
This is a repository copy of Counting Independent Sets in Cocomparability Graphs.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/135990/

Version: Accepted Version

Article:

Dyer, M orcid.org/0000-0002-2018-0374 and Müller, H orcid.org/0000-0002-1123-1774
(2019) Counting Independent Sets in Cocomparability Graphs. Information Processing
Letters, 144. pp. 31-36. ISSN 0020-0190

https://doi.org/10.1016/j.ipl.2018.12.005

(c) 2018, Elsevier B.V. This manuscript version is made available under the CC BY-NC-ND
4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

See Attached

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Counting Independent Sets in Cocomparability Graphs ∗

Martin Dyer Haiko Müller

School of Computing, University of Leeds, Leeds LS2 9JT, UK
{M.E.Dyer|H.Muller}@leeds.ac.uk

Abstract

We show that the number of independent sets in cocomparability graphs can be counted

in linear time, as can counting cliques in comparability graphs. By contrast, counting cliques

in cocomparability graphs and counting independent sets in comparability graphs are #P-

complete. We extend these results to counting maximal cliques and independent sets. We

also consider the fixed-parameter versions of counting cliques and independent sets of given

size k. Finally, we combine the results to show that both counting cliques and independent

sets in permutation graphs are in linear time.

Keywords: comparability graph, cocomparability graph, permutation graph, independent set,
counting, linear time algorithm, computational complexity

1 Introduction

Counting independent sets in graphs is known to be #P-complete in general [14], even for
several restricted cases [15]. Even approximate counting is NP-hard, and unlikely to be in
polynomial time for bipartite graphs [5]. However, smaller graph classes may permit polynomial
time algorithms. For example, [11] gives a linear time algorithm for counting independent sets in
bipartite permutation graphs. Here “linear time” means computable with a number of arithmetic
operations and comparisons linear in the size of the graph. Similar results are known for chordal
graphs [13] and tree-convex graphs [10]. For information on these and other graph classes, see
[2].

Counting cliques in a graph is equivalent to counting independent sets in the complementary
graph. Thus, for general graphs, these two problems have equivalent complexity. However, for
graph classes the two problems may have very different complexity.

Here we consider the problems of counting independent sets and cliques in three classes of graphs:
cocomparability graphs, comparability graphs and permutation graphs. See section 2 below for
definitions. In each case we show that either the counting problem can be accomplished in linear
time, or else counting is #P-complete.

In section 3 we present a simple linear time algorithm for counting independent sets in cocom-
parability graphs, and show that counting cliques is #P-complete. We extend this to counting
maximal independent sets, and independent sets of a given size, and maximal independent sets
of a given size. In section 4, we modify this to give linear time algorithms for counting cliques
in comparability graphs, and show that counting independent sets is #P-complete.

∗The work reported in this paper was partially supported by EPSRC research grant EP/S016562/1 “Sampling
in hereditary classes”.

1

Together, these results imply simple linear time algorithms for counting both cliques and inde-
pendent sets in permutation graphs, as we discuss in section 5. Thus our results give strong
generalisations of the algorithm of [11]. Table 1 summarises the results of this note.

2 Preliminaries and notation

For integers n and n′ with n ≤ n′ the set {n, n + 1, . . . , n′} of consecutive integers will be
abbreviated as [n, n′].

Let P = (V,≺) be a finite partial order, with |V | = n. The cover relation ≺· of ≺ is its transitive
reduction, defined by u ≺· v if u ≺ v and there is no w ∈ V with u ≺ w and w ≺ v. By u 4 v
we mean u ≺ v or u = v.

A chain in (V,≺) is a set S ⊆ V of pairwise comparable elements. That is, the restriction of
≺ to S is a linear order. A chain S = {vi | i ∈ [1, k]} with vi−1 ≺ vi for all i ∈ [2, k] is tight if
vi−1 ≺· vi holds for all i ∈ [2, k].

A linear extension of (V,≺) is a permutation v1, v2, . . . , vn of V such that vi ≺ vj implies i < j.

Let G = (V,E) be a graph with vertex set V , with |V | = n and |E| = m. Here all graphs
are finite, undirected and simple, unless stated otherwise. We will denote the complementary
graph by Ḡ = (V, Ē), where Ē = {{u, v} | u, v ∈ V, {u, v} /∈ E, u 6= v}. Let m̄ = |Ē|, that is
m̄ =

(

n
2

)

−m, and m∗ = min{m, m̄}.

A clique in a graph is a set of pairwise adjacent vertices. A set of pairwise non-adjacent vertices
is independent. Therefore a clique of G is an independent set in the complement of G and
vice versa. A maximal clique or independent set is maximal with respect to set inclusion. By
contrast, maximum refers to the largest cardinality.

A partial order P = (V,≺) can be considered as digraph (V,A) with vertex set V and arcs
(x, y) ∈ A for all pairs such that x ≺ y. The comparability graph for P is the underlying
undirected graph (V,E) of (V,A). That is, E = {{x, y} | x ≺ y}. Then a graph G = (V,E) is a
comparability graph if there is a partial order P on the set V such G is the comparability graph
of P . Given a comparability graph G, a corresponding partial order P and a linear extension can
be computed in O(m+n) (linear) time [12]. Note, however, that this algorithm does not certify
that G is a comparability graph. Recognition is currently only known in O(n +m log n) time.
Moreover, in 3.3 and 3.4 we assume that access to the cover relation ≺· is possible in constant
time. Therefore we have to compute the transitive reduction of P = (V,≺). In general this is
hard as matrix multiplication, see Theorem 3 in [1]. We will sidestep these issues by assuming
the input comparability graph is given with a transitive orientation P , its transitive reduction
(V,≺·), and a linear extension of P .

The complements of comparability graphs are called cocomparability graphs, so these are the
incomparability graphs of partially ordered sets. In the incomparability graph of P = (V,≺)
two vertices in V are adjacent if they are ≺-incomparable. Again, recognition is not known to
be possible in linear time, but a linear time algorithm can compute P and a linear extension for

all maximal size k size k maximal

independent O(n+m∗) O(n+m∗) O(k(n+m∗)) O(k(n+m∗))
sets Theorem 5 Theorem 9 Theorem 13 Theorem 17

cliques
#P-complete #P-complete #W[1]-complete

open
Theorem 6 Theorem 10 Theorem 14

Table 1: Complexity of counting independent sets and cliques in cocomparability graphs.

2

the complementary comparability graph [7, 12].

A graph is a permutation graph if there is a permutation v1, v2, . . . , vn of V = [1, n] such that
{vi, vj} ∈ E if and only if i < j implies vi > vj . It is not difficult to show that G is a permutation
graph if and only if it is both a comparability graph and a cocomparability graph. Permutation
graphs can be recognised, and a permutation ordering obtained, in linear time [8], so we need
no assumptions on the input graph.

These are well-established classes of graphs, and are all subclasses of perfect graphs. Impor-
tant subclasses of comparability graphs are bipartite graphs and cographs. Interval graphs are
an important subclass of cocomparability graphs (they are graphs that are both chordal and
cocomparability). Permutation graphs are an important subclass of both comparability and
cocomparability graphs.

3 Cocomparability graphs

Let G = (V,E) be a cocomparability graph and let ≺ be a partial order on V , with linear
extension v1, v2, . . . , vn. We will extend the poset (V,≺) by a unique minimal element ⊥ /∈ V
and a unique maximal element ⊤ /∈ V ∪ {⊥}. That is, we define ⊥ ≺ v and v ≺ ⊤ for all
v ∈ V , and (if not enforced by transitivity) ⊥ ≺ ⊤. Let S+ = S ∪ {⊥,⊤}, for any S ⊆ V .
Then we denote the extended partial order by (V +,≺), If ⊥, v1, v2, . . . , vn,⊤ is linear extension
of (V +,≺), and S ⊆ V , we write max(S) for vi such that i = max{j : vj ∈ S},

Lemma 1. Let G = (V,E) be a cocomparability graph which is the incomparability graph of a
poset (V,≺), and let (V +,≺) be the above extension. Then

(1) a set S ⊆ V is independent in G if and only if S+ is a chain of (V +,≺);

(2) a set S ⊆ V is maximally independent in G if and only if S+ is a tight chain of (V +,≺).

Proof. Two vertices in V are ≺-comparable if and only if they are non-adjacent in G. The extra
elements ⊥ and ⊤ are comparable to all vertices in V . Together these imply property (1).

To see (2) we first consider an independent set S of G that is not maximal independent. Hence
there is a vertex v ∈ V such that S ∪ {v} is still independent. By property (1) the set S+ ∪ {v}
is a chain, and hence S+ is also a chain, but not a tight one.

Now let S be a maximal independent set of G. So by property (1) the set S+ is a chain of
(V +,≺). Since S is a maximal independent set of G, for all v ∈ V the set S ∪ {v} is not
independent in G. By property (1) the set S+ is not a chain, and therefore S+ is a tight chain
of (V +,≺).

For every vertex v ∈ V + let Gv = G[{u ∈ V | u 4 v}]. Especially, G⊥ = (∅,∅) and G⊤ = G.
Let Vv = {u ∈ V + | u 4 v}. For every v ∈ V +, the relation ≺ restricted to Vv is a partial order
with unique minimal element ⊥ and unique maximal element v.

3.1 Independent sets

For every vertex v ∈ V + let A(v) be the set of independent sets of S of Gv with v ∈ S, and
a(v) = |A(v)|. That is, a(⊤) is the number of independent sets of G. We can evaluate A and a
recursively as follows:

3

A(⊥) = {∅} a(⊥) = 1

A(vi) =
⋃

u≺vi

{

S ∪ {vi} | S ∈ A(u)
}

a(vi) =
∑

u≺vi

a(u) (i ∈ [1, n])

A(⊤) =
⋃

u≺⊤

A(u) a(⊤) =
∑

u≺⊤

a(u)

The sets A(v) can be exponential in size (for example if E = ∅), but the recurrence for a can
be evaluated efficiently. We use the linear extension of ≺ to evaluate the equations above in the
order ⊥, v1, v2, . . . , vn,⊤, as shown. At the end a(⊤) is the number of independent sets in G.

We show that the recurrence above is correct by proving a sequence of lemmas, which themselves
are proven directly or by induction on ≺.

Lemma 2. For all v ∈ V + every set S ∈ A(v) is independent in Gv and v ∈ V implies v ∈ S.

Proof. The base of the induction is for v = ⊥. Clearly ∅ is the unique independent set of G⊥.

Now let v ∈ V . Every set S ∈ A(v) contains the vertex v and vertices in A(u) for u ≺ v.
By induction hypothesis S \ {v} is an independent set of some Gu. Therefore S only contains
vertices of Gv. Moreover S \ {v} is a chain in (V,≺). By transitivity, S \ {v} ∈ A(u) and u ≺ v
imply that S is also a chain in (V,≺) and therefore an independent set of Gv.

The latter argument also applies to v = ⊤.

Lemma 3. Every nonempty independent set S of G is contained in A(max(S)).

Proof. Let S be an independent set of G. This implies that S is a chain of (V,≺) and therefore
S has a unique ≺-maximal element v. We have ∅ ∈ A(⊥) and, by induction hypothesis,
S \ {v} ∈ A(u) for some u ≺ v. Consequently we have S ∈ A(v), and clearly v = max(S).

Lemma 4. For different u, v ∈ V ∪ {⊥} we have A(u) ∩A(v) = ∅.

Proof. If u and v are ≺-incomparable then these are adjacent vertices of G. Hence no indepen-
dent set of G can contain both u and v. By Lemma 2 for all S ∈ A(u) and all T ∈ A(v) we have
u ∈ S \ T and v ∈ T \ S, that is, S 6= T . Consequently A(u) ∩A(v) = ∅ holds.

Now let u and v be ≺-comparable. By symmetry we may assume u ≺ v, especially v ∈ V .
Again, Lemma 3 implies, for all S ∈ A(u) and all T ∈ A(v), that v ∈ T \ S holds. As before
this means S 6= T , and therefore A(u) ∩A(v) = ∅.

We can implement the above recurrences for a directly, but it is clear that the time complexity
is O(n+m̄), not O(n+m), since the summations are over the edges of Ē. If m̄ < m, this clearly
implies O(n+m) time, but otherwise we correct this as follows.

For all v ∈ V + we define t(v) by

t(⊥) = 0

t(vi) = a(⊥) +
i−1
∑

j=1

a(vj) (i ∈ [1, n])

t(⊤) = a(⊥) +
n
∑

j=1

a(vj)

4

The values of t and a are mutually recursive:

t(⊥) = 0 a(⊥) = 1

t(v1) = 1 a(v1) = 2

t(vi) = t(vi−1) + a(vi−1) a(vi) = t(vi)−
∑

j<i, vj⊀vi

a(vj) (i ∈ [2, n])

t(⊤) = t(vn) + a(vn) a(⊤) = t(⊤)

The recurrence for t(vi) is obvious, and for a(vi) we have

t(vi)−
∑

j<i, vj⊀vi

a(vj) = a(⊥) +
i−1
∑

j=1

a(vj)−
∑

j<i, vj⊀vi

a(vj) =
∑

u≺vi

a(u) = a(vi) ,

as required. Now the summations are over the edges of E, and the algorithm is O(n+m) time.
Thus we have

Theorem 5. Given a cocomparability graph on n vertices, we can compute the number of its
independent sets in time O(n+m∗).

Proof. Lemmas 2 and 3 imply that, for all v ∈ V +, the sets A(v) defined by the recurrence
contains all independent sets of Gv, especially A(⊤) is the set of all independent sets of G. It
remains to show that a(v) = |A(v)|. To see this we observe that the unions over all u ≺ v are
always disjoint by Lemma 4.

Our algorithm just recurrences for a(v) for all v ∈ V + in the order of linear extension of ≺.
Then a(⊤) is the number of independent sets of G. Assuming additions can be performed in
constant time, this takes O(n+m∗) time, since each edge or non-edge of G is used exactly once
in the recurrences.

The alternative evaluation of the recurrences which leads to O(n +m∗) can be used in all the
algorithms below, and we will not elaborate further on this.

On the other hand, we have the following.

Theorem 6. It is #P-complete to count cliques in a cocomparability graph.

Proof. Counting cliques in cocomparability graphs is equivalent to counting independent sets
in comparability graphs. Bipartite graphs are a subclass of comparability graphs. It is #P-
complete to count independent sets in bipartite graphs [14, 15].

In fact, even approximately counting cliques in cocomparability graphs appears to be hard, by
the same argument, being equivalent to the canonical problem #BIS [5].

Finally, we note that counting independent sets in cocomparability graphs is equivalent to count-
ing chains in partially ordered sets, and counting cliques is equivalent to counting antichains.
See [14] and [5], where antichains are called downsets. Thus the results of this paper could be
recast in the language of partial orders.

3.2 Maximal independent sets

Similarly we can compute the number of maximal independent sets. For every vertex v ∈ V +

let B(v) denote the set of maximal independent sets S of Gv with v ∈ S, and let b(v) = |B(v)|.
We can compute B and b as follows:

5

B(⊥) = {∅} b(⊥) = 1

B(vi) =
⋃

u≺·vi

{

S ∪ {v} | S ∈ B(u)
}

b(vi) =
∑

u≺·vi

b(u) (i ∈ [1, n])

B(⊤) =
⋃

u≺·⊤

B(u) b(⊤) =
∑

u≺·⊤

b(u)

The only difference to A and a is that the partial order ≺ is replaced by its cover relation ≺·,
as anticipated in Lemma 1. For all u ≺ v and all maximal independent sets S′ of Gu the set
S′ ∪ {v} is maximal independent if and only if there is no w ∈ V that is ≺-between u and v,
hence if and only if u≺· v.

The recurrence for B and b can be shown to be correct by arguments similar to the ones given
above to justify the recurrence for A and a.

Lemma 7. For all v ∈ V + every set S ∈ B(v) is a maximal independent set of Gv and v ∈ V
implies v ∈ S.

Proof. The base of the induction is for v = ⊥. Clearly ∅ is the unique independent set of G⊥.

Now let v ∈ V . Every set S ∈ B(v) contains the vertex v and vertices in B(u) for u ≺· v.
By induction hypothesis S \ {v} is a maximal independent set of some Gu. Therefore S only
contains vertices of Gv. Moreover S \ {v} is a tight chain in (Vu,≺). Since u≺· v implies u ≺ v
and because ≺ is transitive, S \ {v} ∈ B(u) and u ≺· v imply that S is also a tight chain in
(Vv,≺) and therefore a maximal independent set of Gv.

A similar argument proves the assertion for v = ⊤.

Lemma 8. For every v ∈ V + every maximal independent set S of Gv satisfies S ∈ B(v) and
v ∈ V implies v ∈ S.

Proof. Let S be a maximal independent set of Gv. By Lemma 1, S ∪ {⊥} is a tight chain
of (Vv,≺) with minimal element ⊥ and maximal element v. Therefore v ∈ V implies v ∈ S.
We show S ∈ B(v) by induction. For v = ⊥ we have ∅ ∈ B(⊥). Otherwise, by induction
hypothesis and the tightness stated above, S \ {v} ∈ B(u) for some u ≺· v. Consequently we
have S ∈ B(v).

Theorem 9. Given a cocomparability graph on n vertices, we can compute the number of its
maximal independent sets in O(n+m∗) time.

Proof. Lemmas 7 and 8 imply that, for all v ∈ V +, the sets B(v) defined by the recurrence
contains indeed all maximal independent sets of Gv, especially B(⊤) is the set of all maximal
independent sets of G.

It remains to show that b(v) = |B(v)|. Again, the unions over all u ≺· v are always disjoint
because B(u) ⊆ A(u) holds for all u, and by Lemma 4.

The time analysis is essentially the same as in the proof of Theorem 5.

Corresponding to Theorem 6, we also have the following

Theorem 10. It is #P-complete to count maximal cliques in a cocomparability graph.

Proof. By the same argument as Theorem 6, using that it is #P-complete to count maximal
independent sets in bipartite graphs [9].

6

Approximately counting maximal independent sets in bipartite graphs, a subclass of compara-
bility graphs, is #SAT-hard [6].

3.3 Independent sets of size k

Next we consider independent sets of size exactly k for some fixed value of k ∈ [0, n]. For every
vertex v ∈ V + and every integer i ∈ [0, k], the set C(v, i) of independent sets S of Gv with v ∈ S
and |S| = i, and size c(v, i), satisfy the following recurrences:

C(⊥, 0) = {∅} c(⊥, 0) = 1

C(⊥, i) = ∅ c(⊥, i) = 0 (i ∈ [1, k])

C(vj , 0) = ∅ c(vj , 0) = 0 (j ∈ [1, n])

C(vj , i) =
⋃

u≺vj

{

S ∪ {vj} | S ∈ C(u, i− 1)
}

c(vj , i) =
∑

u≺vj

c(u, i− 1) (i ∈ [1, k], j ∈ [1, n])

C(⊤, i) =
⋃

u≺⊤

C(u, i) c(⊤, i) =
∑

u≺⊤

c(u, i) (i ∈ [0, k])

The correctness of these recurrences is again based on the fact that, for every v ∈ V and every
i ∈ [1, k], every independent set S of Gv with v ∈ S and |S| = i there is an independent set S′

of Gu of size i − 1 for some u ≺ v, where u = ⊥ if S′ = ∅ and otherwise u is the ≺-maximal
vertex in S′. For v = ⊤ we have |S| = |S′| because ⊤ /∈ V . Then we have the following.

Lemma 11. For all v ∈ V and all i ∈ [1, k] every set S ∈ C(v, i) is a independent set of Gv

with |S| = i and v ∈ S.

Lemma 12. For every i ∈ [1, k] every independent set S of size i is contained in C(max(S), i).

Theorem 13. Given a cocomparability graph on n vertices and a number k ∈ [0, n], we can
compute the number of its independent sets of size exactly k in time O(k(n + m∗)). In time
O(n2 + nm∗) we can do this for all k ∈ [0, n].

Proof. Lemmas 2 and 3 imply that, for all v ∈ V +, the sets A(v) defined by the recurrence
contains indeed all independent sets of Gv, especially A(⊤) is the set of all independent sets of
G. It remains to show that a(v) = |A(v)|. To see this we observe that the unions over all u ≺ v
are always disjoint by Lemma 4.

Our algorithm just evaluates the sums for a(v) for all v ∈ V + in an order that is a linear
extension of ≺. Then a(⊤) is the number of independent sets of G. Assuming additions can be
performed in constant time, this takes O(n2) time.

As a by-product the algorithm of Theorem 13 computes the size α(G) of a maximum independent
set of G, which is max{i | c(⊤, i) > 0}, and the number of maximum independent set in G,
which is c(⊤, α(G)). Since every maximum independent set is also maximal, the algorithm from
Theorem 17 can be used as well and should be faster on average.

Once the number c(⊤, i) of independent sets of size exactly i has been determined for all i ∈

[0, α(G)] we can evaluate the independent set polynomial
∑α(G)

i=0 c(⊤, i)xi for all values of x.

We also have the following fixed-parameter hardness result for counting k-cliques in cocompa-
rability graphs.

Theorem 14. It is #W[1]-complete to count k-cliques in a cocomparability graph.

7

Proof. By the same argument as Theorem 6, using that it is #W[1]-complete to count indepen-
dent sets of size k in bipartite graphs [4, Theorem 4].

3.4 Maximal independent sets of size k

For every vertex v ∈ V + and every integer i ∈ [0, k], let D(v, i) be the set of maximal independent
sets S of Gv with v ∈ S and |S| = i, and d(v, i) = |D(v, i)|. We have

D(⊥, 0) = {∅} d(⊥, 0) = 1

D(⊥, i) = ∅ d(⊥, i) = 0 (i ∈ [1, k])

D(vj , 0) = ∅ d(vj , 0) = 0 (j ∈ [1, n])

D(v, i) =
⋃

u≺·v

{

S ∪ {v} | S ∈ D(u, i− 1)
}

d(v, i) =
∑

u≺·v

d(u, i− 1) (i ∈ [1, k], j ∈ [1, n])

D(⊤, i) =
⋃

u≺·⊤

D(u, i) d(⊤, i) =
∑

u≺·⊤

d(u, i) (i ∈ [0, k])

The following are proved similarly to the corresponding results above.

Lemma 15. For all v ∈ V and all i ∈ [1, k] every set S ∈ D(v, i) is a maximal independent set
of Gv with |S| = i and v ∈ S.

Lemma 16. For every v ∈ V + and i ∈ [1, k] every maximal independent set S of size i in Gv

is contained in D(v, i), and v ∈ V implies v ∈ S.

Theorem 17. Given a cocomparability graph on n vertices and a number k ∈ [0, n], we can
compute the number of its maximal independent sets of size exactly k in time O(k(n+m∗)). In
time O(n2 + nm∗) we can do this for all k ∈ [0, n].

We have no corresponding hardness result in this case, since the complexity of counting maximal
k-independent sets in bipartite graphs appears to be open.

4 Comparability graphs

Counting independent sets in a cocomparability graph G is equivalent to counting cliques in
its complement Ḡ. Since our algorithms are symmetrical between G and Ḡ, all the results of
section 3 remain true by interchanging the words “comparability” and “cocomparability”, and
the words “clique” and “independent set”. Therefore, we will not detail the modified results.

5 Permutation graphs

Permutation graphs are both comparability and cocomparability graphs, so the algorithms of
section 3 are valid both for counting independent sets in permutation graphs and (with obvi-
ous modifications) for counting cliques in permutation graphs. The result of [11] for counting
independent sets in bipartite permutation graphs is a special case.

References

[1] A. V. Aho, M. R. Garey and J.D. Ullman, The transitive reduction of a directed graph,
SIAM Journal on Computing 1 (1972) 131–137.

8

[2] A. Brandstädt, V. B. Le and J. P. Spinrad, Graph Classes: A Survey. SIAM Monographs
on Discrete Mathematics and Application, Philadelphia (1999).

[3] D. G. Corneil, S. Olariu and L. Stewart, Asteroidal triple-free graphs, SIAM Journal on
Discrete Mathematics 10 (1997) 399-430.

[4] R. Curticapean, H. Dell, F. V. Fomin, L. A. Goldberg and J. Lapinskas, A fixed-parameter
perspective on #BIS, in Proc. 12th International Symposium on Parameterized and Exact
Computation (IPEC 2017), Leibniz International Proceedings in Informatics (LIPIcs) 89

(2018) 13:1–13:13.

[5] M. Dyer, L. A. Goldberg, C. Greenhill and Mark Jerrum, On the relative complexity of
approximate counting problems, Algorithmica 38 (2003) 471–500.

[6] L. A. Goldberg, R. Gysel and J. Lapinskas, Approximately counting locally-optimal struc-
tures, Journal of Computer and System Sciences 82 (2016) 1144–1160.

[7] E. Köhler and L. Mouatadid, Linear time LexDFS on cocomparability graphs, in Algorithm
Theory (SWAT 2014), Springer LNCS 8503 (2014) 319–330.

[8] D. Kratsch, R. McConnell, K. Mehlhorn and J. P. Spinrad, Certifying algorithms for rec-
ognizing interval graphs and permutation graphs, SIAM Journal on Computing 36 (2003)
326–353.

[9] M.-S. Lin, Counting independent sets and maximal independent sets in some subclasses of
bipartite graphs, Discrete Applied Mathematics 251 (2018) 236–244.

[10] M.-S. Lin and C.-M. Chen, Counting independent sets in tree convex bipartite graphs.
Discrete Applied Mathematics 218 (2017) 113–122.

[11] M.-S. Lin and C.-M. Chen, Linear-time algorithms for counting independent sets in bipartite
permutation graphs. Information Processing Letters 122 (2017) 1–7.

[12] R. M. McConnell and J. P. Spinrad, Linear-time modular decomposition and efficient tran-
sitive orientation of comparability graphs, in Proc. 5th Annual ACM-SIAM Symposium on
Discrete Algorithms (1994) 536–545.

[13] Y. Okamoto, T. Uno and R. Uehara, Counting the number of independent sets in chordal
graphs. Journal of Discrete Algorithms 6 (2008) 229–242.

[14] J. S. Provan and M. O. Ball, The complexity of counting cuts and of computing the proba-
bility that a graph is connected. SIAM Journal on Computing 12 (1983) 777–788.

[15] S. Vadhan, The complexity of counting in sparse, regular, and planar graphs, SIAM Journal
on Computing 31 (2001) 398–427.

9

