
Review doi:10.1093/rheumatology/key070

The rationale for Janus kinase inhibitors for the
treatment of spondyloarthritis

Douglas J. Veale1,2, Dennis McGonagle3,4, Iain B. McInnes5, James G. Krueger6,
Christopher T. Ritchlin7, Dirk Elewaut8, Keith S. Kanik9, Thijs Hendrikx10,
Gabriel Berstein11, Jennifer Hodge12 and Jean-Baptiste Telliez11

Abstract

The pathogenesis of SpA is multifactorial and involves a range of immune cell types and cytokines, many

of which utilize Janus kinase (JAK) pathways for signaling. In this review, we summarize the animal and

pre-clinical data that have demonstrated the effects of JAK blockade on the underlying molecular mech-

anisms of SpA and provide a rationale for JAK inhibition for the treatment of SpA. We also review the

available clinical trial data evaluating JAK inhibitors tofacitinib, baricitinib, peficitinib, filgotinib and upada-

citinib in PsA, AS and related inflammatory diseases, which have demonstrated the efficacy of these

agents across a range of SpA-associated disease manifestations. The available clinical trial data, sup-

ported by pre-clinical animal model studies demonstrate that JAK inhibition is a promising therapeutic

strategy for the treatment of SpA and may offer the potential for improvements in multiple articular and

extra-articular disease manifestations of PsA and AS.

Key words: spondyloarthropathies (including psoriatic arthritis), DMARDs, cytokines and inflammatory medi-
ators, bone, gastrointestinal, ligaments and tendons, skin, synovium

Rheumatology key messages

. Janus kinases mediate cytokine signaling for many immune cell responses underlying the pathogenesis of
spondyloarthritis.

. Janus kinase inhibition offers the potential for improvements in articular and extra-articular spondyloarthritis
disease manifestations.

. Tofacitinib and other Janus kinase inhibitors may provide clinically meaningful benefits for patients with
spondyloarthritis.

Introduction

SpA encompass PsA and AS, and a wider spectrum of

inflammatory diseases. In addition to skeletal involvement

encompassing peripheral arthritis, axial disease, isolated

enthesitis and dactylitis, PsA and AS are associated with a

range of extra-articular manifestations, including uveitis,

psoriasis and IBD [1]. SpA currently has fewer therapeutic

options than RA, and sometimes exhibits heterogeneous

therapeutic responses between skeletal, eye and gut

involvement. Given the complexity of SpA and the need

for new therapeutic options, this review considers the

entire disease spectrum with respect to Janus kinase

(JAK) inhibition and was undertaken after a meeting by a

group of experts active in SpA research.

Unmet treatment need in SpA

Treatment recommendations recognize that appropriate

choice of therapy for SpA depends upon multiple factors

and should be optimized based on the presenting
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symptoms, involvement of other diseases and comorbid-

ities, disease activity and prior therapies. TNF inhibitors

(TNFi) feature in recent treatment recommendations for

PsA in all key domains, including peripheral arthritis,

axial disease, enthesitis, dactylitis, plaque psoriasis and

nail psoriasis [2]. Similarly, TNFi are approved in AS and

have demonstrated efficacy in improving axial and periph-

eral arthritis as well as other articular and entheseal dis-

ease manifestations. While TNFi demonstrate efficacy

across key disease domains, a significant proportion of

patients have inadequate or poor response and others

may not tolerate these therapies [3]. Consequently, treat-

ments with alternative mechanisms of action (MoA) may

be welcomed for patients with SpA.

As our understanding of SpA pathogenesis has

increased, the importance of innate immunity and cytokine

signaling pathways rather than classical adaptive immunity

has fully emerged. This is evidenced through the emergence

of novel agents that target IL-12/23, IL-17 A and IL-23 [4],

which have been developed and have often shown better

efficacy in PsA compared with in RA [5].

JAK inhibitors

JAK inhibitors are an emerging class of therapies that

have demonstrated efficacy for the treatment of inflamma-

tory diseases, in which they have broad effects on cyto-

kine production [6]. There are several excellent recent

papers on the JAK pathway itself, which will not be dis-

cussed further [7, 8]. In this paper, we review and interpret

the available basic and clinical evidence to provide con-

text and rationale for the use of JAK inhibitors for the

treatment of PsA and AS. We discuss why it is that, at

the population level, neither TNF nor IL-17 directly signal

via JAK pathways, and relate this to the efficacy of JAK

inhibition in experimental SpA and emergent clinical data.

Immunopathogenesis of SpA

The aetiology of SpA is complex, with interacting environ-

mental and genetic factors combining to elicit a chronic

inflammatory response involving the innate and adap-

tive immune systems (Fig. 1). At the micro-anatomical

level, there is increasing evidence—especially from

animal models—that the earliest disease manifestations

in arthritis emanate from entheses, with inflammation sub-

sequently involving immediately adjacent tissues, includ-

ing synovio�entheseal complexes [9]. Genome-wide

association studies have identified a number of genetic

risk factor variants common to PsA and AS, including

HLA-B27, IL23R, IL1A and IL12B [10]. Several of these

genetic risk factors are also associated with psoriasis

and IBD [11].

A key mechanism in the immunopathogenesis of psor-

iasis is thought to centre on the cluster of differentiation

(CD)8+ T cell response against melanocyte peptides, but

thus far, direct proof in the case of PsA or AS has been

lacking [12]. However, analogous to skin disease, a

population of CD8+ T cells that are enriched for IL-17

production is evident compared with RA [13]. In PsA, the

infiltration of macrophages and activated T cells into

articular locations leads to the production of effector

cytokines, including IL-1b, IL-2, IL-10, IFNg and TNFa,

and further recruitment and proliferation of immune cells

associated with tissue destruction [14]. However, in PsA

and AS, there is strong experimental evidence that

disease localization and the initial inflammation occurs at

entheses and other sites of high mechanical stress,

including the sacroiliac (SI) joints [15].

The IL-23/IL-17 axis is strongly implicated in the patho-

genesis of PsA and AS [14] and in the psoriatic skin pheno-

type [16]. IL-23 contributes to differentiation of innate and

adaptive cognate T cell-expressing lymphocytes which, in

turn, secrete IL-17 A, IL-22 and TNFa [14]. These effector

cytokines are linked to keratinocyte production associated

with skin manifestations of psoriatic disease and to

erosions and new bone formation, although the exact

mechanisms underlying the altered phenotypes in the

skin and joint are not well understood [14].

There is increased interest in the potential role that the

human intestinal microbiome plays in the pathogenesis of

diseases such as PsA and AS [17�19]. When the normal

homeostasis that exists between the gut microbiota and

immune cells in the gut lining is disrupted, the ensuing

dysbiosis may contribute to systemic inflammation.

Similar to the pathogenesis of IBD, in SpA the inflamma-

tory response is likely typified by IL-23�mediated activa-

tion of innate and adaptive intestinal lymphocytes,

providing further support for therapeutic strategies target-

ing the IL-22 and IL-23/IL-17 axis [20].

JAK�STAT signaling

A large number of cytokines, including many of those

implicated in the pathogenesis of SpA, signal through

JAK pathways (Fig. 2). The JAK family of intracellular pro-

tein tyrosine kinases consists of JAK1, JAK2, JAK3 and

tyrosine kinase 2 (TYK2) [21]. In conjunction with Signal

Transducer and Activator of Transcription (STAT) intracel-

lular transcription factors, JAKs mediate signaling for a

range of extracellular cytokines and growth factors and

ultimately influence a variety of cellular functions [21].

Cytokine binding to receptors at the cell surface activates

JAKs bound to the intracellular domains of these cytokine

receptors via autophosphorylation events. Subsequently,

activated JAKs phosphorylate sites on intracellular do-

mains of cytokine receptors that become docking

sites for STAT molecules from the cell cytoplasm. STAT

molecules are then phosphorylated by the activated JAKs.

Phosphorylated STATs dissociate from the intracellular

domain of the receptor and form dimers that regulate

gene expression and DNA transcription in the cell

nucleus [21].

Different cytokines signal using different pairings of

individual JAKs. The six g-common cytokines (IL-2, IL-4,

IL-7, IL-9, IL-15 and IL-21) signal through the JAK1/JAK3

combination, modulating adaptive immune functions,

including Th cell differentiation and function [21]. Innate

lymphoid cells (ILCs), present in psoriatic skin lesions

and implicated in the pathophysiology of SpA, are also
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strongly dependent upon IL-7 for signaling [22]. IFNg and

IL-12 signaling via JAK1/JAK2 and JAK2/TYK2

combinations, respectively, are critical for Th1 cell

response and ultimately for production of TNFa by macro-

phages [23].

Importantly, given the role of the IL-23/IL-17 axis in SpA

[24], JAKs influence signaling for several key cytokines

involved in this pathway. IL-23, which is produced by

activated dendritic cells, signals using the JAK2/TYK2

combination. As well as direct blockade of IL-23

signaling, an indirect consequence of JAK inhibition is

downstream blockade of IL-17 production [23]. IL-6 is

also involved in ILC type 3 and Th17 cell activation and

functions using the JAK1/JAK2 combination [21]. IL6R

single-nucleotide polymorphisms have been associated

with AS, but thus far, IL-6 blockade has failed in

phase 2 clinical trials [25], and the precise role of IL-6 in

SpA remains to be defined.

Signaling for IL-22, and type I IFNs—which have been

strongly implicated in psoriasis—is mediated by the JAK1/

TYK2 pairing [23]. The cellular and molecular mechanisms

underlying JAK inhibition in psoriasis were elucidated in a

phase 2 randomized trial of tofacitinib, and serve as a

benchmark for MoA studies of JAK inhibitors in SpA

[26]. Analysis of skin lesion biopsies in this trial demon-

strated that tofacitinib attenuated JAK�STAT signaling in

psoriatic keratinocytes (likely mediated by pathogenic

cytokines that use JAK1 to signal, i.e. IL-19, IL-20, IL-22

and IFN) [26]. A further example of the effect of JAK

inhibition on non-immune cell types is provided by studies

of human primary PsA synovial fibroblasts and ex vivo PsA

synovial explants, in which tofacitinib inhibited STAT1 and

STAT3 phosphorylation [27].

Given the range of cytokines that utilize JAK�STATs for

signaling, JAK inhibition offers the potential to modulate

multiple inflammatory pathways implicated in the patho-

genesis of SpA (Fig. 2). Ultimately, activation of these

pathways brings about the proliferation of inflammatory

cells in articular and extra-articular locations, and of cell

types associated with bone loss, joint destruction and

psoriatic skin changes—the hallmarks of SpA [24, 28].

In this context, therefore, therapeutic agents targeting

JAKs could suppress articular as well as extra-articular

symptoms of PsA and AS.

Animal and pre-clinical data evaluating
JAK inhibition in SpA

In the absence of clinical trial data evaluating the MoA for

JAK inhibition in SpA indications, experimental models pro-

vide an opportunity for studying the effects of JAK block-

ade on the underlying molecular mechanisms of the

disease. A number of animal models have been employed

to probe mechanistic aspects of SpA, though none are able

to fully replicate human disease [29]. A common denomin-

ator in these animal models is that the effector mechanisms

are mediated by inflammatory cytokines, including TNF,

IL-17, IL-22, IL-23 and several others. HLA-B27 overex-

pression in rats results in an SpA phenotype featuring col-

itis, arthritis and spondylitis [30]. TNF blockade in this

FIG. 1 Innate and adaptive immune responses in the initiation and perpetuation of SpA

The JAK pathway sits at the crossroads of both key innate and adaptive immune cell populations that are thought to be

important in SpA pathogenesis. The tissue-specific targets of SpA-related disease, including the skeleton, skin and gut,

interact with diverse innate immune cells to maintain tissue homeostasis. Although SpA is immunologically heteroge-

neous, there is strong evidence for adaptive immune responses that could be due to autoantigens or to other antigens

that breech tissue barriers. JAK: Janus kinase; Tc: cytotoxic T cell; Th: T helper; TYK: tyrosine kinase.
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model prevented intestinal and joint disease manifestations

[31], and IL-17 blockade reduced structural damage,

including new bone formation [32]. Deregulated TNF ex-

pression in the TNF�ARE model induces SpA with

Crohn’s, spine and enthesitis manifestations [33], and b-

glucan�induced SpA in the SKG mouse model results in

a colitis disease phenotype [34]. IL-23�induced inflamma-

tion has been studied in a murine model in which innate-like

T cells (most likely gd T cells) triggered inflammation of the

gut, skin, joint and spine [35]. TNFa-induced protein 3 (also

known as A20) negatively regulates inflammation by block-

ing nuclear factor-kB, and entheseal inflammation is a fea-

ture of myeloid-specific A20-deficient mice in which

disease commences in the synovio�entheseal complex of

the Achilles tendon [36]. Many of the cytokines driving in-

flammation in these models are under the control of

JAK�STAT signaling. The proof of this principle is provided

by the A20 deficiency model, in which JAK inhibition with

tofacitinib demonstrated significant reductions in enthesitis

and a direct link between STAT1-dependent inflammation

and A20 deficiency [36]. Importantly, joint inflammation in

the A20 model is independent of TNF, providing pre-clinical

suggestions that JAK inhibition may offer value in TNF-re-

sistant SpA [36]. The effect of JAK inhibition has been stu-

died in murine osteoclast-like cells, in which tofacitinib was

found to inhibit bone destruction mediated by TNFa and IL-

FIG. 2 JAK inhibition of cytokine pathways involved in the pathogenesis of SpA

Cytokine signaling and production at the enthesis: signaling for a number of key cytokine pathways implicated in the

pathogenesis of SpA is blocked through direct inhibition of JAKs, including IFNg, IL-7, IL-12, IL-15, IL-22 and IL-23. Other

important cytokines, such as TNFa, IL-1 and IL-17, signal independently of JAKs, but their expression is regulated by

JAK-dependent cytokines and, therefore, may be blocked indirectly via JAK inhibition. These cytokines influence cellular

function for a broad range of innate and adaptive cell types, including many of those shown in Fig.1. JAK, Janus kinase;

TYK, tyrosine kinase.
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6 [37]. Pre-clinical data have also suggested a link between

JAK�STAT pathways and osteoblast differentiation, with

JAK�STAT signaling implicated in alkaline phosphatase

regulation [38].

Clinical data evaluating JAK inhibitors

Several JAK inhibitors with various reported selectivity

are being investigated for use in autoimmune diseases.

To date, the only JAK inhibitor to have been investigated

in SpA clinical trials is the oral JAK inhibitor tofacitinib.

In cellular assays, tofacitinib demonstrated preferential

inhibition of JAK1 and JAK3, with 5- to 100-fold selectivity

over JAK2 [39]. Its pharmacokinetics are characterized

by rapid absorption (�1 h to peak concentration) and elim-

ination (half-life of �3.2 h) [40], and its pharmacodynamic

effects are generally reversible following 14 days of

treatment discontinuation [41].

Clinical trials of tofacitinib have demonstrated efficacy in

reducing the signs and symptoms of PsA. Two phase 3,

randomized controlled trials evaluated tofacitinib 5 mg

twice daily (BID) and 10 mg BID in patients with active PsA

and IR to conventional synthetic DMARDs (csDMARDs) [42]

or TNFi [43]. In OPAL Broaden (NCT01877668), significant

improvements vs placebo in ACR20 response rates (20%

improvement in ACR core set measures) and improvements

from baseline in HAQ-Disability Index (HAQ-DI) scores were

observed with tofacitinib 5 and 10 mg BID at month 3 and

maintained (relative to baseline) to month 12. Improvements

were also seen in enthesitis, dactylitis and skin psoriasis.

In the 6-month trial in TNFi-IR patients (OPAL Beyond

[NCT01882439]), significant improvements vs placebo in

ACR20 response rates and HAQ-DI scores were observed

at month 3 with tofacitinib 5 and 10 mg BID and were

maintained (relative to baseline) to month 6. Enthesitis,

dactylitis and skin psoriasis were also improved. Both

doses showed generally similar clinical efficacy, though

tofacitinib 10 mg BID demonstrated greater efficacy vs

placebo in skin psoriasis compared with 5 mg BID [43].

In a 16-week (12-week treatment, 4-week washout),

phase 2, dose-ranging trial (NCT01786668) in TNFi-naı̈ve

patients with active AS and IR or intolerance to NSAIDs

[44], the ASAS20 response rate was significantly higher vs

placebo with tofacitinib 5 mg BID. Both tofacitinib 5 and

10 mg BID improved objective measures of disease,

including Spondyloarthritis Research Consortium of

Canada MRI scores of SI and spine joints at week 12

[44]. In this study, greater response to tofacitinib was cor-

related with the magnitude of the CRP elevation and the

degree of spinal MRI positivity (Spondyloarthritis

Research Consortium of Canada SI joint cut-off 52) at

baseline. This study demonstrated that JAK inhibitors

may be effective treatment options for axial disease, but

their efficacy has not been fully established and further

studies are required in order to assess their efficacy

over longer follow-up periods.

As outlined previously, IBD (ulcerative colitis [UC] and

Crohn’s disease) and SpA share a number of genetic and

immunopathogenic aspects, with the role of the gut

microbiota implicated in their pathophysiology [45].

Cytokines implicated in the pathogenesis of IBD that

signal using JAKs include IL-2, IL-7, IL-15 and IL-21,

which utilize the JAK1/JAK3 pairing, IFNg (JAK1/JAK2),

IL-22 (JAK1/TYK2) and IL-12 and IL-23 (JAK2/TYK2)

[46]. Randomized controlled trials of tofacitinib demon-

strated a significant effect of treatment for UC [47] but

only modest efficacy for Crohn’s disease [48]. The JAK1

inhibitor filgotinib is also being investigated for Crohn’s

disease and has shown efficacy in inducing clinical remis-

sion in a phase 2 study [49]. With respect to the disparate

efficacy observed with tofacitinib in UC and Crohn’s dis-

eases, there is a consensus that, at the population level,

there is a greater role for adaptive immunity in UC com-

pared with Crohn’s disease [50]. The recently reported

efficacy of tofacitinib in phase 3 UC studies [47] was sub-

stantially greater than that reported in phase 2 studies of

tofacitinib for Crohn’s disease [48]. Given that a greater

role for innate immunity is ascribed to Crohn’s disease

and a greater role for adaptive immunity in UC, these

findings might suggest a greater magnitude of effect of

JAK inhibitors on the adaptive arm of immunity implicated

in the pathogenesis of SpA (as set out in Figs 1 and 2).

In patients with moderate to severe plaque psoriasis,

phase 2 and 3 studies have demonstrated the efficacy

of oral tofacitinib [26, 51�53], and a topical formulation

has been assessed for psoriasis [54] and atopic dermatitis

[55]. The MoA of tofacitinib for psoriasis was evaluated in

a phase 2 randomized trial [26]. Marked reduction of cel-

lular immune infiltrates in skin lesions was observed—with

the earliest changes observed in CD11c+ dendritic

cells—as well as a reduction in IL-23/IL-17 axis cytokines

that followed the cellular reductions. These cellular reduc-

tions may be mediated by changes in signaling of

cytokines such as IL-7 (which generally promotes survival

of immune cells) and IL-2. Observed reduction in IL-17

was likely due to an indirect effect of tofacitinib through

modulation of other cytokines that support growth and

survival of the immune cell infiltrates in skin lesions.

As the only study to evaluate tofacitinib MoA in human

disease, results from this study provide important infor-

mation regarding immune cell signaling pathways that

may be generalizable to SpA.

In atopic dermatitis, inhibition of IL-4 via JAK1/JAK3

blockade is thought to modulate Th2-mediated inflamma-

tion in the disease. In addition, improvements in pruritus

noted in the atopic dermatitis trial were linked to inhibition

of IL-31 signaling achieved via JAK1/JAK2 blockade [55].

The oral JAK1/JAK2 inhibitor baricitinib is also being

investigated for psoriasis, and demonstrated a significant

treatment effect in patients with moderate to severe

psoriasis in a 12-week phase 2b dose-ranging trial [56].

Cytokines and activation of Th1 and Th17 cells are also

involved in the pathogenesis of dry eye disease, in which

topical tofacitinib has demonstrated efficacy in improving

signs and symptoms of the disease in a phase 1/2 study

[57]. Although the IL-23/IL-17 pathway is implicated in

the pathogenesis of uveitis, and JAK inhibition thus rep-

resents a promising approach for its treatment, clinical

trials evaluating the efficacy of JAK inhibitors in uveitis
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have not been conducted [58]. In general, there is a sense

that anti�IL-17 therapies may be more effective for the

treatment of skin symptoms, whereas TNFi may be

more effective against joint manifestations, depending

on the dose.

In common with SpA, the inflammatory response in RA

is mediated by a range of effector cytokines, a number of

which signal using JAKs, including IL-6, IL-7, IL-10, IL-12,

IL-15, IL-21, IL-23, IFNa and IFNb [41]. The efficacy of

tofacitinib either as monotherapy, or in combination with

csDMARDs, for the treatment of RA has been established

in a variety of patient populations (including DMARD-IR

and TNFi-IR patients) in randomized controlled phase 3

trials and in open-label long-term extension studies

[59�65]. Baricitinib has demonstrated clinical efficacy in

a phase 3 randomized controlled trial of patients with

RA refractory to treatment with csDMARDs and biologic

DMARDs (bDMARDs) [66], and is approved in Europe for

the treatment of patients with moderately to severely

active RA. A selective inhibitor of JAK1, upadacitinib

(ABT-494), has demonstrated efficacy in TNFi-IR patients

with RA [67]. Pharmacokinetic/pharmacodynamic ana-

lyses of filgotinib have been conducted and dose-ranging

studies in RA are planned [68]. The JAK1/JAK3 inhibitor

peficitinib demonstrated efficacy vs placebo in patients

with RA when dosed at 50 mg in combination with MTX,

but did not otherwise show a dose-dependent effect over

12 weeks [69].

The efficacy of JAK inhibitors with varying potencies

against the JAK family of tyrosine kinases demonstrated

across the range of inflammatory diseases described

above is likely due to a pan-JAK inhibitory effect, whereby

each of the JAK protein kinases is inhibited to some

degree at the clinical dose. Beyond the direct effects of

tofacitinib and other JAK inhibitors on cytokine signaling,

there is a downstream effect on biologic processes—that

is, inhibition of Th1, Th2 and Th17 functions through

JAK1/JAK3 inhibition of the g-common cytokines—that

contributes to the efficacy of JAK inhibitors. In addition,

cells expressing the IL-7 and IL-15 receptors, including

ILCs, could also be affected via the same pathway

[22, 70]. The clinical efficacy of tofacitinib observed in

SpA indications correlates with the immunomodulatory

effects of tofacitinib characterized in other diseases, but

more data are required to better understand the specific

underlying mechanisms in PsA and AS that are affected

by JAK inhibitors.

Agents that inhibit TYK2 may be advantageous for the

treatment of peripheral arthritis in SpA due to the promin-

ent role of IL-23 signaling (as suggested by genetic

studies), particularly since SpA family diseases are

linked to IL-23 pathway single nucleotide polymorphisms.

Thus, an inhibitor with JAK1/TYK2 specificity may be

expected to deliver greater efficacy than JAK1/JAK3 in-

hibition with tofacitinib or JAK1-selective inhibitors,

through targeting the IL-23 genetic signature (through

TYK2 inhibition) in addition to type I IFN (through JAK1

inhibition). Although JAK2-selective inhibition could inhibit

IL-23 signaling in a similar fashion to a TYK2-selective

agent, it would also inhibit signaling of other hematopoie-

tic factors, such as erythropoietin and thrombopoietin,

potentially leading to undesirable side effects such as

anemia and thrombocytopenia. Though more studies are

required in different disease populations to establish how

JAK inhibitors with different putative JAK selectivity may

be differentiated from one another in the clinic, available

data evaluating cytokine inhibition profiles of different JAK

inhibitor agents currently suggest limited differentiation

between agents at clinically relevant doses [71]. Given

the immunological heterogeneity in the SpAs, and given

that some drugs, including TNF fusion proteins and

anti�IL-17 therapies, do not work in IBD and uveitis, the

inhibition of multiple cytokines may auger well for JAK

inhibition across the full spectrum of SpA disease mani-

festations, and there is a strong potential for JAK inhibition

strategies that target the SpA spectrum of disease.

Owing to the pleiotropic nature of JAK�STAT signaling,

including its role in hematopoiesis and host defence,

monitoring the safety profile of JAK inhibitors is an import-

ant aspect of clinical studies evaluating their use. Data

from the tofacitinib RA clinical trials, which include up to

96 months of observation, currently provide perhaps the

best indication of the long-term safety of JAK inhibitors

[72]. In this patient population, incidence rates for adverse

events of special interest (including serious infections,

cardiovascular events, malignancies and mortality) have

not increased with longer tofacitinib exposure. Changes

in laboratory parameters observed with tofacitinib treat-

ment (including decreases in lymphocyte, neutrophil and

platelet counts, and increases in low- and high-density

lipoprotein cholesterol and in serum creatinine) were gen-

erally stable with long-term therapy and reversible with

treatment discontinuation or medical management

(e.g. use of lipid-lowering agents) [72]. The safety profile

of tofacitinib in patients with AS [44], PsA [42, 43], psor-

iasis [51�54], atopic dermatitis [55] and IBD [47, 48] has

been generally consistent with that observed in RA, with

no new or unexpected safety findings. However, exposure

and sample size in these patient populations are not as

large as those for RA.

In general, reported safety events for other JAK inhibi-

tors have been consistent with those reported with tofa-

citinib, with infections and small changes in clinical

laboratory parameters a feature of trials evaluating barici-

tinib, upadacitinib and filgotinib [49, 56, 66, 67]. Again,

sample size and drug exposure were relatively low in

these trials, and continued evaluation of the safety profiles

of the different JAK inhibitors in different patient popula-

tions is required.

Conclusions

The SpAs include several chronic inflammatory autoim-

mune conditions with a multifactorial pathogenesis invol-

ving a range of immune cell types and cytokine signaling

pathways. Therapeutic disease management for PsA and

AS is complicated by the variety of musculoskeletal and

extra-articular manifestations with which the diseases

may present. While bDMARDs, including TNFi, IL-12p40
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and IL-17 inhibitors, have demonstrated efficacy in treat-

ing the spectrum of clinical manifestations of SpA, add-

itional agents with novel MoAs could provide useful

alternatives for patients who do not respond or lose initial

response to therapy with bDMARDs across many SpA

manifestations, including those in the gut, skin and joint.

JAK�STAT pathways mediate cytokine signaling for

many innate and adaptive immune responses underlying

the pathogenesis of SpA as well as other associated

inflammatory diseases. Consequently, JAK inhibition is a

promising therapeutic strategy for the treatment of SpA as

it offers the potential for improvements in multiple mani-

festations of PsA and AS.

A number of JAK inhibitors—including tofacitinib, bar-

icitinib, peficitinib, filgotinib and upadacitinib—have

demonstrated efficacy in other autoimmune conditions

of relevance. To date, tofacitinib is the only JAK inhibitor

that has been investigated in PsA and AS clinical trials and

was recently approved for the treatment of PsA by the US

Food and Drug Administration. Studies evaluating other

agents within this MoA class are required in order to

confirm JAK inhibition as an additional treatment option

and to expand upon the available mechanistic information

regarding their use in SpA. Thus far, the efficacy of JAK

inhibitors demonstrated across a variety of SpA-asso-

ciated disease manifestations indicates that they may be

an important new oral therapy option for SpA. As further

research is conducted and additional JAK inhibitors are

evaluated in SpA, tofacitinib and other emerging JAK

inhibitors may add to the available treatment options

and provide clinically meaningful benefits for patients

with SpA.
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