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Abstract
We give lower and upper bounds on both the Lyapunov exponent and generalised
Lyapunov exponents for the random product of positive and negative shear matrices.
These types of random products arise in applications such as fluid stirring devices.
The bounds, obtained by considering invariant cones in tangent space, give excellent
accuracy compared to standard and general bounds, and are increasingly accurate with
increasing shear. Bounds on generalised exponents are useful for testing numerical
methods, since these exponents are difficult to compute in practice.

Keywords Random matrix product · Lyapunov exponent · Generalized Lyapunov
exponent

Mathematics Subject Classification 37H15 · 37A25 · 37D25

1 Introduction

Random matrix products have applications in a wide range of disciplines, such as
statistical and nuclear physics (Crisanti et al. 1993), population dynamics (Heyde
and Cohen 1985) and quantum mechanics (Bougerol and Lacroix 1985). Their rigor-
ous study began over sixty years ago, when Bellman (1954) studied the asymptotic
behaviour of products of random matrices with strictly positive entries, correspond-
ing to a weak law of large numbers. The seminal work of Furstenberg and Kesten
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strengthens this to a strong law for more general matrices. In particular, consider the
random product of N i.i.d. d × d matrices {A1, A2, . . . , Am},

MN =
N∏

k=1

Aik , ik ∈ {1, 2, . . . m}. (1)

The asymptotic growth of MN is typically quantified using a Lyapunov exponent.

Definition 1 The Lyapunov exponent λ is defined by

λ = lim
N→∞

1

N
E log‖MN ‖ (2)

where the limit exists, and where ‖·‖ is some (submultiplicative) matrix norm.

The Furstenberg–Kesten theorem (Furstenberg and Kesten (1960), Furstenberg
(1963)) states that the limit (2) exists, and is positive under fairly weak assumptions
on the Ai , satisfied by the matrices we will be using. The Lyapunov exponent can be
equivalently defined using a vector norm rather than a matrix norm, in a formulation
arguably more familiar in a dynamical systems context.

Definition 2 The Lyapunov exponent λ can be written

λ = lim
N→∞

1

N
E log‖X N ‖, X N = MN X0, (3)

whenever the limit exists.

The multiplicative ergodic theorem of Oseledets (1968) shows that the limit exists
almost surely, and that there are at most d distinct Lyapunov exponents. While the
above results apply to the general linear group GL(d,R) of d × d invertible matrices,
we are interested in the special linear group of 2 × 2 matrices of unit determinate,
SL(2,R), and in particular in shear matrices, which form one-parameter subgroups of
SL(2,R), since these arise naturally inmany problems of fluidmixing. Thismeans that
(3) takes on only two possible values, and since shear matrices have unit determinant,
the two Lyapunov exponents sum to zero. In this paper we use the formulation given
by Definition 2, and the choice of initial X0 will be clear.

The principle of mixing by chaotic advection can be briefly summarised as repeated
stretching in transverse directions (Ottino 1989; Sturman et al. 2006). Such behaviour
can be seen in the blinking vortex flow (Aref 1984), in which fluid is efficiently stirred
by the alternating operation of a pair of off-centre rotating rods (or vortices), resulting
in hyperbolic dynamics and exponential growth of fluid filaments. The development
of chaotic advection as a practical concept for fluid mixing has led to a wide variety
of theoretical, numerical and phenomenological methods for quantifying, predicting
and controlling mixing in an equally wide variety of application (Aref et al. 2017). For
example, many industrial mixing devices are designed on this basis, with the most fun-
damentalmodel being periodic application of transverse shearmatrices (D’Alessandro
et al. 1999; Stroock et al. 2002; Khakhar et al. 1987; Aref 1984). Although periodic
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Fig. 1 A random taffy puller for the sequence AB AB B A

composition is natural in many situations, there has also been interest in aperiodic pro-
tocols, and indeed an aperiodic sequence can produce improved mixing over periodic
sequences of shears (Kang et al. 2008; Pacheco et al. 2008). Mixing devices in which
the fluid stationarity is broken by time periodicity (rather than spatial periodicity),
such as blinking vortices, pulsed source–sink devices (Jones and Aref 1988; Stremler
and Cola 2006) and electro-osmotic mixers (Qian and Bau 2002; Pacheco et al. 2008),
can all be operated in an aperiodic, or random manner.

Another application of random matrices is for taffy pullers, devices for making
candy by stretching and folding that provide a paradigm for studying many aspects of
chaotic mixing (Boyland et al. 2000; Thiffeault and Finn 2006; Finn and Thiffeault
2011; Thiffeault 2018). Figure 1 shows such a device for three rods, with the taffy
being represented as a closed curve stretched on the rods. The key question is how fast
the taffy grows asymptotically. This is determined by the spectral radius of a product
of triangular matrices

A =
(
1 0
1 1

)
, B =

(
1 1
0 1

)
.

For the case inwhich the taffy puller is operated in the simplest periodicmanner, so that
the matrices A and B are alternated, this spectral radius is easily computed to be (3+√
5)/2, the largest eigenvalue of thematrix AB, the logarithmofwhich is theLyapunov

exponent for AB. This measure of exponential growth of taffy (corresponding to fluid
filaments in a mixing device) is equally easy to compute for other periodic sequences
of A and B, but when the sequence is chosen at random, this question becomes a
classic and famously difficult one in the theory of random products of matrices.

Allowing the shear factors to vary, that is, considering the matrices

A =
(
1 0
α 1

)
, B =

(
1 β

0 1

)
,

where α and β are parameters, allows the study of asymmetric mixing devices. These
matrices also constitute Dyson’s random chain model (1953) of vibrations of a one-
dimensional vibrating string consisting of pointmasses,whereα represents the spacing
between successive point masses β (Comtet and Tourigny 2017).

There is a paucity of exact results concerning Lyapunov exponents for random
matrices, as famously lamented by Kingman (1973, p. 897). One well-known upper
bound is easily derived from the submultiplicativity of ‖·‖. For two matrices chosen
with equal probability, let

Ek = 1

k
E log‖C‖, (4)
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with C ∈ Ak , where Ak is the set of all 2k products of matrices of length k. The
numbers Ek converge monotonically to λ from above as k → ∞ for any choice of
matrix norm, although according to (Protasov and Jungers 2013) the Euclidean norm
is usual. In Key (1990) the bound is described as “easy, if not efficient”, since the
number of matrix product calculations required increases exponentially with k.

Further progress in this direction has tended to be either for specific simple cases,
or algorithmic procedures leading to (sometimes very accurate) approximations. For
example, Key (1987) and Pincus (1985) discuss cases where the Lyapunov exponent
can be computed exactly, in particular when matrices can be grouped in commuting
blocks. Chassaing et al. (1984) establish the distribution for the matrix product, in
terms of a continued fraction, in the case that the matrices are 2 × 2 shear matri-
ces, but observe that even for these simple matrices, the Lyapunov exponent is still
unobtainable. A similar approach allowed Viswanath (2000) to give a formula for the
exponent in the case of matrices which give rise to a random Fibonacci sequence.
[This was extended by Janvresse et al. (2007).] An exact expression for λ as the sum
of a convergent series in the case for which one matrix is singular was given by Lima
and Rahibe (1994). Analytic expressions for λ have also been obtained for large,
sparse matrices (Cook and Derrida 1990), and for classes of 2 × 2 matrices in terms
of explicitly expressed probability distributions (Mannion 1993; Marklof et al. 2008).
Pollicott (2010) recently gave a cycle expansion formula that allows a very accurate
computation for a class of matrices. Protasov and Jungers (2013) obtain an efficient
algorithm for Lyapunov exponent bounds using invariant cones for matrices with non-
negative entries, concentrating on generality and efficiency. (They test their algorithm
on examples up to dimension 60.)

For the problems of passive scalar decay and random taffy pullers, knowledge of the
Lyapunov exponent is insufficient (Antonsen et al. 1996; Haynes and Vanneste 2005;
Thiffeault 2008). We require more refined information via the growth rate of the qth
moment of the matrix product norm. This is often characterised using generalised
Lyapunov exponents (Crisanti et al. 1988, 1993), which can be defined using a matrix
norm by

�mat(q) = lim
N→∞

1

N
logE‖MN ‖q . (5)

Here, we prefer a formulation using a vector norm.

Definition 3 The generalised Lyapunov exponent is defined by

�(q) = lim
N→∞

1

N
logE‖X N ‖q , (6)

where X N is as defined in (3)

Here, we must observe that (5) and (6) are not equivalent, particularly for q < 0.
There are even greater difficulties in computing generalised Lyapunov exponents
for products of random matrices, and various numerical schemes are proposed and
employed (Vanneste 2010). The rigorous bounds we obtain are thus useful for bench-
marking such numerical methods.
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The paper is organised as follows: In Sect. 2 we state our results. Section 3 is
devoted to test the accuracy of our bounds, in particular investigating numerically the
tightness of upper and lower bounds while using different norms. Section 4 contains
the construction of invariant cones and bounds on growth of vector norms required to
prove the theorems. We discuss possible extensions in Sect. 5.

2 Rigorous Bounds for Lyapunov Exponents

We derive rigorous and explicit bounds for Lyapunov exponents and generalised
Lyapunov exponents by reformulating the problem, grouping the matrices together.
Assume without loss of generality that the first matrix in the product (1) is A1 = A.
By grouping A’s and B’s together into J blocks, the random product (1) can be written

MNJ =
J∏

j=1

Aa j Bb j , a j + b j = n j ,

J∑

j=1

n j = NJ , (7)

with 1 ≤ ai , bi < ni , so ni ≥ 2. Now it is the ai and bi that are the i.i.d. random
variables, with identical probability distribution P(x) = 2−x , x ≥ 1.Hence, the length
of each block is governed by the joint distribution P(a, b) = P(a) P(b) = 2−(a+b).
We have the expected values Ea = Eb = 2, so En = 4.

Let us now take the specific matrices

A =
(
1 0
α 1

)
, B =

(
1 β

0 1

)
, Kab := Aa Bb =

(
1 bβ

aα 1 + aαbβ

)
. (8)

We consider first the case α, β > 0, for which Kab is positive definite, and hyperbolic
(that is, having eigenvalues off the unit circle) ∀a, b ≥ 1. Although our technique
holds for all positive α, β, we state our results for α, β ≥ 1. This is partly due to ease
of exposition, but also because in many applications α and β would be assumed to be
integers, so that a map induced by Kab is continuous on the 2-torus. In particular, the
algebraically simplest case α = β = 1 corresponds to the generators of the 3-braid
group seen in many studies of topological mixing (Boyland et al. 2000; Thiffeault and
Finn 2006; Finn and Thiffeault 2011).We then allow negative entries; in particular, we
consider α < 0 < β (note that α > 0 > β is essentially similar, while α < 0, β < 0 is
no different from the positive α, β case). Now hyperbolicity is only guaranteed when
the product |αβ| is sufficiently large, and we require this property to obtain our results.
We gain different bounds by considering different vector norms, a valid approach since
the limit in (3) is independent of the choice of norm. In particular, we will consider
the L1, L2 and L∞ norms. Which norm produces the most accurate bound depends
on α and β. This is easily discerned by computation.
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2.1 Lyapunov Exponents

Our theorems are stated in terms of infinite sums of products of an exponentially
decreasing term and a choice of (logarithm of) increasing algebraic function, and so
all obviously converge.

Theorem 1 The Lyapunov exponent λ(α, β) for the product MN for α, β ≥ 1 satisfies

max
k∈{1,2,∞}Lk(α, β) ≤ 4λ(α, β) ≤ min

k∈{1,2,∞}Uk(α, β)

where

Lk(α, β) =
∞∑

a,b=1

2−a−b logφk(a, b, α, β)

Uk(α, β) =
∞∑

a,b=1

2−a−b logψk(a, b, α, β),

and

φ1(a, b, α, β) = 1 + α
1+α

(a + bβ + aαbβ)

φ2(a, b, α, β) = min

⎧
⎨

⎩
((1 + aαbβ)2 + b2β2)1/2(

1
1+α2

(
α2(1 + a + aαbβ)2 + (1 + αbβ)2

))1/2

φ∞(a, b, α, β) = 1 + aαbβ

ψ1(a, b, α, β) = 1 + bβ + aαbβ

ψ2(a, b, α, β) =
(
1
2

(
2 + Caαbβ +

√
Caαbβ(Caαbβ + 4)

))1/2

ψ∞(a, b, α, β) = 1 + a + aαbβ

where Caαbβ = (aα + bβ)2 + (aαbβ)2.

Losing a little sharpness, the L∞-normbounds provide a pair of simpler expressions
with no infinite sums, stated in:

Corollary 1 The Lyapunov exponent λ(α, β) for the product MN for α, β ≥ 1 satisfies

κ + logαβ ≤ 4λ ≤ κ + log(
√

αβ + 1/
√

αβ) + 1
2 log(1 + αβ),

where

κ =
∞∑

a,b=1

2−a−b log ab ≈ 1.0157 . . . .
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Theorem 1 is obtained by considering a cone in tangent space which is invariant for
all a and b. We can improve these estimates by recognising that a smaller cone can be
used for certain iterates of the map. In particular, we use the fact that since ai and bi

are independent geometric distributions, P(a = b) = P(a > b) = P(b > a) to give

Theorem 2 The Lyapunov exponent λ(α, β) for the product MN for α, β ≥ 1 satisfies

max
k∈{1,2,∞} L̂k(α, β) ≤ 4λ(α, β) ≤ min

k∈{1,2,∞} Ûk(α, β)

where

L̂k(α, β) =
∞∑

a,b=1

2−a−b log

(
1

3

3∑

m=1

φ̂
(m)
k (a, b, α, β)

)

Ûk(α, β) =
∞∑

a,b=1

2−a−b log

(
1

3

3∑

m=1

ψ̂
(m)
k (a, b, α, β)

)
,

and

φ̂
(1)
1 (a, b, α, β) = φ1(a, b, α, β)

φ̂
(2)
1 (a, b, α, β) = α (αβ + 2) (aαbβ + bβ + 1) + (aα + 1) (αβ + 1)

α (αβ + β + 2) + 1

φ̂
(3)
1 (a, b, α, β) = α (2αβ + 3) (aαbβ + bβ + 1) + (aα + 1) (αβ + 1)

α (2αβ + β + 3) + 1

φ̂
(1)
2 (a, b, α, β) = φ2(a, b, α, β)

φ̂
(2)
2 (a, b, α, β) = min

⎧
⎪⎨

⎪⎩

((1 + aαbβ)2 + b2β2)1/2((
(1+αβ+αbβ(2+αβ))2+(aα(1+αβ)+α(2+αβ)(1+aαbβ)2

)

(1+αβ)2+α2(2+αβ)2

)1/2

φ̂
(3)
2 (a, b, α, β) = min

⎧
⎪⎨

⎪⎩

((1 + aαbβ)2 + b2β2)1/2((
(1+αβ+αbβ(3+2αβ))2+(aα(1+αβ)+α(3+2αβ)(1+aαbβ)2

)

(1+αβ)2+α2(3+2αβ)2

)1/2

φ̂(m)∞ (a, b, α, β) = φ∞(a, b, α, β) for m = 1, 2, 3

and

ψ̂
(m)
1 (a, b, α, β) = ψ1(a, b, α, β) for m = 1, 2, 3

ψ̂
(m)
2 (a, b, α, β) = ψ2(a, b, α, β) for m = 1, 2, 3

ψ̂(1)∞ (a, b, α, β) = ψ∞(a, b, α, β)

ψ̂(2)∞ (a, b, α, β) = 1 + aαbβ + a(1 + αβ)

2 + αβ

ψ̂(3)∞ (a, b, α, β) = 1 + aαbβ + a(1 + αβ)

3 + 2αβ
.
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2.2 Generalised Lyapunov Exponents

We can use the functions defined above to bound the generalised Lyapunov exponents
for each q:

Theorem 3 We have, for α, β ≥ 1,

4�(q, α, β) ≥
{
maxk∈{1,2,∞}

{
log

∑∞
a,b=1 2

−a−b(φk(a, b, α, β))q
}

q ≥ 0

maxk∈{1,2,∞}
{
log

∑∞
a,b=1 2

−a−b(ψk(a, b, α, β))q
}

q < 0

4�(q, α, β) ≤
{
mink∈{1,2,∞}

{
log

∑∞
a,b=1 2

−a−b(ψk(a, b, α, β))q
}

q ≥ 0

mink∈{1,2,∞}
{
log

∑∞
a,b=1 2

−a−b(φk(a, b, α, β))q
}

q < 0

and the more accurate expressions

4�(q, α, β) ≥
⎧
⎨

⎩
maxk∈{1,2,∞}

{
log 1

3

∑∞
a,b=1 2

−a−b ∑3
m=1(φ̂

(m)
k (a, b, α, β))q

}
q ≥ 0

maxk∈{1,2,∞}
{
log 1

3

∑∞
a,b=1 2

−a−b ∑3
m=1(ψ̂

(m)
k (a, b, α, β))q

}
q < 0

4�(q, α, β) ≤
⎧
⎨

⎩
mink∈{1,2,∞}

{
log 1

3

∑∞
a,b=1 2

−a−b ∑3
m=1(ψ̂

(m)
k (a, b, α, β))q

}
q ≥ 0

mink∈{1,2,∞}
{
log 1

3

∑∞
a,b=1 2

−a−b ∑3
m=1(φ̂

(m)
k (a, b, α, β))q

}
q < 0

with φk, ψk, φ̂
(m)
k and ψ̂

(m)
k defined as above.

An immediate observation is that since all the functions φ,ψ, φ̂
(m)
k and ψ̂

(m)
k are

greater than 1 for all a, b ≥ 1, α, β ≥ 0, and since
∑∞

a,b=1 2
−a−b = 1, the bounds

for �(q, α, β) grow from 0 for positive q and decay from zero for negative q. This
apparently contradicts Proposition 2 of Vanneste (2010), which states that there is
always a minimum in the curve for �(q), and in particular states that �(−2) = 0 if the
2-dimensional matrices in question have determinant 1. The existence of the invariant
cone for these shear matrices guarantees that a vector is expanded at every application
of A or B, which forces �(q) to be monotonic. In Vanneste (2010), the assumption
is made that the linear operator corresponding to the generalised Lyapunov exponent
has the same spectrum as its adjoint, a property precluded by the invariant cone. The
fact that φ,ψ, φ̂

(m)
k and ψ̂

(m)
k ≥ 1 is also the reason why φ and ψ exchange roles in

upper and lower bounds for positive and negative q.
When q is a positive integer, we can evaluate the bounds in Theorem 3 in many

cases simply by expanding the power q. Since

∞∑

a,b=1

2−a−banbm =
( ∞∑

a=1

2−aan

)( ∞∑

b=1

2−bbm

)
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such an expansion requires values of the polylogarithm Li−n( 12 ), defined by

Lis(z) =
∞∑

a=1

za

as
.

For integer n = −s we have special values

∞∑

a=1

2−aan = 1, 2, 6, 26, 150, 1082, 9366, . . . for n = 0, 1, 2, 3, 4, 5, 6, . . .

and so the L∞ norm, for example, gives

Corollary 2 Generalised Lyapunov exponents in the case α = β = 1 are bounded by:

1
4 log 5 ≤ �(1, 1, 1) ≤ 1

4 log 7
1
4 log 45 ≤ �(2, 1, 1) ≤ 1

4 log 79
1
4 log 797 ≤ �(3, 1, 1) ≤ 1

4 log 1543
1
4 log 25437 ≤ �(4, 1, 1) ≤ 1

4 log 50531
1
4 log 1290365 ≤ �(5, 1, 1) ≤ 1

4 log 2578567.

Theorem 3 also allows explicit estimates on topological entropy for the random
matrix product, given by the generalised Lyapunov exponent with q = 1.

Corollary 3 The topological entropy �(1, α, β) in the case α, β ≥ 1 is bounded by

log(1 + 4αβ) ≤ 4�(1, α, β) ≤ log(3 + 4αβ).

2.3 Matrices with Negative Entries

The case where the direction of one of the shears is reversed (that is, allowing negative
entries in the matrix) can be tackled in an almost identical manner, with one important
condition. Taking α < 0 < β (the case α > 0 > β is essentially identical), the
matrix K11 = AB is hyperbolic only when the product |αβ| > 4. In the following,
for simplicity, we will assume α < −2, β > 2 to achieve this.1

Theorem 4 The Lyapunov exponent λ(α, β) for the product MN in the case α <

−2, β > 2 satisfies

max
k∈{1,2,∞} L̃k(α, β) ≤ 4λ(α, β) ≤ min

k∈{1,2,∞} Ũk(α, β)

1 In fact, we might assume that α = −β. Otherwise we change coordinates, as in Przytycki (1983) to
(x,

√|α/β|y). But here we retain α �= −β to show explicitly the dependence of the bounds on choosing
unequal strengths of twists.
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where

L̃k(α, β) =
∞∑

a,b=1

2−a−b log φ̃k(a, b, α, β)

Ũk(α, β) =
∞∑

a,b=1

2−a−b log ψ̃k(a, b, α, β),

and

φ̃1(a, b, α, β) = 1
1−	

(bβ + 	 − aαbβ − 1 − aα	)

φ̃2(a, b, α, β) =
(

1
1+	2

(
(	 + bβ)2 + (1 + aα	 + aαbβ)2

))1/2

φ̃∞(a, b, α, β) = −aαbβ − aα	 − 1

ψ̃1(a, b, α, β) = bβ − aαbβ − 1

ψ̃2(a, b, α, β) = ((−aαbβ − 1)2 + b2β2)1/2

ψ̃∞(a, b, α, β) = −aαbβ − 1

where

	 = −β

2
+

√(
β

2

)2

+ β

α
.

Again we can straightforwardly improve on the lower bounds by considering sep-
arately the cases when either, or both, of a and b are equal to 1.

Theorem 5 The Lyapunov exponent λ(α, β) for the product MN in the case α <

−2, β > 2 satisfies

max
k∈{1,2,∞}

ˆ̃Lk(α, β) ≤ 4λ(α, β) ≤ ˆ̃U∞(α, β)

where

ˆ̃Lk(α, β) =
∞∑

a,b=1

2−a−b log
1

4

2∑

ma ,mb=1

ˆ̃
φ

(ma ,mb)
k (a, b, α, β)

ˆ̃U∞(α, β) =
∞∑

a,b=1

2−a−b log
1

4

4∑

m=1

ˆ̃
ψ(m)∞ (a, b, α, β)
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and

ˆ̃
φ

(ma ,mb)
1 (a, b, α, β) = 1

1−	ma ,mb

(
bβ + 	ma ,mb − aαbβ − 1 − aα	ma ,mb

)

ˆ̃
φ

(ma ,mb)
2 (a, b, α, β) =

(
1

1+	2
ma ,mb

(
(	ma ,mb + bβ)2 + (1 + aα	ma ,mb + aαbβ)2

))1/2

ˆ̃
φ(ma ,mb)∞ (a, b, α, β) = −aαbβ − aα	ma ,mb − 1

ˆ̃
ψ(1)∞ (a, b, α, β) = −aαbβ − 1 − aαβ/(1 + αβ))

ˆ̃
ψ(2)∞ (a, b, α, β) = −aαbβ − 1 − a

ˆ̃
ψ(3)∞ (a, b, α, β) = ˆ̃

ψ(4)∞ (a, b, α, β) = ψ̃∞(a, b, α, β)

with

	ma ,mb = 	 + mbβ

maα	 + mambαβ + 1
(9)

for ma, mb = 1, 2. Note that 	1,1 = L.

We could also write improved upper estimates using L1 and L2 norms, but since
these produce worse bounds than the L∞ norm in all cases we study here, we do not
give these explicitly.

As before, we can use the same estimates to give explicit bounds for generalised
Lyapunov exponents.

Theorem 6 We have, for α < −2 and β > 2,

4�(q, α, β) ≤
⎧
⎨

⎩
mink∈{1,2,∞}

{
log

∑∞
a,b=1 2

−a−b(φ̃k(a, b, α, β))q
}

q ≥ 0

mink∈{1,2,∞}
{
log

∑∞
a,b=1 2

−a−b(ψ̃k(a, b, α, β))q
}

q < 0

4�(q, α, β) ≥
⎧
⎨

⎩
maxk∈{1,2,∞}

{
log

∑∞
a,b=1 2

−a−b(ψ̃k(a, b, α, β))q
}

q ≥ 0

maxk∈{1,2,∞}
{
log

∑∞
a,b=1 2

−a−b(φ̃k(a, b, α, β))q
}

q < 0

and the more accurate, but more complicated expressions

4�(q, α, β) ≤

⎧
⎪⎨

⎪⎩

mink∈{1,2,∞}
{
log 1

4

∑∞
a,b=1 2

−a−b ∑2
ma=1

∑2
mb=1(

ˆ̃
φ

(ma ,mb)
k (a, b, α, β))q

}
q ≥ 0

mink∈{1,2,∞}
{
log 1

4

∑∞
a,b=1 2

−a−b ∑4
m=1(

ˆ̃
ψ

(m)
k (a, b, α, β))q

}
q < 0

4�(q, α, β) ≥

⎧
⎪⎨

⎪⎩

maxk∈{1,2,∞}
{
log 1

4

∑∞
a,b=1 2

−a−b ∑4
m=1(

ˆ̃
ψ

(m)
k (a, b, α, β))q

}
q ≥ 0

maxk∈{1,2,∞}
{
log 1

4

∑∞
a,b=1 2

−a−b ∑2
ma=1

∑2
mb=1(

ˆ̃
φ

(ma ,mb)
k (a, b, α, β))q

}
q < 0

with φ̃k, ψ̃k,
ˆ̃
φ

(ma ,mb)
k and ˆ̃

ψ
(m)
k defined as above.
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3 Accuracy of the Bounds

Our expressions are given as infinite sums, and a natural question is whether these
represent a meaningful improvement over the infinite product in the definition of
the Lyapunov exponent. The answer is yes—our expressions converge far faster than
computing (3) directly. In practice, to evaluate our bounds one will truncate the infinite
sum. Since all summands are positive, any truncation of a lower bound is also a
lower bound, and few terms are necessary to approximateLk(α, β)well. For example,
consider the L∞ norm. Truncating the sum after p terms, the error between L∞(1, 1)
and this approximation is (for p ≥ 2)

∞∑

a,b=p+1

2−a−b log(1 + ab) <

∞∑

a,b=p+1

2−a−bab = 4−p(p + 2)2.

This error decreases rapidly with p. For example, taking just p = 20 terms in the
truncation gives an error of around 10−9. Truncations of Uk(α, β) are of course not
rigorous upper bounds on the Lyapunov exponent, but again, taking around twenty
terms in the sum gives an evaluation of the rigorous upper bound to around 8 or 9
decimal places. By contrast, computing the actual value of λ(α, β) using a standard
algorithm (employing Gram–Schmidt orthonormalisation at each step) (Parker and
Chua 2012) takes typically 106 iterates to compute a value to within 3 decimal places.
As discussed above, generalised Lyapunov exponents are far more difficult to compute
with any accuracy.

3.1 Lyapunov Exponents

For α = β = 1 we have bounds on the Lyapunov exponent given in Table 1. The
lowest upper bound (U2) and largest lower bound (L̂1) differ by about 2.5%. The true
value [from explicit calculation via a standard algorithm (Parker and Chua 2012)] is
0.39625. . ., so the upper bound here is rather tighter than the lower.

Figure 2 shows the accuracy of each bound from Theorem 1 increasing as α

increases, with α = β ∈ [1, 10]. In Fig. 2a the bounds are all so close to the true
value of λ that the details of the graph are difficult to resolve. It is clear, however, that
the standard bound given by (4) (plotted in cyan) is a worse upper bound than all others

Table 1 Bounds to five significant figures for the maximal Lyapunov exponent for the matrix product (1)
in the case α = β = 1, where the true value (from numerical computation) is 0.39625. . .

Norm Invariant cone Smaller cones

Lower bound Upper bound Improved bounds

L1 L1(1, 1) = 0.36886 U1(1, 1) = 0.43835 L̂1(1, 1) = 0.38561

L2 L2(1, 1) = 0.36347 U2(1, 1) = 0.40277 L̂2(1, 1) = 0.36864

L∞ L∞(1, 1) = 0.34613 U∞(1, 1) = 0.43835 Û∞(1, 1) = 0.41350
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(a) (b)

(c) (d)

Fig. 2 Four different views of the accuracy of the upper and lower bounds for the Lyapunov exponent for
the random matrix product (1) for α = β ∈ [1, 10]. In each case, bounds obtained from different norms
are shown, in particular L1 (green), L2 (red) and L∞ (blue) are shown, with bounds from the global cone
shown dashed, and the improved cone shown as a solid line. When shown, the standard bound is cyan. a
Numerical estimate of the Lyapunov exponent obtained by random multiplication of the matrices (8), with
bounds as given in Theorem 1. Only the standard bound is appreciably far from the true value. b Errors in
bounds from numerically calculated value. c Difference between upper and lower bounds. d Envelope of
bounds when improved cone is included (Color figure online)

in the figure, despite being calculated from the expected value of matrix products of
length 212, and decreases in accuracy for this fixed k for increasing α.

Figure 2b shows the difference between the bounds and the true (numerically calcu-
lated) Lyapunov exponent. In this and other figures we colour bounds originating from
L1-, L2- and L∞-norms green, red and blue, respectively. It shows that for increasing
α, upper bounds (solid lines) appear tighter than lower bounds (dashed lines). In black
are shown the upper and lower bounds given in Corollary 1, which are typically worse
than those of Theorem 1, but have the advantage of being explicit, finite expressions
rather than infinite sums.

Figure 2c shows the envelope formed from the difference between upper and lower
bounds derived from each norm, which does not require the explicit numerical cal-
culation of the Lyapunov exponent to compute. To this figure we add, in Fig. 2d, the
corresponding bounds from Theorem 2 which improve on Theorem 1 by considering
the expected relation between the random variables ai and bi . In black is the envelope
formed from taking the minimum upper bound, and maximum lower bound for each
value of α. This improves on all bounds produced from a single norm.
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The increase in accuracy of the bounds with increasing strength of shear can be
understood geometrically, as the size of the cone narrows with increasing shear, and
dynamically, as the approach to the unstable eigenvalue is more rapid for matrices
whose largest eigenvalue is greater. In Figs. 2 and 4 it is clear that the upper and lower
bounds approach the same curve for large α = β. A simple calculation (using the
L∞-norm) gives

4λ ≥
∞∑

a,b=1

2−a−b log(1 + aαbβ)

≥
∞∑

a,b=1

2−a−b log(aαbβ)

=
∞∑

a,b=1

2−a−b log(ab) +
∞∑

a,b=1

2−a−b logαβ

≥ κ + logαβ.

Meanwhile, for large α, β we also have

4λ ≤
∞∑

a,b=1

2−a−b log(1 + a + aαbβ)

∼
∞∑

a,b=1

2−a−b log(aαbβ)

∼ κ + logαβ,

and this indeed appears to be the asymptotic limit in the graphs shown forα = β → ∞.

3.2 Generalised Lyapunov Exponents

In Fig. 3 we show bounds for generalised Lyapunov exponents for α = β = 1.
Equivalent figures are increasingly accurate with increasing α, β. Figure 3a confirms
that for this choice ofmatriceswe do not have �(−2) = 0, and that there is nominimum
in the curve of �(q). Green, red and blue lines again show bounds originating from
L1-, L2- and L∞-norms, respectively, with the explicit expressions from Corollary 2
shown as black circles. Figure 3b shows the envelope of the difference between upper
and lower bounds, for each norm, and, in black, the envelope of best combined bounds.

3.3 Negative Shears

Figure 4 shows the bounds for the case α < −2, β > 2. In these figures we set
α = −β, and observe that again, the increasing hyperbolicity from increasing |α|
results in improving bounds. In this case the L∞-norm always gives the minimal
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(a) (b)

Fig. 3 Bounds for the generalised Lyapunov exponent for the matrix product 8 with α = β = 1. As before,
estimates originating from L1-, L2- and L∞-norms are given in green, red and blue, respectively. For
integer values of q > 0, values from Corollary 2 are given as black circles. a The bounds confirm that the
curve of generalised Lyapunov exponents has no minimum at q = −2. b Difference between upper and
lower bounds. Dashed lines represent bounds from Theorem 1, while solid lines are those from 2. The black
line represents the minimal envelope over all norms, and thus our best bounds. (Color figure online)

(a) (b)

Fig. 4 Bounds for the negative entry case, in which α < −2, β > 2. In this case the L∞-norm always
produces the most accurate bounds. a Bounds from Theorem 4. b Envelope of bounds from Theorem 4,
shown dashed, and from Theorem 5, shown as solid lines.

envelope, as seen in Fig. 4b. Generalised Lyapunov exponents for α = −3, β = 3 are
shown in Fig. 5.

4 Bounds on the Growth of Vector Norms

4.1 Invariant Cones

We obtain bounds for Lyapunov exponents by computing explicit bounds for the norm
of tangent vectors under the action of Kab. The expression (2) is independent of the
matrix norm used, and we give bounds derived from three standard norms.

Lemma 1 The cone C+ = {(u, v) : 0 ≤ u/v ≤ 1/α} (shown in Fig. 6a) is invariant
under Kab for all a, b ≥ 1, and is the smallest such cone.
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(a) (b)

Fig. 5 Bounds for the generalised Lyapunov exponent for the matrix product 8 with α = −3, β = 3. As
before, estimates originating from L1-, L2- and L∞-norms are given in green, red and blue, respectively.
a The curve of generalised Lyapunov exponents for α < 0, β > 0. b Difference between upper and lower
bounds. Dashed lines represent bounds from Theorem 4, while solid lines are those from 5. The black line
represents the minimal envelope over all norms, and thus our best bounds (Color figure online).

C+

C+

u

v

u/v = 1
u/v = 1/α

v+

v−

u

v

u/v = −1

u/v = L

C−

C−

v+

v−

(a) (b)

Fig. 6 The invariant cones C+ and C− in both the α > 0 and α < 0 cases, with expanding and contracting
eigenvectors, v+ and v−, respectively, of the matrix K T

ab Kab . a The α > 0 case. Here, we show the cone
C+ for α > 1, where it lies inside the line u/v = 1. The expanding eigenvector v+ also lies inside the cone
C+, and so the orthogonal contracting eigenvector v− lies outside C+, and hence Lemma 3. b The α < 0
case. For αβ < −4, when thematrix Kab is hyperbolic, the coneC− lies inside the line u/v = L ∈ (−1, 0).
Both eigenvectors v+ and v− both lie outside the invariant cone for all α < −2, β < −2, which produces
Lemma 9

Proof The vector

(
u′
v′

)
=

(
1 bβ

aα 1 + aαbβ

) (
u
v

)

is such that

u′

v′ = u + bβv

aαu + (1 + aαbβ)v
≥ 0,
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clearly, and since au + abv ≥ u + bv for a ≥ 1, we also have u′/v′ ≤ 1/α.
Setting (a, b) = (1,∞) gives u′/v′ = 1/α, while setting (a, b) = (∞, 1) gives
u′/v′ = 0, showing that the cone cannot be made smaller. ��

Throughout this section, we will consider a vector X = (u, v)T ∈ C+, and assume
without loss of generality that u, v ≥ 1 (the calculations for u, v,< 0 are entirely
analogous). We will consider the norm of the vector Kab X , given by

Kab X =
(

u + bβv

aαu + (1 + aαbβ)v

)
.

First we consider the L1-norm, given by ‖X‖1 = |u| + |v|.
Lemma 2 The norm ‖Kab X‖1 for a vector X ∈ C+ satisfies

(i) the lower bound

‖Kab X‖1
‖X‖1 ≥ 1 + α

1+α
(a + bβ + aαbβ) ; (10)

(ii) the upper bound
‖Kab X‖1

‖X‖1 ≤ 1 + bβ + aαbβ. (11)

Proof For any X ∈ C+ we have ‖X‖1 = u + v. With a, b ≥ 1 we have

‖Kab X‖1
‖X‖1 = 1 + bβv + aαu + aαbβv

u + v
.

With α, β ≥ 1 this has no local minima or maxima in the cone C+. Thus, the lower
and upper bounds are attained at the boundaries of C+, given by (u, v) = ( 1

1+α
, α
1+α

)

and (u, v) = (0, 1), respectively. ��
For the L2-norm ‖X‖2 = √

u2 + v2, the calculations are more involved, but the
following holds:

Lemma 3 The norm ‖Kab X‖2 for a vector X ∈ C+ satisfies

(i) the lower bound

‖Kab X‖22
‖X‖22

≥ min
{
(1 + aαbβ)2 + b2β2 , 1

1+α2

(
α2(1 + a + aαbβ)2 + (1 + αbβ)2

)}
;

(12)
(ii) the upper bound

‖Kab X‖22
‖X‖22

≤ 1
2

(
2 + Caαbβ +

√
Caαbβ(Caαbβ + 4)

)
,

where Caαbβ := (aα + bβ)2 + (aαbβ)2. (13)
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Proof The real 2 × 2 matrix Kab is non-singular, and so ∀X ∈ R
2, ‖Kab X‖2‖X‖2 is

maximised (minimised) by ‖Kabv+‖2
‖v+‖2

( ‖Kabv−‖2
‖v−‖2

)
, where v+ (v−) is the eigenvector

corresponding to e+ (e−), the larger (smaller) eigenvalue of K T
ab Kab, by the defini-

tion of the spectral matrix norm (and by singular value decomposition). Moreover,
the value of ‖Kab X‖2‖X‖2 varies monotonically between these extremes. Since K T

ab Kab is
symmetric, v− and v+ are orthogonal.

The eigenvector v+ = (r , s) satisfies

r

s
= 2(aα(aαbβ + 1) + bβ)

Caαbβ − 2a2α2 + √Caαbβ(Caαbβ + 4)
. (14)

Clearly r > 0, while s = Caαbβ −2a2α2+√Caαbβ(Caαbβ + 4) > 2Caαbβ −2a2α2 =
2b2β2 + 4aαbβ + 2(aαbβ)2 > 0, and so v+ lies in the positive quadrant of tangent
space. Moreover, we have s > 2Caαbβ − 2a2α2 = 4aαbβ + 2b2β2 + 2aαbβ)2 >

2aα + 2bβ + 2a2α2bβ = r (since a, b, α, β ≥ 1), and so v+ ∈ C+, giving the upper
bound. The orthogonality of the eigenvectors then implies that v− /∈ C+, and the lower
bound is given by the minimum of the value of the spectral norm on the boundaries
of C+. ��

Next, consider the L∞-norm, given by ‖X‖∞ = max(|u|, |v|).
Lemma 4 The norm ‖Kab X‖∞ for a vector X ∈ C+ satisfies, for α ≥ 1,

(i) the lower bound
‖Kab X‖∞

‖X‖∞
≥ 1 + aαbβ ; (15)

(ii) the upper bound
‖Kab X‖∞

‖X‖∞
≤ 1 + a + aαbβ . (16)

Proof For α ≥ 1 we have ‖X‖∞ = v. Then

‖Kab X‖∞
‖X‖ = aα u

v
+ (1 + aαbβ).

This takes minimum and maximum values at minimum and maximum values of u/v,
respectively. For the cone C+ these are given by 0 and 1/α, and the bounds follow
immediately. ��

We can now use these bounds and the invariant cone to prove Theorem 1.

Proof of Theorem 1 Taking i.i.d. copies of Kab and defining X Nk = Kak bk X Nk−1 , k =
1, . . . , J , we have for an initial vector X0 ∈ C+,

‖X NJ ‖ = ‖KaJ bJ X NJ−1‖
‖X NJ−1‖

‖KaJ−1bJ−1 X NJ−2‖
‖X NJ−2‖

· · · ‖Ka1b1 X0‖
‖X0‖ . (17)
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By Lemma 1, each term in the product is a vector ∈ C+, and so is bounded according
to Lemmas 2, 3 and 4. Hence

(φk(a, b, α, β))J ≤ ‖X NJ ‖ ≤ (ψk(a, b, α, β))J

for k = 1, 2,∞. Now

λ = lim
N→∞

1

N
E log‖X N ‖ = lim

J→∞
1

4J
E log‖X NJ ‖ (18)

since En = 4, and so using the probability distribution P(a, b) we have

lim
J→∞

1

J

∞∑

a,b=1

2−a−b log(φk(a, b, α, β))J ≤ 4λ ≤ lim
J→∞

1

J

∞∑

a,b=1

2−a−b log(ψk(a, b, α, β))J

and hence

∞∑

a,b=1

2−a−b logφk(a, b, α, β) ≤ 4λ ≤
∞∑

a,b=1

2−a−b logψk(a, b, α, β)

as required. ��

To obtain Corollary 1 we select the algebraically simplest bounds (the L∞ bounds),
and evaluate the infinite sums where possible.

Proof of Corollary 1 The lower L∞ bound immediately gives:

4λ ≥
∞∑

a,b=1

2−a−b log(1 + aαbβ)

≥
∞∑

a,b=1

2−a−b log(aαbβ)

=
∞∑

a,b=1

2−a−b log ab + log(αβ)

∞∑

a,b=1

2−a−b

= κ + logαβ.
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A little more work is required for the upper bound. We have

4λ ≤
∞∑

a,b=1

2−a−b log(1 + a + aαbβ)

=
∞∑

a=1

2−a−1 log(1 + a + aαβ) +
∞∑

a=1

∞∑

b=2

2−a−b log(1 + a + aαbβ)

≤ 1
2

∞∑

a=1

2−a log
(

a(
√

αβ + 1/
√

αβ)2
)

+
∞∑

a=1

∞∑

b=2

2−a−b log(ab(1 + αβ))

since a
(√

αβ + 1/
√

αβ
)2 = a(αβ + 2 + 1/αβ) > aαβ + a + 1 for a ≥ 1, and

since ab(1+ αβ) > 1+ a + aαbβ for b ≥ 2. Then, the logarithms can be separated,
reinstating and subtracting the b = 1 term to the second term, to give

4λ ≤ 1
2

∞∑

a=1

2−a log a + log(
√

αβ + 1/
√

αβ) + κ

+ log(1 + αβ) −
∞∑

a=1

2−a−1 log a(1 + αβ)

and hence

4λ ≤ κ + log(
√

αβ + 1/
√

αβ) + 1
2 log(1 + αβ).

��

4.2 Cone Improvement

In this section we improve on the lower bound by considering the relationship between
two identical geometric distributions.

Lemma 5 When a and b are both i.i.d. geometric distributions with parameter 1/2,
we have

P(a = b) = P(a > b) = P(b > a) = 1/3.

Proof We have

P(a = b) =
∞∑

i=1

P(a = i ∩ b = i) =
∞∑

i=1

2−2i = 1/4

1 − 1/4
= 1

3
.

Then, the remaining two equalities follow by symmetry.
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Lemma 6 The cone C = {0 ≤ u
v

≤ 1
α
} is mapped into the following cones, in the

following cases:

1. when a < b, Kab(C) = C;
2. when a = b, Kab(C) = {0 ≤ u

v
≤ 1+αβ

2α+α2β
};

3. when a > b, Kab(C) = {0 ≤ u
v

≤ 1+αβ

3α+2α2β
}. Consequently, we have

φ
(m)
k (a, b, α, β) ≤ ‖Kab X‖

‖X‖ ≤ ψ
(m)
k (a, b, α, β),

for k = 1, 2,∞, and for m = 1, 2, 3 corresponding to the cases above, with φ
(m)
k

and ψ
(m)
k as given in Theorem 2.

Proof In each case, the cone boundary (0, 1)T is mapped onto (bβ, 1+aαbβ)T , which
lies arbitrarily close to (0, 1)T for large a, regardless of the relationship between
a and b, and for all α, β > 0. The other cone boundary (1, α)T is mapped onto
(1 + αbβ, 1 + aα + aαbβ)T , and then, we observe that:

1. if a = b, the ratio 1+aαβ

aα+α+a2α2β
is maximised when a = 1;

2. if a > b, the ratio 1+bαβ

aα+α+aα2bβ
is maximised when a = 2 and b = 1;

3. if b > a, the ratio 1+αbβ

aα+α+aα2bβ
approaches 1

α
for a = 1 and b → ∞.

Thebounds then followusing the samederivations as inLemmas2, 3 and4, substituting
these new cone boundaries where appropriate.

Proof of Theorem 2 This follows the same argument as Proof of Theorem 1, except
that whenever it happens that a = b, or a > b, on the following iterate the vector
‖Xi‖ is bounded according to Lemma 6. Since by Lemma 5 these conditions occur
on average 1/3 of the time, the result follows. ��

4.3 Negative Shears

As in Sect. 2.3, we reverse one of the shears, taking (without loss of generality)
α < −2, β > 2, with a, b > 0. Eigenvalues of Kab are then given by

e± = 2 + aαbβ ± √
aαbβ(aαbβ + 4)

2
.

The expanding eigenvalue e− has eigenvector (u, v)T with

u

v
= −bβ

2
+

√(
bβ

2

)2

+ bβ

aα
< 0.
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In the case α < −2 the minimal cone is bounded by this eigenvector when a = b = 1,
so setting

	 = −β

2
+

√(
β

2

)2

+ β

α
∈ (−1, 0)

we have:

Lemma 7 The cone C− = {(u, v) : 	 ≤ u/v ≤ 0} is invariant under Kab for all
a, b ≥ 1, and for all α < −2, β > 2, and is the smallest such cone.

Proof Without loss of generality wewill take an initial vector (u, v)with u < 0, v > 0
(an initial vector in the opposite sector proceeds exactly analogously) in C−, so that
−u < v and u > −v. Then, we consider

(
u′
v′

)
=

(
1 bβ

aα 1 + aαbβ

) (
u
v

)
=

(
u + bβv

aαu + (1 + aαbβ)v

)
.

Now u′ = u +bβv > v(bβ −1) > 0, and v′ = aαu + (1+aαbβ)v < aαu +u(−1−
aαbβ) = u(−aα(bβ − 1) − 1) < 0, and so u′/v′ < 0.

Since e− = 1 + β/	, the characteristic equation for K11 is α	2 + αβ	 − β = 0.
Then, since αβ	 > |α	2| (since β > 2 > |	|) we have aα	2 + aαβ	 − β ≥ 0 for
a ≥ 1. We also have aαβ	 > β, and so for b ≥ 1,

aα	2 + aαbβ	 − bβ ≥ 0

and hence

aα	2 + aαbβ	 + u

v
≥ bβ + u

v
.

Nowwe use the fact that |aαu/v| > |u/v| to replace two of these terms while respect-
ing the inequality:

aα	
u

v
+ aαbβ	 + 	 ≥ bβ + u

v
.

Rearranging then gives u′/v′ ≥ 	. This is the smallest such invariant cone, since
setting (a, b) = (1, 1) gives u′/v′ = 	 when u/v = 	, and setting (a, b) = (∞, 1)
gives u′/v′ = 0. ��

As before, the L∞−norm gives bounds easily:

Lemma 8 The norm ‖Kab X‖∞ for a vector X ∈ C−, when α < −2, β > 2, satisfies

(i) the lower bound
‖Kab X‖∞

‖X‖∞
≥ −aαbβ − aα	 − 1; (19)
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(ii) the upper bound
‖Kab X‖∞

‖X‖∞
≤ −aαbβ − 1. (20)

Proof Since 	 > −1, for any X ∈ C− we have ‖X‖∞ = |v| and since C− is invariant
under Kab, we have ‖Kab X‖∞/‖X‖∞ = |aα u

v
+ 1 + aαbβ|, which takes minimum

and maximum values at the boundaries (u, v) = (0, 1) and (u, v) = (	, 1) of the cone
C−, and the bounds follow immediately. ��

For this invariant cone, the L2-norm ‖·‖2 cannot attain the spectral maximum, and
the following holds:

Lemma 9 The norm ‖Kab X‖2 for a vector X ∈ C− satisfies

(i) the lower bound

‖Kab X‖22
‖X‖22

≥ 1
1+	2

(
(	 + bβ)2 + (1 + aα	 + aαbβ)2

)
; (21)

(ii) the upper bound
‖Kab X‖22

‖X‖22
≤ (1 + abαβ)2 + b2β2 . (22)

Proof As in Lemma 3, we consider eigenvectors of K T
ab Kab. For α < −2, β > 2,

the expanding eigenvector v+ = (r , s) still lies in the northeast–southwest quadrant,
outside C−. But since v− = (−s, r), we have

s = Caαbβ − 2a2α2 +
√

Caαbβ(Caαbβ + 4)

> 2Caαbβ − 2a2α2

> 4aαbβ + 2b2β2 + 22aα2b2β2

> 2aα + 2bβ + 2a2α2bβ

= r ,

and so −s/r < −1, and hence v− also lies outside C−. Since the norm in ques-
tion increases monotonically between the two extremes, neither of which lie in the
cone, the lower and upper bounds are achieved at the minimum and maximum values
(respectively) at the boundaries of C−. At the boundary given by (u, v) = (0, 1),

we have
‖Kab X‖22

‖X‖22
= b2β2 + (1 + aαbβ)2, while at the other boundary, given by

(u, v) = (	/
√
1 + 	2, 1/

√
1 + 	2), we have

‖Kab X‖22
‖X‖22

= 1
1+	2

(
(	 + bβ)2 + (1 + aα	 + aαbβ)2

)

< (	 + bβ)2 + (1 + aα	 + aαbβ)2

< b2β2 + (1 + aαbβ)2,

since −1 < 	 < 0. ��
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Lemma 10 The norm ‖Kab X‖1 for a vector X ∈ C− satisfies

(i) the lower bound

‖Kab X‖1
‖X‖1 ≥ 1

1−	
(bβ − aαbβ − 1 − 	(aα + 1)); (23)

(ii) the upper bound
‖Kab X‖1

‖X‖1 ≤ bβ − aαbβ − 1 . (24)

Proof With the L1-norm we have ‖Kab X‖1 = |u + bβv| + | − aαu + (1+ aαbβ)v|,
which takes the given values at the boundaries (u, v) = (0, 1) and (u, v) = (	/(1 −
	), 1/(1 − 	) of C−. ��
Proof of Theorem 4 This follows exactly the argument of Theorem 1, using Lemma 7
to guarantee an invariant cone, and using Lemmas 8, 9 and 10 to bound each term in
the matrix product. ��

4.4 Cone Improvement

In the α < 0 case we can make a significant improvement on the bounds given by
Theorem 4 by recognising that the boundary u/v = 	 of the cone C− can only be
achieved when a = b = 1, which occurs on average P(a = b = 1) = 1/4 of the
time. Whenever a or b (or both) is greater than 1, we can assume a smaller cone for
the following iterate. More precisely, since P(a = 1, b ≥ 2) = P(a ≥ 2, b = 1) =
P(a ≥ 2, b ≥ 2) = 1/4, we have

Lemma 11 The cone C− = {	 ≤ u
v

≤ 0} is mapped into the following cones with
equal probability:

1. When a = b = 1, Kab(C−) =
{
	 ≤ u

v
≤ β

1+αβ

}
;

2. when a ≥ 2, b = 1, Kab(C−) = {
	2,1 ≤ u

v
≤ 0

}
;

3. when a = 1, b ≥ 2, Kab(C−) = {
	1,2 ≤ u

v
≤ 1

α

}
;

4. when a ≥ 2, b ≥ 2, Kab(C−) = {
	2,2 ≤ u

v
≤ 0

}
.

These cones then produce the functions ˆ̃
φ

(ma ,mb)
k (a, b, α, β) and ˆ̃

ψ
(m)∞ (a, b, α, β), for

ma, mb = 1, 2 and m = 1, 2, 3 as detailed in Theorem 5.

Proof Any vector (u, v) is mapped by Kab into (u′, v′) such that

u′

v′ =
u
v

+ bβ

aα u
v

+ 1 + aαbβ
.

Inserting the boundaries of C−, given by u
v

= 0 and u
v

= 	 into this expression
produces the required inequalities. The bounding functions are then obtained using
analogous arguments to Lemmas 8, 9 and 10, with the new cone boundaries. ��
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Proof of Theorem 5 Again this follows the same argument as the Proof of Theorem 1,
using improved bounds given by Lemma 11, each of which applies 1/4 of the time,
on average.

4.5 Generalised Lyapunov Exponents

The expressions for �(q) can be obtained in largely the same way, bounding the
expansion of vectors at each application of matrix A or B.

Proof of Theorems 3 and 6 Using properties of expectation, and the independence of
‖Xi‖, we have

E‖X NJ ‖q = E

(‖KaJ bJ X NJ−1‖
‖X NJ−1‖

‖KaJ−1bJ−1 X NJ−2‖
‖X NJ−2‖

· · · ‖Ka1b1 X0‖
‖X0‖

)q

= E

(‖KaJ bJ X NJ−1‖
‖X NJ−1‖

)q

E

(‖KaJ−1bJ−1 X NJ−2‖
‖X NJ−2‖

)q

· · ·E
(‖Ka1b1 X0‖

‖X0‖
)q

and so since the ai , bi are i.i.d., we have

∞∑

a,b=1

2−a−bφq ≤ E‖X NJ ‖q ≤
∞∑

a,b=1

2−a−bψq .

Then, from the definition of �(q) given in (6) the results follow immediately. ��

5 Conclusions and Discussion

In this paper we addressed the question of obtaining rigorous bounds for Lyapunov
exponents, generalised Lyapunov exponents and topological entropy for randomised
mixing devices. The matrices under discussion are 2× 2 shear matrices, but a related
technique will work for any set of matrices that share an invariant cone. This notion is
proved formally in Protasov and Jungers (2013), who give a rapid algorithm involving
unconstrained minimisation problems. Here, the optimisation is achieved analytically,
giving explicit upper and lower bounds. We also obtain bounds in the novel case
of shear matrices with negative entries. A pair of hyperbolic matrices sharing an
invariant cone was shown to enjoy exponential decay of correlations in Ayyer and
Stenlund (2007), where the rate of decay depends on the Lyapunov exponent, but
here the Lyapunov exponent is simply bounded from below by global expansion and
contraction rates in the invariant cone. The method in this paper could be adapted to
tighten their lower bound, and provide an upper bound.

Bounds on generalised Lyapunov exponents are of particular interest since they
are known to be extremely difficult to compute numerically. Generalised Lyapunov
exponents are related to the L p-norm joint spectral radius, or p-radius, given, for a
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set of m matrices {A1, A2, . . . , Am}, by

ρp = lim
N→∞

⎡

⎣m−N
∑

B∈AN

‖B‖p

⎤

⎦
1/pN

= lim
N→∞

[
E‖MN ‖p]1/pN

, (25)

where as above, AN is the set of all m N products of matrices of length N . The
parameter q in (5) plays the same role as p in the L p-norm in (25), but the quantities
differ, since the generalised Lyapunov exponent uses a logarithm, while the p-radius
employs an N th root, to prevent the value from growing without bound. Nevertheless,
our method could be used to effectively bound the p-radius from above and below
quite straightforwardly.

The assumption that the matrices A and B should be chosen with equal probability
at each iterate can be relaxed. Altering these probabilities does not change the invari-
ant cone, or the resulting bounds on vector norms; only the probability distribution
P(a, b) = 2−a−b is changed. For example, replacing the geometric probability dis-
tribution with a Bernoulli distribution gives P(a, b) = paqb, and then Ea = q−1,
Eb = p−1, and En = (pq)−1. Similarly, one may choose from k matrices Ai with
probability pi at each iterate. The crucial element is that the expected length of a block
should be obtainable, as in (18) N iterates need to be equated with J blocks.

Theorem 2 improves on (1) by involving the relative values of a and b in one block
to shrink the cone for the next, in the three cases a = b, a < b and a > b. Similarly,
the nine cases comprising the relative values of a and b in two consecutive blocks
can increase the tightness of bounds in the following block. This procedure could be
extended to further improve bounds, but the number of cases increases exponentially—
in k blocks there are 3k combinations of relative values of a and b. Our original explicit
bounds are appealing in their simplicity and accuracy.
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