology effects [4]. The atmospheric-corrected
data were obtained through the USGS EarthExplorer and detailed information about this product
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can be found at https://lta.cr.usgs.gov/L8Level2SR. Six spectral bands were used in the analysis:
Blue (0.450 µm–0.515 µm), Green (0.525 µm–0.600 µm), Red (0.630 µm–0.680 µm), Near-infrared
(NIR) (0.845 µm–0.885 µm), Short-wavelength infrared 1 (SWIR1) (1.560 µm–1.660 µm) and SWIR2
(2.100 µm–2.300 µm). No atmospheric correction was undertaken because of the unsupervised
approach (see detail below). The data were rescaled and the co-registration of the two images was
confirmed using a geographic link function in ENVI software (ITT visual information solutions,
Boulder, CO, USA).

2.2. Methods Overview

The analysis steps to model and identify changes between 2013 and 2017 from bi-temporal imagery
are shown in Figure 2. The process was as follows. First, a series of unsupervised classifications were
undertaken using a minimum distance approach with percentage change threshold of 2% and a
maximum of 10 iterations. The aim of these was to identify an appropriate classification scheme for this
study area. This determined a set of seven classes that could be reliably identified in each image which
were then manually labeled. Then, class-to-class training data were selected and labeled automatically
with the change classes from the 2013 and 2017 unsupervised classifications. For each class-to-class
pair, including no change class pairs, 100 sample locations were selected from within homogenous
areas and subjected to a 70/30 training and validation split. From these, the start and end coordinates
in six-dimensional image space from the 2013 and 2017 coupled images were determined for each
sample and three change vector variables were calculated: magnitude, spectral direction and spectral
angle. Thus, the reference samples were labeled with the from-to change classes and contained 15
predictor variables of the six spectral bands for each year and the three derived vector measures. These
were used input parameters to a Random Forest classifier to create a predictive model of land cover
change. The model was then applied to the combined bi-temporal Landsat images to predict change
areas. Finally, regional comparisons were undertaken to compare the magnitude and direction of
change in different landscape contexts.
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Figure 2. The flowchart of the methods applied in this study.

2.3. Land Cover Classes

Iterative investigations of un-supervised classifications confirmed that seven LCLU classes could
be identified reliably and repeatably in both images that characterized the mix of land cover and land

https://lta.cr.usgs.gov/L8Level2SR
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use in the study area. The seven classes included Low-albedo Impervious Surface (LIS), High-albedo
Impervious Surface (HIS), Water (WT), Fishing ponds (FP), Vegetation (VG), Crops (CP), and Bare Soil
(BS). These are listed in Table 1 with more detailed descriptions of each class.

It was important that the classification scheme adequately characterized the different land uses
in the study area, and one that specifically supported inference about the nature of urban expansion
whilst at the same time offered sufficient spectral difference between the classes for them to be
reliably identified. As a result, some land covers were split (water and impervious surface) because
of their different spectral characteristics associated with different land uses and intensities of land
use. For example, HIS has high reflectance because of metal roofs and is commonly found in newly
developed suburban areas, whereas LIS is more commonly founded in older urban areas with building
materials eroded by air pollution and rain. The difference between WT (water) and FP (fishing
ponds) relates to the presence of elements such as vegetation in fishing ponds with the result that
the NIR is higher for fishing ponds due to chlorophyll. The difference between VG (vegetation) and
CP (crop) relates to the vegetation intensity as recorded in normalized difference vegetation index
(NDVI). Vegetation here refers to perennial woody plants or grasses that are not harvested, such
that chlorophyll accumulates resulting in a high NDVI. By contrast, crops are harvested annually
(sometimes twice) and hence have a lower NDVI value than vegetation.

Table 1. Land cover classification scheme in this study.

Class Label Description

HIS Impervious surface with high reflectance, including metal roofs, new concrete road.
LIS Impervious surface with low reflectance, including old concrete road, asphalt road etc.
WT Water, including reservoirs, main river channels.
FP Fishing ponds, artificial frequently with fishes and/or vegetation.
CP Crops and vegetation with low NDVI.
VG Vegetation with woody plant (trees, shrubs, or lianas) and perennial grasses.
BS Bare soil surface devoid of any plant material.

2.4. From-to Land Cover Changes

Training samples were labeled from the Landsat images and from historical Google Earth images
as needed. A false-color combination in RGB (4-5-3) was used to identify the vegetation and water
classes. A true color combination in RGB (4-3-2) was used to identify Bare Soil (BS) and to distinguish
it from other classes, especially from impervious surface classes. In theory, there are 49 possible
class-to-class pairs of change and no-change. Not all of the possible combinations were evaluated.
Specifically, because of the aim of understanding urbanization in the Pearl River Delta, changes in
impervious surface quality (HIS and LIS), amongst the water classes (WT and FP) and between the
vegetation, crop and soil classes were ignored. The 32 class change pairs that were considered are
summarized in Table 2.

Table 2. The “from-to” land cover change matrix (IS, impervious surface; WT, water; FP, fishing ponds;
VG, vegetation; CP, crop; BS, bare soil).

Initial Class
(from 2013)

Final Class (to 2017)

HIS LIS WT FP VG CP BS

HIS X X X X X
LIS X X X X X
WT X X X X X
FP X X X X X
VG X X X X
CP X X X X
BS X X X X
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2.5. Constructing “from-to” Training Samples

The 2012 and 2017 spectral properties of each land cover change sample data were linked together
for each training pixel in the form {XBLUE, XGREEN, XRED, XNIR, XSWIR1, XSWIR2, YBLUE, YGREEN, YRED,
YNIR, YSWIR1, YSWIR2}, where X and Y refer to 2013 and 2017 data, respectively. For each sample pixel,
the distance, magnitude, change vector direction angle and spectral angle were determined from these.

First, the distance d, for each image band pair was calculated:

di = Yi − Xi (1)

Then, the magnitude of the change in reflectance intensity ED, was calculated:

ED =

√
n

∑
i=1

d2
i , ED ∈ [ 0, max (ED)] (2)

There are a number of alternatives for determining change vector direction angle [17,44]. Here,
the approach proposed by Bovolo et al. [45] was chosen as in Equation (3) to describe the change vector
direction angle (DA):

DA = cos−1
[

∑n
i di√

n ∗ ED

]
, α ∈ [ 0,π] (3)

Finally, the spectral angle mapper (SAM) records the angle between two vectors [46] as described
in Equation (4):

SAM = cos−1
[

∑n
i Yi ∗ Xi

‖Yi‖‖Xi‖

]
(4)

where the Xi and Yi represent the spectral information of initial and final stage (2013 and 2017 in this
study). ‖ ‖ represents the length of each vector.

After these calculations, the final training samples could be denoted as {XBLUE, XGREEN, XRED,
XNIR, XSWIR1, XSWIR2, YBLUE, YGREEN, YRED, YNIR, YSWIR1, YSWIR2, ED, DA, SAM}. Thus, the resulting
training data included 12 variables from the Landsat 8 image bands of 2013 and 2017, and the derived
change vector variables (direction, angle and the spectral angle). These variables were used to train a
Random Forest model.

2.6. Random Forest Classifier

The Random Forest (RF) classifier is an ensemble classifier that uses a set of classification and
regression trees to make a predictive model [47]. RF uses training sets to generate multiple (deep)
decision trees and have been found to solve some of the problems of over-fitting with other decision
trees. When predicting, each tree predicts a result and each result is weighted by the number of votes
it receives. The final classification is obtained after some degree of convergence in fitting and majority
voting. The number of trees (Ntree) and the number of variables randomly sampled as candidates at
each split (Mtry) are two important parameters in the implementation of a RF classifier. The out of bag
(OOB) estimate provides a measure of the RF prediction error and an assessment of the accuracy of
model. Studies have reported that setting Ntree = 500 is appropriate as the errors are stable around this
number [36]. A tuning function in the randomForest R package was used to determine the optimal
Mtry parameter. The RF was used to generate a land cover change model. This was then applied to
combined 2013 and 2017 image data, plus the three derived vector measures—ED, DA and SAM—to
generate a predicated map of land cover change. The accuracy of the RF classification was evaluated
using 30% of the reference data samples that were withheld.

2.7. Inter-Regional Analysis

To explore indicative differences in land cover change in different types of regions in the study
areas, the ratio of the odds of change between Region 1 and Region 2 was calculated, as described in
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Comber et al. [42]. These approaches can be used to compare per class differences in change, specific
class-to-class changes as well as regional differences. The ratio of change, θ, is as follows:

θ =
Odds(change|Region 1 )
Odds(change|Region 2 )

(5)

where θ equals or is near to 1, then change is equally likely in each treatment (region, class, class-to-class
change). Essentially, what this approach does is compare the odds of change (i.e., it compares the
proportions of change and no change in different study areas (or regions).

3. Results

3.1. RF Classification

The accuracy of the RF classification was undertaken using a 70/30 training and validation split
of the reference data. Table 3 shows a correspondence matric of change class errors for the study area.
Overall accuracy was found to be 96% which corresponds to the model OOB classification error (4%).
Errors were associated with changes between Vegetation to Fishing Ponds (VG and FP) and Crops
(CP) with low and high intensity Impervious Surface (LIS and HIS). To confirm the reliability of the
approach and because of the out-of-bag error calculated on the training set may not be an unbiased
error estimator, a 10-fold cross-validated accuracy measure was determined. In this, the sample is
randomly partitioned into 10 equal subsamples and a single subsample is held back as the validation
data for each of these. Thus, nine subsamples are each used as training data and then compared with
the validation set. The results of doing this indicated a mean value the 10 accuracy measures was 0.964
(with a standard deviation of 0.0009).

The explanatory power of the input variables was evaluated using Mean Decrease Accuracy and
Mean Decrease Gini measures, explained in full in Louppe et al. [48]. In brief, a leave one out cross
validation approach is applied to determine the degree to which the inclusion of different variables
reduces the error. Figure 3 shows the relative importance of each of the input variables. In this case,
NIR in 2013 and SAM alone provide excellent linear separation (Mean Decrease Accuracy), whereas
the Mean Decrease Gini plots shows how each variable contributes to the homogeneity of the nodes
and leaves in the resulting RF model. Several characteristics are evident: for the spectral bands, NIR
band in 2013 had greater explanatory power than visible bands; for the three derived variables, SAM
was superior to Euclidean distance and change direction in improving the accuracy and the NIR in
2013 and SAM were found to have almost equal explanatory power; the contribution of other inputs
declined linearly except the SWIR2 in 2017 and Blue band in 2017; and SWIR2 in 2017 and Blue in 2017
were not as important as other features.
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Table 3. The correspondence matrix of observed change classes (rows) and predicted change class (columns).
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3.2. Overall Change to Impervious Surface

The RF model was then used to predict the LCLU change class for each pixel in the 2013 and
2017 imagery. The result included change and no change classes. Changes to Impervious Surface
(IS) [49] provide a critical indicator of urbanization. Changes and no changes to the two IS classes
were collapsed and are summarized in Table 4 where the Loss value indicates the amount of IS in 2013
that changed to another class in 2017 and the Gain value indicates the amount of IS in 2017 that was
a different class in 2013. The unchanged remaining IS area was found to be 2957.8 km2, the gains to
IS were 1502.4 km2 and the losses were 757.3 km2. The locales of IS change (loses and gains) and no
change are mapped in Figure 4. The unchanged areas are found mostly in the core urban areas with
the gains found mostly in the peri-urban area around the urban fringe, as would be expected.

Table 4. The total area of changed and un-changed Impervious Surface in km2.

Change Area: Loss Change Area: Gain Remaining (No-Change)

757.3 1502.4 2957.8
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3.3. Per Class. Changes to/from Impervious Surface

Detailed land cover changes are shown in Figure 5 and summarized in Table 5. The most common
loss was found between Impervious Surface (LIS and HIS) and Bare Soil (BS), fishing ponds (FP) and
crops (CP). In Region 1, an area located near the urban center characterized by high-density settlements
and buildings, the rate of land cover changes was high (Figures 4b and 5b). In Region 2, an area with
high levels of agricultural activity near the Pearl River estuary (Figures 4c and 5c), the rate of land
cover changes was also high, but mainly found in the margins of unchanged agricultural land.
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The overall prediction accuracies for impervious surface related changes are shown in Table 5 and
the likely error directions are indicated in Table 3. For LCLU transitions involving Impervious Surfaces
classes, the accuracy was around 0.95, with some classes showing lower overall accuracy rates: CP to
HIS, LIS to FP, and FP to LIS which were 0.87 and 0.90, 0.93, respectively.

Table 5. Area and accuracy of each changed class (IS-related only).

Loss Class Area (km2) Accuracy Gain Class Area (km2) Accuracy

HIS to WT 3.51 0.98 WT to LIS 4.29 0.97
HIS to FP 150.75 0.98 WT to HIS 5.87 1.00
HIS to VG 20.57 1.00 FP to LIS 26.61 0.93
HIS to CP 70.74 1.00 FP to HIS 191.20 0.98
HIS to BS 412.99 1.00 VG to LIS 15.16 0.95
LIS to WT 0.86 0.97 VG to HIS 16.28 0.98
LIS to FP 11.37 0.90 CP to LIS 97.58 0.91
LIS to VG 0.15 0.98 CP to HIS 107.70 0.87
LIS to CP 4.59 0.98 BS to LIS 650.87 0.93
LIS to BS 81.79 0.98 BS to HIS 386.80 1.00

Figure 6 shows detail of some example areas. These changes are typical of the transitions observed
in the study areas: from crop to IS as development occurs, from fishing pond to IS as development
(in this case a road) in agricultural areas, and from IS to Bare Soil. The latter transition is counter to
other findings which have suggested the development permanency of IS once established (e.g., [50]).
However, in reality, rapid urban functional change does occur under development scenarios in dynamic
urban environments.
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3.4. Inter.-Region Analysis of Region 1 and Region 2

Region 1 was characterized by high density settlements located in the core urban area.
The distribution of land cover changes in Region 1 are shown in Figure 7. The dominant LCLU
type was IS (the two classes LIS and HIS are collapsed for the remainder of the results), most of
which remained unchanged. The large-scale changes are between IS and BS (both losses and gains).
More generally, the distribution of IS from agriculture were mostly located at the outer edge of the city
regions. The area of water related classes has not changed much in his region.
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Figure 7. Impervious Surface related land changes in Region 1.

Table 6 quantifies the LCLU transitions in Region 1. This region is dominated by IS, with 49% of
the area remaining unchanged. There are much fewer losses to IS than gains, fewer changes to and
from natural land covers such as Water (WT) and Vegetation (VG) and much greater changes to and
from agricultural types such as Fishing Ponds (FP) and Crop (CP), associated with development: the
gains in IS gains are conversions from Water, Fishing Ponds, Vegetation and Crops and there are also
intra-class changes between LIS and HIS which are not shown here.

Table 6. Summary of land cover changes in Impervious Surface in in Regions 1 and 2 in pixels (IS,
impervious surface; WT, water; FP, fishing ponds; VG, vegetation; CP, crop; BS, bare soil).

IS Loss IS Gain

R1 R2 R1 R2

WT 0 98 9 104
FP 1729 2946 4188 4631
VG 0 4 47 326
CP 229 1316 1852 2377
BS 6078 2686 11,489 1721

R1 R2

No change 79,003 7503
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The distribution of land cover changes for Region 2 are shown in Figure 8. Region 2 is
characterized by high levels of agricultural activity (Fishing Ponds and crop classes) and is located in
the peri-urban area. Such regions contain distributed human settlements. The changes between IS with
Crops and Fishing Pond dominated this region. The conversions from agriculture types demonstrate
that impact of human settlement in this region, despite it being more rural in character. These changes
are also indicated in Table 6, which quantifies the IS gains from Fishing Ponds, vegetation, and crops,
and also shows that IS is converted to other LCLU types. This may be indicative of a misclassification
in this region between IS and Bare Soil due to their spectral similarity and a potential overestimation
of IS.
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It is also possible to quantify the regional differences in the probability of different changes
using relative odds ratios [42]. The relative likelihood of change to IS from any land cover class
was 6.7 times more likely in Region 2 (peri-urban) than in Region 1 (urban). Although seemingly
counter-intuitive, gross changes in the peri-urban region are more likely because in urban region have
already been developed (i.e., already contain much Impervious Surface) and further changes to that
class are regulated by local government and municipal authorities. There are fewer regulations in
agricultural regions and much more freedom for individual land owners to develop the land if they
wish. Further comparison of the differences in the relative likelihood of IS losses and gains are shown
in Table 7. This shows that, for example, the likelihood of change from IS to FP is 3.07 greater (0.326−1)
times in Region 2 than in Region 1. In general, losses from IS and gains to IS are more likely in Region
1 than in Region 2, except for losses to and gains from Bare Soil (BS).
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Table 7. The relative likelihood of land cover changes in Region 1 compared to Region 2 (IS, impervious
surface; WT, water; FP, fishing ponds; VG, vegetation; CP, crop; BS, bare soil). All of the likelihoods
were tested using χ2-test and found to have a p-value < 0.05.

Loss Class Likelihood Gain Class Likelihood

IS to WT 0.000 WT to IS 0.054
IS to FP 0.326 FP to IS 0.489
IS to VG 0.000 VG to IS 0.090
IS to CP 0.102 CP to IS 0.453
IS to BS 1.566 BS to IS 6.844

4. Discussion

This paper describes a modified change vector analysis approach for quantifying land cover
change in bi-temporal data that combines direct multi-date classification [5] with CVA measures
(magnitude, spectral direction and spectral angle) and image band reflectance values, and uses these to
train a Random Forest model of LCLU change. The method has not sought to identify change vectors
or land cover classes at either Time 1 (2013) or Time 2 (2017). Rather, it used the bi-temporal image
properties of labeled class-to-class transitions, with measures derived from the change vector (Euclidian
Distance, change vector Direction Angle and Spectral Angle Mapper) to train a Random Forest classifier.
The samples were automatically created from a supervised classification of Landsat images at both
dates that generated seven classes, which were manually labeled. The results are promising, with high
accuracies and the method provides an intuitive and quick way of quantifying the patterns of urban
growth and change that is of use to planners and policy makers who frequently want to quantify and
locate land cover/land use changes. The approach circumvents the problems associated with post
classification change [19] and does not require the technological, data and infrastructure resources
described in [7], although it operates under a similar philosophy: the identification of change is the
primary aim before updating the baseline. This paper has not sought to update any baseline.

The method is sensitive to the reliability of the unsupervised classification. Reference data were
selected from within homogenous areas to avoid edge and bi-temporal image mis-registration effects.
Some degree of automated reference data generation is needed simply because of dimensionality
imposed by trying to characterize transitions rather than start and end vectors: here, a seven-class
nomenclature was used (49 transitions) but it is not uncommon for land cover initiatives to have
12–20 classes (144–400 transition classes).

There are a number of areas of further work. First, this study considered bi-temporal data,
providing a snapshot of urban land use changes between two time periods. The analysis of
multi-temporal image data to provide a series of snapshots of change, covering both annual census
dates and seasonal changes, would support the investigation of specific urban processes such as urban
sprawl, landscape fragmentation and changes in land use diversity. Further, by considering different
regions, as was done here using the methods described in [42], local variations in these processes can
be quantified. Second, different model selection approaches will be investigated to determine which
variables to include for specific types of change. Here, all of the variables were included as potential
descriptors (predictors) of change and Figure 4 provides an indication of the relative utility of different
variables in this study. For example, during the reference data collection process, some water bodies in
urban regions (“Urban Water”) were labeled as Water, but may have been Fishing Ponds; Region 2 was
dominated by agriculture related types (Crops and Fishing Ponds) and here misclassifications were
found between Bare Soil and IS due to the similarity of their spectral characters. Typical spectral values
are shown in Figure 9 and illustrate the potential for these confusions. Hyperspectral images, especially
with high spectral information in SWIR bands, may be a solution to this problem. Third, the method
will be applied and evaluated in other environments, using different data, to further investigate
the potential applicability and limitations of the approach. It will be applied to multi-temporal
reference data to support analyses of the processes associated with changes land use in a large regional



Remote Sens. 2018, 10, 1578 17 of 20

analysis in the Loess Plateau, China, using MODIS data. The aim here will be to quantify the coupled
relationships between soil–water processes and multi-scale agro-ecosystem LCLU changes to evaluate
the impacts on landscape re-greening and restoration agricultural sustainability initiatives. Finally, a
further extension to this work is to examine fuzzy land cover class transitions [51,52]. Conceptualizing
change classes in this way, based on a fuzzy sets approach, would require second order vagueness
to be accommodated rather than a crisp, Boolean concept of change. This may address some of the
sub-pixel issues associated with urban impervious surface estimation and working with medium
resolution satellite imagery. Vague land cover change analysis could allow different memberships
to the set of “change” to be explored, either globally or on a per change class basis. Finally, many
large-scale operational monitoring initiatives use a sequence of change signals to generate increasingly
confirmatory evidence to support a hypothesis of object level change. Such evidence could be included
in the model specification by passing lagged image variables for Time 1 to Time n into the classification
algorithm rather than data from just two scenes.
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5. Conclusions

This analysis used information from bi-temporal imagery and change vectors to train a Random
Forest classifier, combining processes driven monitoring approaches being adopted by large national
inventories [7] and direct multi-date classification or multi-date direct comparison approaches [5,8].
It developed predictive models of LCLU change and no change from training data sampled from
manually labeled unsupervised classifications of remote sensing data. These were used as inputs to
a supervised change model to generate a surface of predicted class-to-class changes and no change.
Odds ratios were used to quantify inter-regional differences in LCLU change. The results indicate
that change vector derived variables (distance, direction angle and Spectral Angle Mapper) along
with bi-temporal image spectral properties provide a useful short-cut to accurate change detection.
This approach supports effective and informative analyses of LCLU change able to support policy and
planning in rapidly changing environments such as those experiencing urbanization. It is conceptually
elegant and can be very quickly applied, supporting the rapid generation of LCLU change data to
support policy.
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