

This is a repository copy of How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies.

White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/135954/

Version: Accepted Version

Article:

O'Driscoll, R orcid.org/0000-0003-3995-0073, Turicchi, J orcid.org/0000-0003-1174-813X, Beaulieu, K orcid.org/0000-0001-8926-6953 et al. (5 more authors) (2020) How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. British Journal of Sports Medicine, 54 (6). pp. 332-340. ISSN 0306-3674

https://doi.org/10.1136/bjsports-2018-099643

© 2018, Author(s) (or their employer(s)). No commercial re-use. See rights and permissions. Published by BMJ. This is an author produced version of a paper published in British Journal of Sports Medicine. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

- 1 How well do activity monitors estimate energy expenditure? A systematic review and meta-
- 2 analysis.
- 3
- 4 Ruairi O'Driscoll,¹ Jake Turicchi,¹ Kristine Beaulieu,¹ Sarah Scott,¹ Jamie Matu,² Kevin
- 5 Deighton,³ Graham Finlayson,¹ R. James Stubbs¹
- ⁶ ¹Appetite Control and Energy Balance Group, School of Psychology, University of Leeds,
- 7 Leeds, U.K.
- 8 ²Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, U.K.
- ⁹ ³Institute for Sport, Physical Activity & Leisure, Leeds Beckett University, Leeds, U.K.

10 **Corresponding author:**

- 11 Ruairi O'Driscoll
- 12 Appetite Control and Energy Balance Group
- 13 University of Leeds,
- 14 Leeds, U.K.
- 15 LS2 9JT
- 16 Psrod@leeds.ac.uk
- 17 Word count:
- 18 4493

19	Abstract
20	Objective To determine the accuracy of wrist and arm-worn activity monitors' estimates of
21	energy expenditure (EE).
22	
23	Data sources SportDISCUS (EBSCOHost), PubMed, Medline (Ovid), PsycINFO
24	(EBSCOHost), EMBASE (Ovid) and CINAHL (EBSCOHost).
25	
26	Design A random effects meta-analysis was performed to evaluate the difference in EE
27	estimates between activity monitors and criterion measurements. Moderator analyses were
28	conducted to determine the benefit of additional sensors and to compare the accuracy of
29	devices used for research purposes with commercially available devices.
30	
31	Eligibility criteria We included studies validating EE estimates from wrist or arm-worn
32	activity monitors against criterion measures (indirect calorimetry, room calorimeters and
33	doubly labelled water) in healthy adult populations.
34	
35	Results 60 studies (104 effect sizes) were included in the meta-analysis. Devices showed
36	variable accuracy depending on activity type. Large and significant heterogeneity was
37	observed for many devices ($I^2 > 75\%$). Combining heart rate or heat sensing technology with
38	accelerometry decreased the error in most activity types. Research-grade devices were
39	statistically more accurate for comparisons of total EE but less accurate than commercial
40	devices during ambulatory activity and sedentary tasks.
41	
42	Conclusions EE estimates from wrist and arm-worn devices differ in accuracy depending on
43	activity type. Addition of physiological sensors improves estimates of EE and research-grade
44	devices are superior for total EE. These data highlight the need to improve estimates of EE
45	from wearable devices and one way this can be achieved is with the addition of heart rate to
46	accelerometry.
47	
48	Registration PROSPERO CRD42018085016.
49	

- 50 Keywords: Energy expenditure, Accelerometer, Meta-analysis, Wrist, Validation.
- 51
- 52 Device abbreviations: Actical (ACT), Actigraph GT3X (AGT3X), Apple watch (AW), Apple
- 53 Watch series 2 (AWS2), Beurer (BA) Basis b1 (BB1), Bodymedia CORE armband (BMC),
- 54 Basis Peak (BP), Epson Pulsense (EP), ePulse Personal Fitness Assistant (EPUL), Fitbit
- 55 Blaze (FB), Fitbit Charge (FC), Fitbit Charge 2 (FC2), Fitbit Charge HR (FCHR), Fitbit
- 56 Flex (FF), Garmin Forerunner 225 (GF225), Garmin Forerunner 920XT (GF920XT),
- 57 Garmin Vivoactive (GVA), Garmin Vivofit (GVF), Garmin Vivosmart (GVS), Garmin
- 58 Vivosmart HR (GVHR), Jawbone UP (JU), Jawbone UP24 (JU24), LifeChek calorie sensor
- 59 (LC), Mio Alpha (MA), Microsoft band (MB), Misfit Shine (MS), Polar: AW360 (PA360),
- 60 Nike Fuel band (NF), Polar Loop (PL), Polar: AW200 (PO200), Samsung Gear S (SG),
- 61 SenseWear Armband (SWA), SenseWear Armband Pro 2 (SWA p2), SenseWear Armband Pro
- 62 3 (SWA p3), SenseWear Armband MINI (SWAM), TOMTOM Touch (TT), Vivago (V),
- 63 Withings Pulse (WP), Withings Pulse O2 (WPO).

What is already known on this topic?

- Wrist or arm-worn devices incorporating multiple sensors are increasingly common and many devices provide estimates of energy expenditure. It is important to determine their validity overall and in different activity types.
- It is not clear which specific sensors or combinations of sensors provide the most accurate estimates of energy expenditure.
- It is unclear whether research-grade devices are more accurate than commercial devices.

What this study adds

- The accuracy in energy expenditure estimates from activity monitors varies between activities.
- Larger error is observed from devices employing accelerometry alone; the addition of heart rate sensing improves estimates of energy expenditure in most activities.
- In some activity types, research-grade devices are not superior to commercial devices.

65 Introduction

- 66 The prevalence of obesity has tripled in the last 40 years [1] and it has been estimated that by
- 67 2050, 60% of males and 50% of females may be obese [2]. Obesity is the result of a chronic
- 68 imbalance between energy intake (EI) and energy expenditure (EE) [3] driven by
- 69 physiological, psychological and environmental factors.
- Doubly-labelled water (DLW) is considered the gold standard for the measurement of free-living EE [4]; however, the considerable costs and analytical requirements limit its feasibility in large cohort studies [5]. Indirect calorimetry methods represent the most commonly employed criterion measure for assessment of the energy cost of an activity but again are limited to structured activities usually within a laboratory [6]. Wearable activity monitors are increasingly popular for the estimation of EE [7].
- 76 Wearable devices which use triaxial accelerometry to derive an estimate of EE have 77 been available for research purposes for some time [8]. These devices are worn on the hip, 78 thigh or lower back, as proximity to the centre of mass more accurately reflects the energy 79 cost of movement [9]; however, participant comfort and compliance is a recognised issue 80 [10] and therefore traditional wear devices have limited long-term, free-living measurement 81 capability. Use of wrist-worn activity monitors by both consumers and researchers has 82 dramatically increased [11] facilitated by improved battery longevity and miniaturization of 83 hardware required to produce interpretable data [12]. Recent consumer devices include 84 triaxial accelerometers, heat sensors and photoplethysmography heart rate sensors [13]. This 85 information can be incorporated to improve the estimation of EE relative to accelerometry 86 alone [14]. However, their accuracy compared with criterion measures is questionable [15] 87 and may vary with the type and intensity of activity [16].

88 This meta-analysis aimed to investigate the accuracy of EE estimates from current 89 wrist or arm-worn devices during different activities. Given the recent popularity wrist and 90 arm-worn activity monitors, it is critical to determine their validity for the estimation of EE 91 [17]. Secondary aims were to investigate the usefulness of specific sensors within devices, 92 and compare commercial and research-grade devices. We hypothesised that the addition of 93 physiological data to accelerometry within wearable devices will provide a more accurate 94 estimate of EE [18], compared with criterion measures, and that the performance of research-95 grade devices would be superior to commercial devices.

96

97 Methods

- 98 This systematic review and meta-analysis adhered to PRISMA diagnostic test accuracy
- 99 guideline [19] (supplementary material 1) and was prospectively registered in the
- 100 PROSPERO database (CRD42018085016).
- 101
- 102 Search strategy
- 103 SportDISCUS (EBSCOHost), PubMed, Medline (Ovid), PsycINFO (EBSCOHost),
- 104 EMBASE (Ovid) and CINAHL (EBSCOHost) were searched for studies published up to 1st
- 105 December 2017 using terms relevant to the validation of EE estimates from activity monitors
- 106 against criterion measures with the following strategy ((tracker AND EE) AND validation).
- 107 The search was updated 15th January 2018. The specific keywords and the full search strategy
- 108 can be found in supplementary material 2. No language restrictions were applied and in the
- 109 case of studies available only as an abstract, attempts were made to contact the authors.
- 110
- 111 Inclusion criteria
- 112 We considered laboratory or field validation studies conducted in healthy adults (≥ 18 years)
- 113 comparing a criterion measure of EE to an estimate of EE in kilocalories (kcal), kilojoules
- (kJ) or megajoules (MJ) from an activity monitor. We considered only wrist or arm-worn
- 115 devices. There is a clear tendency towards wrist worn devices amongst consumer devices and
- 116 devices worn on alternative anatomical locations produce different accelerometry patterns
- 117 and therefore estimates of EE [20]. For criterion validation, we considered DLW, indirect
- 118 calorimetry devices and metabolic chambers [6].
- 119
- 120 Exclusion criteria
- 121 Adults with conditions deemed to produce atypical movement patterns were excluded,
- 122 including Parkinson's disease, chronic obstructive pulmonary disease, cerebral palsy and
- 123 amputees. These conditions are often associated with abnormal gait pattern and thus reduce
- 124 accuracy in EE estimates [21]. Devices requiring external sensors or components were
- 125 excluded. Studies reporting only accelerometer counts or studies involving post-hoc
- 126 manipulation of the device output were excluded.
- 127
- 128 Study selection
- 129 Two authors (ROD and JT) independently assessed 100% of titles and abstracts for potential
- 130 inclusion, with 10% screened independently by a third author (GF). In the case of
- 131 disagreements between reviewers, the paper was retrieved in full-text and mutual consensus

- 132 was reached. Remaining articles were screened independently for inclusion at the full-text
- 133 level by two authors (ROD and JT), with a third author (SS) screening 10%. Similarly,
- 134 conflicts were resolved by discussion between reviewers.
- 135
- 136 Data extraction

137 From each of the included studies, characteristics of participants, validation protocol,

- 138 criterion measure and the devices tested including model, wear site and output were
- 139 extracted. Mean difference or EE estimates from the criterion measure and the device were
- 140 extracted, along with standard deviation (SD), standard error (SE) or 95% confidence
- 141 intervals (95% CI). If only SE was provided, SE was converted to SD. If data were not
- 142 provided, authors were contacted to request the raw data. Where values were only presented
- 143 in figures, a digitiser tool was used [22]. Data was extracted to a specialised spreadsheet and
- 144 entered into Comprehensive Meta-analysis (CMA) (CMA, version 2; Biostat, Englewood,
- 145 NJ) for analysis. Data was extracted by one author (ROD) and was cross-checked for data
- 146 extraction errors. A second author (JT) verified 100% of extracted data and data entered into147 CMA.
- 148
- 149 Quality assessment
- 150 Risk of bias in included studies was determined using a modified version of the Downs and
- 151 Black checklist for non-randomised studies [23]. The Downs and Black instrument is an
- 152 established tool for determination of the quality of a study within a systematic review and
- 153 meta-analysis [24]. The modified version used in the present study carried a maximum score
- of 18 and was quantified as: low (≤ 9 , < 50%), moderate ($\geq 9-14$ points, 50-79%), or high (≥ 15
- points, \geq 80%) [25]. It contained 17 questions, 10 related to reporting, three to external
- 156 validity and four to internal validity. The risk of bias assessment was performed
- 157 independently by two authors (ROD and JT), disagreements were resolved by discussion.
- 158
- 159 Statistical analysis
- 160 Descriptive statistics were calculated for studies included within the meta-analysis.
- 161 EE estimates from the device and criterion, SD or 95% CI, sample sizes and correlation
- 162 coefficients for within-activity comparisons for each device were used to calculate effect
- 163 sizes. Correlation coefficients were based on raw data from previously published studies or
- 164 were conservatively estimated based on the mean of similar devices (supplementary material
- 165 3). Where a study provided data for more than one comparison for one device, the selected

166 outcomes were pooled to provide a single mean and prevent overpowering of a single study. 167 Hedges' g (ES) [26] and 95% CIs were calculated using CMA, in accordance with the 168 majority of studies in the literature testing the mean bias between activity monitors and 169 criterion measures. A negative ES represents an underestimation relative to the criterion and 170 a positive value represents an overestimation. Interpretation of ES was as follows: <0.20 as 171 trivial, 0.20-0.39 as small, 0.40-0.80 as moderate and >0.80 as large [27]. A random effects 172 model was employed for all analyses based on the assumption that heterogeneity would exist 173 between included studies due to the variability in study design [28]. To determine 174 heterogeneity, the I² statistic [29] was utilised and >75% was considered to represent large 175 heterogeneity. To determine susceptibility to bias from one study, a leave one out analysis 176 was conducted where the removal of one study would leave at least three studies. The study 177 associated with the greatest change to significance of the effect is reported. To assist 178 interpretation of the error associated with each device, we calculated the percentage error 179 relative for each device using percentage difference and weight within each meta-analysis. 180

181 Exploration of small study effects

182 To examine small study effects, data were visually inspected with funnel plots and

183 subsequently quantified by using Egger's linear regression intercept [30]. A statistically

184 significant Egger's statistic indicates the presence of a small study effect.

185

186 Moderators and subgroups

As well as overall, which represents a combination of all subgroups, subgroup meta-analyses
were performed for specific activities/categories: 1) activity energy expenditure (AEE) which
included comparisons of EE estimates from the device to a criterion during non-specific
exercise protocols, circuits, arm ergometer, rowing and resistance exercises; 2) ambulation
and stair climbing; 3) cycling; 4) running; 5) sedentary behaviours and household tasks and
total energy expenditure (TEE), representing comparisons to DLW.

193

We conducted moderator analyses by sensors and all devices were grouped based on the inclusion of the following sensor hardware: 1) accelerometry alone (ACC); 2) heart rate alone (HR); 3) accelerometry and heart rate (ACC+HR); 4) accelerometry and heat sensing or galvanic skin response (ACC+HS) and 5) accelerometry, heart rate sensors and heat sensing or galvanic skin response sensors (ACC+HR+HS). Secondly, moderator analyses were conducted by commercial and research-grade devices. Devices produced by Actical, Actigraph and Bodymedia were considered as research-grade and all other devices included in the analysis were considered commercial devices. Comparisons between each moderator employed a random effects model.

203

204 Results

205 Overview

206 A total of 64 studies were included in the systematic review (Supplementary 4). Four studies 207 could not be synthesised by meta-analysis as mean difference between activity monitors and 208 criterion measurements were not provided [12,31–33]; thus, 60 studies were included in the 209 meta-analysis (figure 1) [10,13,41-50,20,51-60,34,61-70,35,71-80,36,81-88,37-40]. A total 210 of 1946 participants were included, with a mean age of 35 years (range 20 to 86 years). The 211 mean BMI was 24.9 kg/m² (range 21.8 to 31.6 kg/m²). Within the included studies, 104 212 comparisons between devices and a criterion were included. This represented 58 commercial 213 and 46 research-grade device comparisons. ACC was comprised of 35 comparisons, 1 in HR 214 devices, 20 in ACC+HR devices, 45 in ACC+HS and 3 in ACC+HR+HS. With regard to 215 activity performed, 35 comparisons were classed as AEE, ambulation and stairs included 55 216 comparisons, 23 were cycling tasks and 38 were running tasks. Sedentary and low-intensity

217 was comprised of 30 comparisons and TEE included 16 comparisons.

- 218
- 219 Devices

A total of 40 devices were tested in the included studies. One device was forearm-worn, 6

221 were worn on the upper arm (triceps) and 33 were wrist-worn. Characteristics of the devices,

222 number of studies and weighted percentage error for each device is shown in supplementary

- materials 5.
- 224

225 Meta-analysis

226 Individual study effect sizes and allocation to moderator variables are provided in

supplementary materials 6. A minimum of three comparisons were required for meta-analysis

and as such, we report pooled ES for individual devices or moderators where three or more

- 229 comparisons were available. Statistical outputs for each device are presented in
- 230 supplementary materials 7.
- 231

232 Quality assessment

- 233 The modified Downs and Black scores revealed a median score of 13, with one study being
- classed as low quality [69], 48 classed as moderate and 11 classed as high quality
- 235 (supplementary materials 8). The questions included in the modified tool and percentage of
- studies fulfilling each question is shown in supplementary materials 9.
- 237
- 238 Overall
- A forest plot of individual devices over all activities is shown in figure 2. Overall, devices
- 240 underestimated EE (ES: -0.23, 95% CI: -0.44 to -0.04; n=104; p=0.03) and showed
- significant heterogeneity between devices ($I^2 = 92.18\%$; p=<0.001). Significant
- 242 underestimations relative to criterion measures were observed for the Garmin Vivofit (GVF;
- 243 ES: -1.09, 95% CI: -1.61 to -0.56; n=5; p<0.001) and the Jawbone UP24 (JU24; ES: -1.16,
- 244 95% CI: -1.79 to -0.53; n=3; p<0.001). The SenseWear Armband Pro3 (SWA p3) also
- 245 underestimated EE (ES: -0.32. 95% CI: -0.62 to -0.01; n=12; p=0.04). Sensitivity analysis
- revealed that the removal of six comparisons altered the significance of the SWA p3
- 247 (p>0.05), the most influential of which decreased the ES to -0.19 (95% CI: -0.50 to 0.11;
- 248 p=0.21) [81]. The Apple watch (AW) Bodymedia CORE armband (BMC), Fitbit charge HR
- 249 (FCHR), Fitbit Flex (FF), Jawbone UP (JU), Nike Fuelband (NF), SenseWear Armband
- 250 (SWA) SenseWear Armband Pro2 (SWA p2), and Mini (SWAM) did not differ significantly
- 251 from criterion measures. However, sensitivity analysis showed the FCHR differed
- 252 significantly with the removal of one study (ES: 0.34, 95% CI: 0.20 to 0.49; p<0.001) [88].
- 253 The NF was the only device that did not display significant heterogeneity between studies (I^2
- =25.44%; p=0.26), with the remaining devices having I² values \ge 66.91% (all p \le 0.05). No
- 255 device showed evidence of small study effects.
- 256
- 257 AEE
- 258 A forest plot of individual devices during activities classed as AEE is shown in
- supplementary materials 10. For AEE, the pooled estimate of all devices was a non-
- significant tendency to underestimate EE compared with criterion measures (ES: -0.34, 95%)
- 261 CI: -0.71 to 0.04; n=35; p=0.08) and significant heterogeneity was observed between devices
- 262 ($I^2 = 94.94\%$; p<0.001). The SWA p2 underestimated EE (ES: -0.78, 95% CI: -1.48 to -0.08;
- n=3; p=0.03) and had moderate, non-significant heterogeneity (I² =64.19%; p=0.06). The
- BMC, NF, SWA and SWAM did not differ significantly from criterion measures but all
- 265 displayed significant heterogeneity. No device showed evidence of small study effects.

266

267

268

- Ambulation and stairs 269 A forest plot of individual devices during ambulation and stair climbing is shown in figure 3. 270 The pooled estimate of all devices did not differ from criterion measures (ES: -0.09, 95% CI: 271 -0.45 to 0.27; n=55; p=0.62) and significant heterogeneity was observed between devices (I² 272 =93.74%; p<0.01). The FCHR (ES: 0.78, 95% CI: 0.27 to 1.29; n=5; p=0.002) and FF (ES: 273 1.10, 95% CI: 0.43 to 1.77; n=3; p=0.001) overestimated EE. The GVF underestimated EE 274 (ES: -1.24, 95% CI: -1.86 to -0.62; n=4; p<0.01), however, sensitivity analysis revealed that 275 the removal of two comparisons significantly altered the mean effect (p>0.05) the most 276 influential significantly altered the mean effect to ES: -1.32 (95% CI: -2.73 to 0.08; p=0.07) 277 [34]. Further, there was evidence of small study effects (intercept= -13.76, 95% CI: -19.72 to 278 -7.80; p=0.01). The SWA overestimated EE (ES: 0.79, 95% CI: 0.25 to 1.33; n=5; p<0.01) 279 and sensitivity analysis revealed that the removal of four comparisons significantly altered 280 the mean effect (p>0.05) the most influential significantly altered the mean effect to ES: 0.33 281 (95% CI: -0.26 to 0.92; p=0.28) [56]. The AW, JU, SWA p3 and SWAM did not differ 282 significantly from criterion measures. The mean effect of the SWAM was significantly
- 283 altered by the removal of two studies; the removal of the most influential study yielded a
- 284 significant overestimation (ES: 0.57, 95% CI: 0.20 to 0.94; p=0.003) [87]. All devices
- 285 showed significant heterogeneity.
- 286
- 287 Cycling
- 288 A forest plot of individual devices during cycling is shown in supplementary materials 10.
- 289 The pooled estimate of all devices was significantly lower than criterion measures (ES: -0.73,

290 95% CI: -1.39 to -0.06; n=23; p=0.03) and significant heterogeneity was observed between

- 291 devices ($I^2 = 94.74\%$; p<0.01). The SWA did not differ significantly from criterion but
- 292 showed significant heterogeneity ($I^2 = 89.39\%$; p<0.001). The SWA p3 did not differ from
- 293 criterion measures and showed moderate heterogeneity ($I^2 = 54.95\%$; p=0.11).
- 294
- 295 Running
- 296 A forest plot of individual devices during running is shown in supplementary materials 10.
- 297 The pooled estimate was not statistically different from criterion measures (ES: -0.08, 95%)
- 298 CI: -0.41 to 0.25; n=38; p=0.65) and significant heterogeneity was observed between devices
- 299 $(I^2 = 92.05\%; p = <0.001)$. The FCHR, GVF and SWA did not differ from criterion measures.

- 300 Sensitivity analysis revealed the removal of one study changed the overall effect for the
- 301 FCHR (ES: 0.59, 95% CI: 0.28 to 0.90; p<0.001) [87]. Significant heterogeneity was
- 302 observed for the FCHR ($I^2 = 66.8\%$; p=0.03) and SWA ($I^2 = 96.79$; p<0.001), but not for the
- 303 GVF (I² =46.39%; p=0.15).
- 304
- 305 Sedentary and household tasks
- 306 A forest plot of individual devices during sedentary and household tasks is shown in figure 4.
- 307 The pooled effect was not statistically different from criterion measures (ES: -0.09, 95% CI: -
- $308 \quad 0.51 \text{ to } 0.32; n=30; p=0.66) \text{ and significant heterogeneity was observed between devices (I²)$
- 309 =94.84%; p<0.001). The AW, FCHR and SWAM were not statistically different from
- 310 criterion measures. The SWA p3 overestimated EE (ES: 0.67, 95% CI: 0.00 to 1.34;
- 311 p=0.049). Sensitivity analysis revealed that the removal of three studies changed the mean
- effect, the most influential of which decreased the ES to 0.41 (95% CI: -0.01 to 0.82; p=0.05)
- 313 [42]. Observed heterogeneity was significant for the AW, SWA p3 and SWAM. The FCHR
- had moderate, non-significant heterogeneity ($I^2 = 59.60\%$; p=0.60).
- 315
- 316 TEE
- 317 A forest plot of individual devices for the measurement of TEE is shown in figure 5. The
- 318 pooled effect for TEE showed a significant underestimation of EE (ES: -0.68, 95% CI: -1.15
- 319 to -0.21; n=16; p= p=0.005) and significant heterogeneity was observed between devices (I^2
- 320 =92.17%; p<0.01). The SWA p3 did not differ significantly from criterion measures and
- 321 showed significant heterogeneity ($I^2 = 94.20\%$; p=0.001).
- 322
- 323 Moderator analyses
- 324 The results of moderator analyses are shown in table 1. Overall, there was a significant
- 325 difference between sensors (p=0.003). Pooled estimate of EE from ACC+HR and ACC+HS
- 326 was not statistically different from criterion but ACC+HS showed a non-significant tendency
- 327 for underestimation, and ACC and ACC+HR+HS both significantly underestimated EE. In
- 328 the AEE comparison, there was no statistical difference between sensors, but ACC+HS
- 329 significantly underestimated EE, ACC showed a non-significant tendency for
- 330 underestimation and ACC+HR did not differ significantly from criterion measures. During
- ambulation and stair climbing, a significant difference between sensors was observed, with
- 332 estimates of EE from ACC+HR and ACC+HS being significantly higher than criterion. In
- 333 cycling, significant differences were observed between sensors, with ACC devices

- 334 underestimating EE. During running activities, none of the pooled mean estimates were
- 335 significantly different from criterion. For sedentary and household tasks, a significant
- difference was observed between sensors; ACC+HR was not different from criterion

337 measures whereas ACC and ACC+HS underestimated and overestimated EE respectively.

- 338 For TEE, sensors differed significantly; ACC underestimated EE, whereas ACC+HS did not
- 339 differ significantly from criterion.
- When analysed by commercial and research-grade devices, no significant differencewas observed overall, for AEE, cycling or running. For both the ambulation and stairs
- 342 comparison and the sedentary and household tasks comparison, commercial devices were
- 343 closer to criterion measurements, with research grade devices significantly overestimating.
- 344 For TEE, research-grade devices were superior, with commercial devices significantly
- 345 underestimating EE.
- 346

Moderator variable	Subgroup level	<i>p</i> -value	Hedges' g (95% CI)
Overall activities			
Sensors	ACC (n=35)	<0.01	-0.36 (-0.55, -0.17)*
	ACC + HR (n=20)		0.06 (-0.18, 0.31)
	ACC + HR + HS (n=3)		-0.99 (-1.65, -0.33)*
	ACC + HS (n=45)		-0.151 (-0.32, 0.01)
Device grade	Commercial (n=58)	0.27	-0.269(-0.42, -0.12)*
	Research (n=46)		-0.141 (-0.31, 0.03)
AEE			
Sensors	ACC (n=8)	0.19	-0.40 (-0.84, 0.04)
	ACC + HR (n=9)		-0.04 (-0.47, 0.38)
	ACC + HS(n=16)		-0.32 (-0.63, -0.01)*
Device grade	Commercial (n=18)	0.62	-0.38 (-0.67, -0.08)*
	Research $(n=17)$		-0.27 (-0.57, 0.04)
Ambulation and stai			0.27 (-0.37, 0.04)
Sensors	ACC (n=24)	0.01	-0.23 (-0.51, 0.06)
	ACC + HR (n=10)	0.01	0.45 (0.02, 0.87)*
	ACC + HS (n=19)		0.40 (0.08, 0.72)*
Device grade	Commercial $(n=35)$	0.05	-0.04(-0.28, 0.20)
Device grade	Research $(n=20)$	0.05	0.37 (0.05, 0.68)*
Cycling	Research (II=20)		$0.57(0.05, 0.08)^{\circ}$
Sensors	ACC (n=3)	<0.01	-3.75 (-4.65, -2.85)*
Sensors	ACC + HR (n=9)	.0.01	-0.04 (-0.47, 0.40)
	ACC + HS (n=9)		-0.41 (-0.84, 0.02)
		0.29	
Device grade	Commercial $(n=14)$	0.28	-0.82 (-1.30, -0.35)*
Dunning	Research (n=9)		-0.41 (-0.99, 0.17)
Running Sensors	ACC (n=19)	0.18	-0.06 (-0.364, 0.24)
5015015	ACC (n=19) ACC + HR (n=7)	0.16	0.34 (-0.15, 0.82)
	ACC + HS (n=10)		-0.36(-0.78, 0.05)
Device grade	Commercial $(n=28)$	0.08	0.06 (-0.18, 0.30)
Device grade	Research $(n=10)$	0.08	-0.36(-0.76, 0.04)
Sedentary and house			0.30 (0.70, 0.04)
Sensors	ACC (n=6)	<0.01	-0.65 (-1.16, -0.13)*
	ACC + HR (n=9)	0.01	0.14 (-0.28, 0.57)
	ACC + HS (n=13)		0.41 (0.06, 0.75)*
Device grade	Commercial (n=17)	< 0.01	-0.27 (-0.59, 0.05)
Berlee grade	Research (n=13)		0.41 (0.05, 0.77)*
TEE (DLW)	nessen (n=13)		
Sensors	ACC (n=5)	<0.01	-1.24(-1.66, -0.81)*
00115015	ACC + HS (n=10)	NU.01	-0.13(-0.397, 0.32)
		<0.01	
Device grade	Commercial (n-6)	<u> </u>	
Device grade	Commercial (n=6) Research (n=10)	<0.01	-1.13(-1.51, -0.76)* -0.13 (-0.39, 0.14)

- 348 Discussion
- 349

Given the clinical and consumer uptake of wrist and arm-worn activity monitors which can be used for the estimation of EE, the aims of this meta-analysis were (i) to determine the relative accuracy of current devices, (ii) to investigate the importance of specific sensors within devices and (iii) to compare commercial and research-grade devices.

354 For devices with sufficient comparisons to be analysed separately from the main 355 pooled effect, significant error relative to criterion measures was observed for Garmin, Fitbit, 356 Jawbone and Bodymedia products. Garmin, Fitbit and Jawbone represent a major share of the 357 commercial wearable market [73] and Bodymedia products are widely used in research and 358 have been since 2004 [59]. Whilst it is initially encouraging that the ES for many devices was 359 not significantly different from criterion, the 95% CI observed in many cases indicates the 360 potential for these devices to produce erroneous estimates of mean EE and as such we would 361 be hesitant to consider any device sufficiently accurate. A 10% 'equivalence zone' has been 362 suggested previously [65] and with the exception of the Nike Fuel band, in which all three 363 studies reported a mean error <10% [65,79,82], no device pooled in this meta-analysis 364 consistently met this criteria. The SenseWear armband Mini was the most accurate device 365 overall but error reported in studies ranged from -21.27% [87] to 14.76% [39]. Studies in this 366 analysis followed the manufacturer's instructions for setup, with researchers ensuring the 367 position of the device and characteristics such as height, weight, sex and age were correct. In 368 free-living environments the lack of researcher presence could yield greater error than 369 observed in this analysis [17], as indicated by the moderate, significant underestimation for 370 the pooled effect in the TEE subgroup.

371

372 An accurate yet affordable measure of TEE, with a measure of change in energy storage, 373 could theoretically be used to retrospectively determine free-living EI in large cohorts [89]. 374 In this context, TEE may be considered the most important activity subgroup in this meta-375 analysis, however, the most variable and unpredictable component of TEE is EE during 376 activity [6]. In agreement with previous studies [13,45,52], we have shown that the accuracy 377 of devices differs by activity and this may be related to the inability of devices to differentiate 378 between activity types. For a device to accurately estimate TEE between individuals, it must 379 accurately estimate the energy cost of a wide range of activities however, some activities may 380 require greater focus. The majority of EE is attributable to rest or non-exercise activity [6] so 381 error here could have a great impact on the error in TEE. The Fitbit Charge HR was the most

tested commercial device in this analysis and it showed a trivial, non-significant ES overall and during sedentary tasks but a moderate to large and significant overestimation during ambulatory activity. Considering that ambulatory activity is central to public health guidelines worldwide [90], the implications of this finding may be great for estimates of TEE.

387 The observed error for different activity types may be because current algorithms do 388 not take physical activity type or bodily posture into account [91]. Indeed, activity 389 recognition is considered an important direction for wearable technology [11] and has been 390 used to improve estimates of EE [92]. Montoye et al have shown that accelerometers worn on 391 the wrists and thigh can be used to predict activity type [93]. The SenseWear software 392 employs complex pattern-recognition algorithms to determine activity type [45] which likely 393 contributed to the trivial or small ES observed for the SenseWear Armband Mini in all 394 comparisons. The challenges associated with activity recognition have been reviewed 395 recently [94] and as this technology develops, activity-specific EE prediction equations may 396 offer the opportunity to reduced errors associated with activity types.

397

398 Sensors

399 A 2012 review concluded that multisensory and triaxial accelerometry devices improve 400 estimates of EE, relative to uniaxial devices [21]. Due to recent technological advancements, 401 triaxial accelerometry, as well as heart rate or heat sensing technology are commonplace in 402 newer devices [48]. We hypothesised that the addition of this technology to accelerometry 403 would improve estimates of EE. Overall, this meta-analysis shows that the inclusion of heart 404 rate or heat sensors in devices can improve estimates of EE relative to accelerometry alone. 405 Indeed, it is established that accelerometry is limited for non-weight-bearing activities [84], 406 and accelerometry underestimated EE during cycling activities in our analysis. Significant 407 underestimations were also observed during sedentary and household tasks and TEE, which 408 is likely a product of the limited arm movements associated with these activities.

Accelerometry and heart rate devices moderately overestimated EE during ambulation and stair climbing. Some of this error may be attributable to the individual variability in the relationship between heart rate and EE. Individual calibration of this relationship in the Actiheart device is associated with improved estimates of EE [95] and may offer a means for further reducing the error observed in wrist and arm-worn devices. An alternative explanation for this is the variability in estimates of heart rate from photoplethysmography heart rate sensors. A recent study reported a small mean error of -5.9 bpm in the Fitbit Charge 2, but 416 wide limits of agreement of -28.5 to 16.8 bpm [96] and this variability is a common finding417 [35,40].

418

419 Device Grade

420 The third aim of this meta-analysis was to compare commercial and research-grade devices. 421 Commercial devices may be developed with affordability and comfort as a primary focus, 422 and as a consequence it may be unreasonable to expect commercial devices to match the 423 validity of research-grade devices. Recent consumer monitors share similar technology with 424 established research-grade multi-sensor devices [48] and this is partially reflected in our 425 results. A benefit of research-grade devices for TEE was observed, but commercial devices 426 were statistically superior in ambulation and during sedentary tasks. Our results question the 427 use of wrist or arm-worn research-grade devices for the validation of newer devices. 428 Comparisons to criterion measures such as DLW or indirect calorimetry are more appropriate 429 when absolute accuracy is required [6]. Further, it is important to highlight that other 430 research-grade devices, for instance the Actiheart, which is worn on the chest [95], are likely 431 to be more accurate than research-grade devices included in this study [48]. Further research 432 is needed to establish whether research-grade devices that are worn in other locations such as 433 the chest, hip or thigh outperform consumer based devices.

434

435 Limitations

Separate pooled analyses to determine the accuracy of individual activity monitors were performed for a limited number of devices due to the small number of comparisons available for the remaining devices (i.e., less than three comparisons). This limitation is inevitable considering the large number of activity monitors included in this review. Nevertheless, the inclusion of all devices in the overall pooled analysis provides an extensive and robust evaluation of the difference in EE outcomes between activity monitors and criterion measures.

The majority of analyses conducted within this review demonstrated large heterogeneity within and between devices which remained after moderating by specific devices and activity. Such heterogeneity is not unexpected and in many cases may be attributable to disparity in the protocols employed [97]. Indirect calorimetry systems were the most commonly used criterion measure but EE estimates may differ by up to 5.2% depending on the equations used [98]. EE is likely to be elevated in the period following higher intensity exercise and the inclusion of only the steady state period may influence the extent to which

450 devices differ from criterion measures [56]. There is also the possibility that the discrepancy

451 between device estimates relates to populations studied [16] for example, a higher BMI

452 [35,40] or age related changes in movement patterns [69]. As few devices currently provide

453 open-access to EE algorithms, the potential for this to create heterogeneity remains uncertain.

454 Despite this, the statistically significant outcomes in many cases suggests a consistent

455 direction in effect sizes for many comparisons and the differences in statistical outcomes

456 between devices are supported by the magnitude of effect sizes.

External validity was low in 46 studies pooled in this meta-analysis, which must be considered when interpreting the present results. It must also be noted that the present analysis was limited to healthy individuals and therefore our results cannot be generalized to populations with conditions that produce abnormal gait patterns.

Lastly, there is a lag between product release and testing in research environments [40] and some of the devices included in this meta-analysis are no longer in production so the continued validation of newer devices is imperative.

464

465 Conclusion

466 This meta-analysis collated studies evaluating the validity of EE estimates by wrist or 467 arm-worn devices. Devices vary in accuracy depending on activity type and the significant 468 heterogeneity means caution must be exercised when interpreting these results. Devices with 469 heart rate sensors often produced better estimates than devices using accelerometry only; 470 however, this was not consistent across all activities. Wrist and arm-worn research-grade 471 devices were more accurate than commercial devices for estimates of TEE but researchers 472 should be aware that such devices do not guarantee superior accuracy. Future research should 473 aim to understand and reduce the error in EE estimates from wrist or arm-worn devices in 474 different activity types. This may be achieved through activity recognition techniques, incorporating physiological measures and exploring the potential for individual calibration of 475 476 these relationships.

478 Funding

479 The research was funded by a University of Leeds PhD studentship. This research received

- 480 no specific grant from any funding agency in the public, commercial or not-for-profit sectors.
- 481

482 **Conflicting interests**

483 None

484	Refe	rence list
485		
486	1	Ells LJ, Demaio A, Farpour-Lambert N. Diet, genes, and obesity. BMJ 2018;360:k7.
487		doi:10.1136/BMJ.K7
488	2	Agha M, Agha R. The rising prevalence of obesity. Int J Surg Oncol 2017;2:e17.
489		doi:10.1097/IJ9.000000000000017
490	3	Carneiro IP, Elliott SA, Siervo M, et al. Is Obesity Associated with Altered Energy
491		Expenditure? Adv Nutr 2016;7:476-87. doi:10.3945/an.115.008755.findings
492	4	Seale JL, Conway JM, Canary JJ. Seven-day validation of doubly labeled water
493		method using indirect room calorimetry. J Appl Physiol 1993;74:402-9.
494		doi:10.1152/jappl.1993.74.1.402
495	5	Delany JP. Measurement of energy expenditure. Pediatr. Blood Cancer. 2012;58:129-
496		34. doi:10.1002/pbc.23369
497	6	Hills AP, Mokhtar N, Byrne NM. Assessment of Physical Activity and Energy
498		Expenditure: An Overview of Objective Measures. Front Nutr 2014;1:1-16.
499		doi:10.3389/fnut.2014.00005
500	7	Dhurandhar N V, Schoeller D, Brown AW, et al. Energy Balance Measurement: When
501		Something is Not Better than Nothing. Int J Obes 2015;39:1109–13.
502		doi:10.1038/ijo.2014.199
503	8	Lyden K, Kozey SL, Staudenmeyer JW, et al. A comprehensive evaluation of
504		commonly used accelerometer energy expenditure and MET prediction equations. Eur
505		J Appl Physiol 2011;111:187–201. doi:10.1007/s00421-010-1639-8
506	9	Chen KY, Acra SA, Majchrzak K, et al. Predicting energy expenditure of physical
507		activity using hip- and wrist-worn accelerometers. Diabetes Technol Ther
508		2003; 5 :1023–33. doi:10.1089/152091503322641088
509	10	Diaz KM, Krupka DJ, Chang MJ, et al. Validation of the Fitbit One® for physical
510		activity measurement at an upper torso attachment site. BMC Res Notes 2016;9:213.
511		doi:10.1186/s13104-016-2020-8
512	11	Wright SP, Hall Brown TS, Collier SR, et al. How consumer physical activity
513		monitors could transform human physiology research. Am J Physiol - Regul Integr
514		Comp Physiol 2017; 312 :R358-67. doi:10.1152/ajpregu.00349.2016
515	12	Shcherbina A, Mikael Mattsson C, Waggott D, et al. Accuracy in wrist-worn, sensor-
516		based measurements of heart rate and energy expenditure in a diverse cohort. J Pers
517		<i>Med</i> 2017; 7 :1–12. doi:10.3390/jpm7020003

- 518 13 Woodman JA, CROUTER SE, BASSETT DR, et al. Accuracy of Consumer Monitors
- 519 for Estimating Energy Expenditure and Activity Type. *Med Sci Sports Exerc*

520 2017;**49**:371–7. doi:10.1249/MSS.00000000000000000

- 521 14 Silva AM, Santos DA, Matias CN, *et al.* Accuracy of a combined heart rate and
 522 motion sensor for assessing energy expenditure in free-living adults during a double-
- 523 blind crossover caffeine trial using doubly labeled water as the reference method. *Eur*
- 524 *J Clin Nutr* 2015;**69**:20–7. doi:10.1038/ejcn.2014.51
- 525 15 Stahl SE, An H-S, Dinkel DM, *et al.* How accurate are the wrist-based heart rate
- 526 monitors during walking and running activities? Are they accurate enough? *BMJ Open*527 *Sport Exerc Med* 2016;**2**:e000106. doi:10.1136/bmjsem-2015-000106
- Koehler K, Drenowatz C. Monitoring energy expenditure using a multi-sensor device Applications and limitations of the sense wear armband in athletic populations. *Front Physiol* 2017;8:1–7. doi:10.3389/fphys.2017.00983
- 531 17 Evenson KR, Goto MM, Furberg RD, *et al.* Systematic review of the validity and
 532 reliability of consumer-wearable activity trackers. *Int J Behav Nutr Phys Act*533 2015;12:159. doi:10.1186/s12966-015-0314-1
- 53418Brage SS, Westgate K, Franks PW, *et al.* Estimation of free-living energy expenditure535by heart rate and movement sensing: A doubly-labelled water study. *PLoS One*

536 2015;**10**:e0137206. doi:10.1371/journal.pone.0137206

- 537 19 McInnes MDF, Moher D, Thombs BD, *et al.* Preferred Reporting Items for a
- 538 Systematic Review and Meta-analysis of Diagnostic Test Accuracy Studies. *JAMA*539 2018;**319**:388. doi:10.1001/jama.2017.19163
- Nelson MB, Kaminsky LA, Dickin DC, *et al.* Validity of Consumer-Based Physical
 Activity Monitors for Specific Activity Types. *Med Sci Sports Exerc* 2016;48:1619–
 28. doi:10.1249/MSS.000000000000933
- 543 21 Van Remoortel H, Giavedoni S, Raste Y, *et al.* Validity of activity monitors in health
 544 and chronic disease: a systematic review. *Int J Behav Nutr Phys Act* 2012;**9**:84.
- 545 doi:10.1186/1479-5868-9-84
- 546 22 Rohatgi. WebPlotDigitizer Extract data from plots, images, and maps.
- 547 2017.https://automeris.io/WebPlotDigitizer/ (accessed 6 Mar 2018).
- 54823Downs SH, Black N. The feasibility of creating a checklist for the assessment of the
- 549 methodological quality both of randomised and non-randomised studies of health care
- 550 interventions. *J Epidemiol Community Health* 1998;**52**:377–84.
- 551 doi:10.1136/JECH.52.6.377

552 Deeks JJ, Dinnes J, D'Amico R, et al. Evaluating non-randomised intervention studies. 24 553 Health Technol Assess 2003;7:iii-x, 1-554 173.http://www.ncbi.nlm.nih.gov/pubmed/14499048 (accessed 23 Feb 2018). 555 25 MacDonald H V, Johnson BT, Huedo-Medina TB, et al. Dynamic Resistance Training 556 as Stand-Alone Antihypertensive Lifestyle Therapy: A Meta-Analysis. J Am Heart 557 Assoc 2016;5. doi:10.1161/JAHA.116.003231 558 26 Hedges L V. Distribution Theory for Glass's Estimator of Effect Size and Related 559 Estimators. J Educ Stat 1981:6:107. doi:10.2307/1164588 560 27 Cohen J. Statistical power analysis for the behavioral sciences. Academic Press 1977. 561 https://www.sciencedirect.com/science/book/9780121790608 (accessed 23 Feb 2018). 562 28 Higgins JPT, Thompson SG, Spiegelhalter DJ. A re-evaluation of random-effects 563 meta-analysis. J R Stat Soc Ser A Stat Soc 2009;172:137-59. doi:10.1111/j.1467-564 985X.2008.00552.x 565 29 Higgins JPT, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 566 2002;**21**:1539–58. doi:10.1002/sim.1186 567 30 Egger M, Smith GD, Schneider M, et al. Bias in meta-analysis detected by a simple, 568 graphical test. BMJ 1997;315:629-34. doi:10.1136/bmj.315.7109.629 569 31 Lopez GA, Brønd JC, Andersen LB, et al. Validation of SenseWear Armband in 570 children, adolescents, and adults. Scand J Med Sci Sport 2018;28:487-95. 571 doi:10.1111/sms.12920 572 32 Reeve MD, Pumpa KL, Ball N. Accuracy of the SenseWear Armband Mini and the 573 BodyMedia FIT in resistance training. J Sci Med Sport 2014;17:630-4. 574 doi:10.1016/j.jsams.2013.08.007 575 33 Machač S, Procházka M, Radvanský J, et al. Validation of Physical Activity Monitors 576 in Individuals with Diabetes: Energy Expenditure Estimation by the Multisensor 577 SenseWear Armband Pro3 and the Step Counter Omron HJ-720 Against Indirect 578 Calorimetry During Walking. Diabetes Technol Ther 2013;15:413-8. 579 doi:10.1089/dia.2012.0235 580 Alsubheen SA, George AM, Baker A, et al. Accuracy of the vivofit activity tracker. J 34 581 Med Eng Technol 2016;40:298-306. doi:10.1080/03091902.2016.1193238 582 Bai Y, Hibbing P, Mantis C, et al. Comparative evaluation of heart rate-based 35 583 monitors: Apple Watch vs Fitbit Charge HR. J Sports Sci 2018;36:1734-41. 584 doi:10.1080/02640414.2017.1412235 585 36 Benito PJ, Neiva C, González-Quijano PS, et al. Validation of the SenseWear armband 586 in circuit resistance training with different loads. Eur J Appl Physiol 2012;112:3155-9. doi:10.1007/s00421-011-2269-5 587 588 37 Berntsen S, Hageberg R, Aandstad A, et al. Validity of physical activity monitors in 589 adults participating in free-living activities. Br J Sports Med 2010;44:657-64. 590 doi:10.1136/bjsm.2008.048868 591 38 Berntsen S, Stafne SN, Maørkved S. Physical activity monitor for recording energy 592 expenditure in pregnancy. Acta Obstet Gynecol Scand 2011;90:903-7. 593 doi:10.1111/j.1600-0412.2011.01172.x 594 39 Bhammar DM, Sawyer BJ, Tucker WJ, et al. Validity of SenseWear(R) Armband v5.2 595 and v2.2 for estimating energy expenditure. J Sports Sci 2016;34:1830-8. 596 doi:10.1080/02640414.2016.1140220 597 40 Boudreaux BD, Hebert EP, Hollander DB, et al. Validity of Wearable Activity 598 Monitors during Cycling and Resistance Exercise. Med Sci Sports Exerc 2018;50:624-599 33. doi:10.1249/MSS.000000000001471 41 600 Brazeau AS, Karelis AD, Mignault D, et al. Accuracy of the SenseWear Armband??? 601 during ergocycling. Int J Sports Med 2011;32:761-4. doi:10.1055/s-0031-1279768 602 42 Brazeau AS, Suppere C, Strychar I, et al. Accuracy of energy expenditure estimation 603 by activity monitors differs with ethnicity. Int J Sports Med 2014;35:847-50. 604 doi:10.1055/s-0034-1371837 605 43 Brazeau AS, Beaudoin N, Bélisle V, et al. Validation and reliability of two activity 606 monitors for energy expenditure assessment. J Sci Med Sport 2016;19:46-50. 607 doi:10.1016/j.jsams.2014.11.001 608 44 Brugniaux J V., Niva A, Pulkkinen I, et al. Polar activity watch 200: A new device to 609 accurately assess energy expenditure. Br J Sports Med 2010;44:245-9. 610 doi:10.1136/bjsm.2007.045575 611 45 Calabro MA, Lee JM, Saint-Maurice PF, et al. Validity of physical activity monitors 612 for assessing lower intensity activity in adults. Int J Behav Nutr Phys Act 2014;11:119. 613 doi:10.1186/s12966-014-0119-7 614 46 Calabro MA, Kim Y, Franke WD, et al. Objective and subjective measurement of energy expenditure in older adults: A doubly labeled water study. Eur J Clin Nutr 615 616 2015;69:850-5. doi:10.1038/ejcn.2014.241 617 47 Casiraghi F, Lertwattanarak R, Luzi L, et al. Energy Expenditure Evaluation in 618 Humans and Non-Human Primates by SenseWear Armband. Validation of Energy 619 Expenditure Evaluation by SenseWear Armband by Direct Comparison with Indirect

620 Calorimetry. PLoS One 2013;8:e73651. doi:10.1371/journal.pone.0073651 621 48 Chowdhury EA, Western MJ, Nightingale TE, et al. Assessment of laboratory and 622 daily energy expenditure estimates from consumer multisensor physical activity monitors. PLoS One 2017;12:e0171720. doi:10.1371/journal.pone.0171720 623 624 49 Colbert LH, Matthews CE, Havighurst TC, et al. Comparative validity of physical 625 activity measures in older adults. Med Sci Sports Exerc 2011;43:867-76. doi:10.1249/MSS.0b013e3181fc7162 626 50 627 Correa JB, Apolzan JW, Shepard DN, et al. Evaluation of the ability of three physical 628 activity monitors to predict weight change and estimate energy expenditure. Appl 629 Physiol Nutr Metab 2016;41:758-66. doi:10.1139/apnm-2015-0461 630 51 Diaz KM, Krupka DJ, Chang MJ, et al. Fitbit®: an Accurate and Reliable Device for 631 Wireless Physical Activity Tracking. Int J Cardiol 2016;185:138-40. 632 doi:10.1016/j.ijcard.2015.03.038.FITBIT 633 52 Dondzila C, Garner D. Comparative accuracy of fitness tracking modalities in quantifying energy expenditure. J Med Eng Technol 2016;40:325-9. 634 635 doi:10.1080/03091902.2016.1197978 636 53 Erdogan A, Cetin C, Karatosun H, et al. Accuracy of the Polar S810i(TM) Heart Rate 637 Monitor and the Sensewear Pro Armband(TM) to Estimate Energy Expenditure of 638 Indoor Rowing Exercise in Overweight and Obese Individuals. J Sports Sci Med 639 2010;9:508-16.http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3761702&tool=pmcent 640 641 rez&rendertype=abstract 642 54 Fruin ML, Rankin JW. Validity of a multi-sensor Armband in estimating rest and 643 exercise energy expenditure. Med Sci Sports Exerc 2004;36:1063-9. 644 doi:10.1249/01.MSS.0000128144.91337.38 645 55 Furlanetto KC, Bisca GW, Oldemberg N, et al. Step Counting and Energy Expenditure 646 Estimation in Patients With Chronic Obstructive Pulmonary Disease and Healthy 647 Elderly: Accuracy of 2 Motion Sensors. Arch Phys Med Rehabil 2010;91:261-7. doi:10.1016/j.apmr.2009.10.024 648 649 56 Gastin PB, Cayzer C, Dwyer D, et al. Validity of the ActiGraph GT3X+ and 650 BodyMedia SenseWear Armband to estimate energy expenditure during physical 651 activity and sport. J Sci Med Sport Published Online First: July 2017. 652 doi:10.1016/j.jsams.2017.07.022 653 57 Heiermann S, Khalaj Hedayati K, Müller MJ, et al. Accuracy of a portable multisensor 654 body monitor for predicting resting energy expenditure in older people: A comparison with indirect calorimetry. Gerontology 2011;57:473-9. doi:10.1159/000322109 655 Imboden MT, Nelson MB, Kaminsky LA, et al. Comparison of four Fitbit and 656 58 657 Jawbone activity monitors with a research-grade ActiGraph accelerometer for 658 estimating physical activity and energy expenditure. Br J Sports Med 2017;:bjsports-659 2016-096990. doi:10.1136/bjsports-2016-096990 59 660 Jakicic JM, Marcus M, Gallagher KI, et al. Evaluation of the SenseWear Pro Armband to Assess Energy Expenditure during Exercise. Med Sci Sport Exerc 2004;36:897-904. 661 doi:10.1249/01.MSS.0000126805.32659.43 662 663 60 Johannsen DL, Calabro MA, Stewart J, et al. Accuracy of armband monitors for 664 measuring daily energy expenditure in healthy adults. Med Sci Sports Exerc 2010;42:2134-40. doi:10.1249/MSS.0b013e3181e0b3ff 665 666 61 Kim Y, Welk GJ. Criterion validity of competing accelerometry-based activity 667 monitoring devices. Med Sci Sports Exerc 2015;47:2456-63. doi:10.1249/MSS.000000000000691 668 669 62 King GA, Torres N, Potter C, et al. Comparison of activity monitors to estimate 670 energy cost of treadmill exercise. Med Sci Sports Exerc 2004;36:1244-51. 671 doi:10.1249/01.MSS.0000132379.09364.F8 672 63 Koehler K, Braun H, De Marles M, et al. Assessing energy expenditure in male 673 endurance athletes: Validity of the sensewear armband. Med Sci Sports Exerc 674 2011:43:1328-33. doi:10.1249/MSS.0b013e31820750f5 675 64 Lee CM, Gorelick M, Mendoza A. Accuracy of an infrared led device to measure heart 676 rate and energy expenditure during rest and exercise. J Sports Sci 2011;29:1645–53. 677 doi:10.1080/02640414.2011.609899 678 65 Lee J-MM, Kim Y-WY, Welk GJ. Validity of consumer-based physical activity 679 monitors. Med Sci Sports Exerc 2014;46:1840-8. 680 doi:10.1249/MSS.00000000000287 681 66 MacKey DC, Manini TM, Schoeller DA, et al. Validation of an armband to measure 682 daily energy expenditure in older adults. Journals Gerontol - Ser A Biol Sci Med Sci 2011;66 A:1108-13. doi:10.1093/gerona/glr101 683 684 67 Martien S, Seghers J, Boen F, et al. Energy expenditure in institutionalized older 685 adults: Validation of SenseWear Mini. Med Sci Sports Exerc 2015;47:1265-71. doi:10.1249/MSS.000000000000529 686 687 68 McMinn D, Rowe DA, Murtagh S, et al. The effect of a school-based active

688		commuting intervention on children's commuting physical activity and daily physical
689		activity. Prev Med (Baltim) 2012;54:316-8. doi:10.1016/j.ypmed.2012.02.013
690	69	Melanson EL, Dykstra JC, Szuminsky N. A novel approach for measuring energy
691		expenditure in free-living humans. 2009 Annu Int Conf IEEE Eng Med Biol Soc
692		2009; 2009 :6873-7. doi:10.1109/IEMBS.2009.5333124
693	70	Montoye AHK, Mitrzyk JR, Molesky MJ. Comparative Accuracy of a Wrist-Worn
694		Activity Tracker and a Smart Shirt for Physical Activity Assessment. Meas Phys Educ
695		Exerc Sci 2017;21:201–11. doi:10.1080/1091367X.2017.1331166
696	71	Murakami H, Kawakami R, Nakae S, et al. Accuracy of Wearable Devices for
697		Estimating Total Energy Expenditure. JAMA Intern Med 2016;176:702.
698		doi:10.1001/jamainternmed.2016.0152
699	72	Papazoglou D, Augello G, Tagliaferri M, et al. Evaluation of a multisensor armband in
700		estimating energy expenditure in obese individuals. Obesity 2006;14:2217-23.
701		doi:10.1038/oby.2006.260
702	73	Price K, Bird SR, Lythgo N, et al. Validation of the Fitbit One, Garmin Vivofit and
703		Jawbone UP activity tracker in estimation of energy expenditure during treadmill
704		walking and running. J Med Eng Technol 2017;41:208–15.
705		doi:10.1080/03091902.2016.1253795
706	74	Reece JD, Barry V, Fuller DK, et al. Validation of the SenseWear Armband as a
707		Measure of Sedentary Behavior and Light Activity. J Phys Act Heal 2015;12:1229-37.
708		doi:10.1123/jpah.2014-0136
709	75	Rousset S, Fardet A, Lacomme P, et al. Comparison of total energy expenditure
710		assessed by two devices in controlled and free-living conditions. Eur J Sport Sci
711		2015; 15 :391–9. doi:10.1080/17461391.2014.949309
712	76	Ryan J, Gormley J. Measurement of energy expenditure by activity monitors. Phys
713		Ther Rev 2013;18:239-62. doi:10.1179/1743288X13Y.0000000063
714	77	Slinde F, Bertz F, Winkvist A, et al. Energy expenditure by multisensor armband in
715		overweight and obese lactating women validated by doubly labeled water. Obesity
716		2013; 21 :2231–5. doi:10.1002/oby.20363
717	78	Smith KM, Lanningham-Foster LM, Welk GJ, et al. Validity of the SenseWear®
718		armband to predict energy expenditure in pregnant women. Med Sci Sports Exerc
719		2012; 44 :2001–8. doi:10.1249/MSS.0b013e31825ce76f
720	79	Stackpool C, Porcari JP, Mikat RP GC and FC. The accuracy of various activity
721		trackers in estimating steps taken and energy expenditure. <i>J Fit Res</i> 2013; 53 :1689–99.
		•

722		doi:10.1017/CBO9781107415324.004
723	80	St-onge M, Mignault D, Allison DB, et al. Evaluation of a portable device to measure
724		daily energy expenditure. Am Soc Nutr 2007;85:742-9. doi:10.1093/ajcn/85.3.742
725	81	Soric M, Mikulic P, Misigoj-Durakovic M, et al. Validation of the Sensewear
726		Armband during recreational in-line skating. Eur J Appl Physiol 2012;112:1183–8.
727		doi:10.1007/s00421-011-2045-6
728	82	Tucker WJ, Bhammar DM, Sawyer BJ, et al. Validity and reliability of
729		Nike + Fuelband for estimating physical activity energy expenditure. BMC Sports Sci
730		Med Rehabil 2015;7:14. doi:10.1186/s13102-015-0008-7
731	83	Vanhelst J, Mikulovic J, Bui-Xuan G, et al. Comparison of two ActiGraph
732		accelerometer generations in the assessment of physical activity in free living
733		conditions. BMC Res Notes 2012;5:187. doi:10.1186/1756-0500-5-187
734	84	Van Hoye K, Mortelmans P, Lefevre J. Validation of the SenseWear Pro3 armband
735		using an incremental exercise test. J Strength Cond Res 2014;28:2806-14.
736		doi:10.1519/JSC.0b013e3182a1f836
737	85	Van Hoye K, Boen F, Lefevre J. Validation of the SenseWear Armband in different
738		ambient temperatures. J Sports Sci 2015;33:1007–18.
739		doi:10.1080/02640414.2014.981846
740	86	Vernillo G, Savoldelli A, Pellegrini B, et al. Validity of the SenseWear Armband to
741		Assess Energy Expenditure in Graded Walking. J Phys Act Heal 2015;12:178-83.
742		doi:10.1123/jpah.2013-0437
743	87	Wahl Y, Düking P, Droszez A, et al. Criterion-validity of commercially available
744		physical activity tracker to estimate step count, covered distance and energy
745		expenditure during sports conditions. Front Physiol 2017;8:725.
746		doi:10.3389/fphys.2017.00725
747	88	Wallen MP, Gomersall SR, Keating SE, et al. Accuracy of heart rate watches:
748		Implications for weight management. PLoS One 2016;11:e0154420.
749		doi:10.1371/journal.pone.0154420
750	89	Sanghvi A, Redman LM, Martin CK, et al. Validation of an inexpensive and accurate
751		mathematical method to measure long-term changes in free-living energy intake. Am J
752		<i>Clin Nutr</i> 2015; 102 :353–8. doi:10.3945/ajcn.115.111070
753	90	Pollard TM, Wagnild JM. Gender differences in walking (for leisure, transport and in
754		total) across adult life: a systematic review. BMC Public Health 2017;17:341.
755		doi:10.1186/s12889-017-4253-4

756	91	Schneller MB, Pedersen MT, Gupta N, et al. Validation of five minimally obstructive
757		methods to estimate physical activity energy expenditure in young adults in semi-
758		standardized settings. Sensors (Basel) 2015;15:6133-51. doi:10.3390/s150306133
759	92	Welk GJ, McClain JJ, Eisenmann JC, et al. Field Validation of the MTI Actigraph and
760		BodyMedia Armband Monitor Using the IDEEA Monitor. Obes 2007;15:918-
761		28.http://search.ebscohost.com/login.aspx?direct=true&db=sph&AN=24897397&site=
762		ehost-live
763	93	A.H.K. M, J.M. P, L.M. M, et al. Comparison of Activity Type Classification
764		Accuracy from Accelerometers Worn on the Hip, Wrists, and Thigh in Young,
765		Apparently Healthy Adults. Meas Phys Educ Exerc Sci 2016;20:173-83.
766		doi:http://dx.doi.org/10.1080/1091367X.2016.1192038
767	94	Plasqui G. Smart approaches for assessing free-living energy expenditure following
768		identification of types of physical activity. Obes Rev 2017;18:50–5.
769		doi:10.1111/obr.12506
770	95	Brage S, Ekelund U, Brage N, et al. Hierarchy of individual calibration levels for heart
771		rate and accelerometry to measure physical activity. J Appl Physiol 2007;103:682–92.
772		doi:10.1152/japplphysiol.00092.2006
773	96	Benedetto S, Caldato C, Bazzan E, et al. Assessment of the Fitbit Charge 2 for
774		monitoring heart rate. PLoS One 2018;13:e0192691.
775		doi:10.1371/journal.pone.0192691
776	97	Higgins JPT. Commentary: Heterogeneity in meta-analysis should be expected and
777		appropriately quantified. Int J Epidemiol 2008;37:1158-60. doi:10.1093/ije/dyn204
778	98	Kipp S, Byrnes WC, Kram R. Calculating metabolic energy expenditure across a wide
779		range of exercise intensities: the equation matters. Appl Physiol Nutr Metab 2018;:1-4.
780		doi:10.1139/apnm-2017-0781
781		
782		

783 Legends:

784

Table 1. Moderation analysis for level of sensors and grade of device by subgroup. Data are shown where at least 3 comparisons were included. *P*-value refers to a between subgroup comparison. *Significant effect size at the subgroup level (p < .05). Abbreviations:

Accelerometry alone (ACC), accelerometry and heart rate (ACC+HR), accelerometry and

heart rate and heat sensing (ACC+HR+HS) and accelerometry and heat sensing (ACC+HS).

- Activity energy expenditure (AEE), Total energy expenditure (TEE), Doubly labelled water
- 791 (DLW).
- 792

793 PLEASE INSERT FIGURE 1 AROUND LINE 216

Figure 1. Flow diagram of study selection.

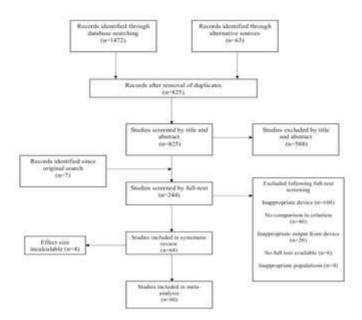
796 PLEASE INSERT FIGURE 2 AROUND LINE 254

- 797 Figure 2. Pooled Hedges' g and 95% confidence intervals (CI) for estimates of energy
- representative to criterion measures per device over all activities. Total refers to

number of effect sizes. A negative Hedges' g statistic represents an underestimation and a

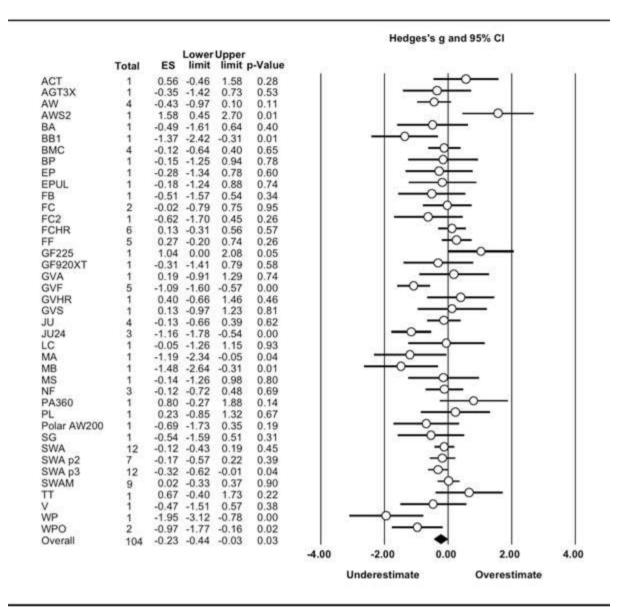
- 800 positive Hedges' g represents an overestimation.
- 801 Abbreviations: Actical (ACT), Actigraph GT3X (AGT3X), Apple watch (AW), Apple Watch
- 802 series 2 (AWS2), Beurer AS80 (BA), Bodymedia CORE armband (BMC), Basis Peak (BP),
- 803 Epson Pulsense (EP), ePulse Personal Fitness Assistant (EPUL), Fitbit Blaze (FB), Fitbit
- 804 Charge (FC), Fitbit Charge 2 (FC2), Fitbit Charge HR (FCHR), Fitbit Flex (FF), Garmin
- 805 Forerunner 225 (GF225), Garmin Forerunner 920XT (GF920XT), Garmin Vivoactive
- 806 (GVA), Garmin vivofit (GVF), Garmin vivosmart (GVS), Garmin Vivosmart HR (GVHR),
- 807 Jawbone UP (JU), Jawbone UP24 (JU24), LifeChek calorie sensor (LC), Mio Alpha (MA),
- 808 Microsoft band (MB), Misfit Shine (MS), Nike Fuel band (NF), Polar Loop (PL), Polar:
- 809 AW200 (PO200), Polar: AW360 (PA360), Samsung Gear S (SG), SenseWear Armband
- 810 (SWA), SenseWear Armband Pro 2 (SWA p2), SenseWear Armband Pro 3 (SWA p3),
- 811 SenseWear Armband MINI (SWAM), TOMTOM Touch (TT), Vivago (V), Withings Pulse
- 812 (WP), Withings Pulse O2 (WPO).
 813

814 PLEASE INSERT FIGURE 3 AROUND LINE 284


- 815 Figure 3. Pooled Hedges' g and 95% confidence intervals (CI) for estimates of energy
- 816 expenditure relative to criterion measures per device for ambulation and stair climbing.
- 817 Total refers to number of effect sizes. A negative Hedges' g statistic represents an
- 818 underestimation and a positive Hedges' g represents an overestimation.
- 819 Abbreviations: Actigraph GT3X (AGT3X), Apple watch (AW), Beurer AS80 (BA), Bodymedia
- 820 CORE armband (BMC), Basis Peak (BP), ePulse Personal Fitness Assistant (EPUL), Fitbit
- 821 Charge (FC), Fitbit Charge HR (FCHR), Fitbit Flex (FF), Garmin Forerunner 225 (GF225),
- 822 *Garmin Forerunner 920XT (GF920XT), Garmin Vivoactive (GVA), Garmin vivofit (GVF),*
- 823 *Garmin vivosmart (GVS), Jawbone UP (JU), Jawbone UP24 (JU24), Microsoft band (MB),*
- 824 Nike Fuel band (NF), Polar Loop (PL), Polar: AW200 (PO200), SenseWear Armband
- 825 (SWA), Sense Wear Armband Pro 2 (SWA p2), Sense Wear Armband Pro 3 (SWA p3),
- 826 SenseWear Armband MINI (SWAM), Vivago (V), Withings Pulse (WP), Withings Pulse O2 827 (WPO).
- 827

829 PLEASE INSERT FIGURE 4 AROUND LINE 313

- **Figure 4.** Pooled Hedges' g and 95% confidence intervals (CI) for estimates of energy
- 831 expenditure relative to criterion measures per device for sedentary and household tasks.


- 832 Total refers to number of effect sizes. A negative Hedges' g statistic represents an
- underestimation and a positive Hedges' g represents an overestimation.
- 834 Abbreviations: Apple watch (AW), Bodymedia CORE armband (BMC), Basis Peak (BP),
- 835 *ePulse Personal Fitness Assistant (EPUL), Fitbit Charge HR (FCHR), Fitbit Flex (FF),*
- 836 Garmin Forerunner 225 (GF225), Garmin vivofit (GVF), Jawbone UP (JU), Jawbone UP24
- 837 (JU24), Microsoft band (MB), SenseWear Armband Pro 2 (SWA p2), SenseWear Armband
- 838 Pro 3 (SWA p3), SenseWear Armband MINI (SWAM), Vivago (V), Withings Pulse (WP).
- 840 PLEASE INSERT FIGURE 5 AROUND LINE 320
- **Figure 5.** Pooled Hedges' g and 95% confidence intervals (CI) for estimates of energy
- 842 expenditure relative to criterion measures per device for total energy expenditure (TEE).
- Total refers to number of effect sizes. A negative Hedges' g statistic represents an underestimation and a positive Hedges' g represents an overestimation.
- 845 Abbreviations: Epson Pulsense (EP), Fitbit Flex (FF), Garmin vivofit (GVF), Jawbone UP24
- 846 (JU24), Misfit Shine (MS), Sense Wear Armband (SWA), Sense Wear Armband Pro 2 (SWA
- 847 p2), SenseWear Armband Pro 3 (SWA p3), SenseWear Armband MINI (SWAM), Withings
- 848 Pulse O2 (WPO).
- 849

- 850
- 851 *Figure 1:*

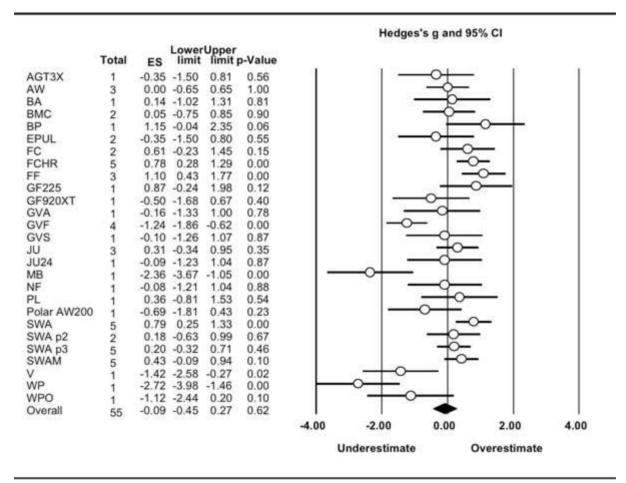


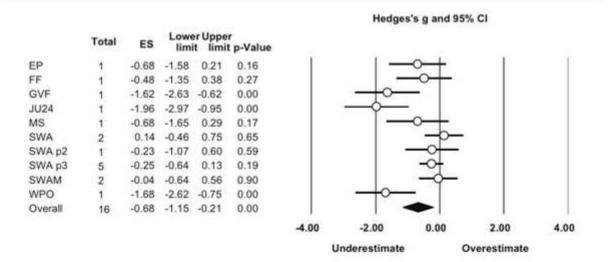
Figure 2:

Meta Analysis Overall

Figure 3:

Meta Analysis Ambulation and Stairs

857


858

859 Figure 4:

Meta Analysis Sedentary and Household

Figure 5:

Meta Analysis TEE (DLW)

S1:

PRISMA-DTA Checklist

Section/topic	#	PRISMA-DTA Checklist Item	Reported on page #
TITLE / ABSTRACT	•		
Title	1	Identify the report as a systematic review (+/- meta-analysis) of diagnostic test accuracy (DTA) studies.	1
Abstract	2	Abstract: See PRISMA-DTA for abstracts.	2
INTRODUCTION	•		
Rationale	3	Describe the rationale for the review in the context of what is already known.	5&6
Clinical role of index test	D1	State the scientific and dinical background, including the intended use and clinical role of the index test, and if applicable, the rationale for minimal y acceptable test accuracy (or minimum difference in accuracy for comparative design).	5&6
Objectives	4	Provide an explicit statement of question(s) being addressed in terms of participants, index test(s), and target condition(s).	5&6
METHODS	-		
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	6
Eligibility criteria	6	Specify study characteristics (participants, setting, index test(s), reference standard(s), target condition(s), and study design) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	7
Search	8	Present full search strategies for all electronic databases and other sources searched, including any limits used, such that they could be repeated.	S2
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	7
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	7
Definitions for data extraction	11	Provide definitions used in data extraction and classifications of target condition(s), index test(s), reference standard(s) and other characteristics (e.g. study design, clinical setting).	7
Risk of bias and applicability	12	Describe methods used for assessing risk of bias in individual studies and concerns regarding the applicability to the review question.	7-8
Diagnostic accuracy measures	13	State the principal diagnostic accuracy measure(s) reported (e.g. sensitivity, specificity) and state the unit of assessment (e.g. per-patient, per-lesion).	8
Synthesis of results	14	Describe methods of handling data, combining results of studies and describing variability between studies. This could include, but is not limited to: a) handling of multiple definitions of target condition. b) handling of multiple thresholds of test positivity, c) handling multiple index test readers, d) handling of indeterminate test results, e) grouping and comparing tests, f) handling of different reference standards	

S2:

Population: Healthy adult populations (>18). Free from factors that impact physical movement.

872 Intervention: activity monitors + all research grade accelerometers (must be wearable on wrist or arm)

- **Comparison:** Validated method: metabolic cart, DLW, DC, all IC systems,
- **Outcome:** validity of energy expenditure (kcal/kj/met/correlation),

	Р	1	С	0	
Key concepts	ADULTS	ACTIVITY MONITORS	VALIDATED METHOD	ENERGY EXPENDITURE	
Related terms		FITNESS TRACKERS (CINHAL) ACCELEROMETRY (MESH) ACCELEROMETER AMBULATORY MONITOR* FITBIT ACTIVITY MONITOR	VALID* COMPAR* TEST	ENERGY METABOLISM (MESH) CALORIES ENERGY EXPENDITURE CALORIC EXPENDITURE TOTAL DAILY ENERGY EXPENDITURE TDEE AEE	
Terms to include in search		 Activity tracker Activity Monitor Health tracker Health Health Fitness tracker Fitness Fitness Fitness Fitness Physical activity tracker Physical activity tracker Physical activity tracker Physical activity tracker Physical activity tracker Exercise tracker Exercise tracker 	 Doubly labelled water Dlw Indirect caliomet* Caliomet* Caliomet* Direct caliomet* Metabolic chamber Metabolic cart Gold standard Criterion 	Energy expenditure 1. Energy metabolism 2. Calori* 3. Calori* expenditure 4. Total energy expenditure 5. Activity energy expenditure 6. AEE 7. TDEE	

881	[11 Flashers	Γ	[]
881		11. Electronic tracker		
882		12. Electronic		
883		monitor 13. acceleromet		
884		14. Step tracker		
885		15. Wearable		
886				
887				
888				
889				
890				
891				
892				
893				
894				
895				
896				
897				
898				
899				
900				
901				
902				
903				
904				
905				
906				
907				
908				
909				

911	<u>(Tracker</u>	AND EE) AND Validation
912	1.	Activity tracker
913	2.	Activity Monitor
914	3.	Health tracker
915	3. 4.	Health monitor
916	5.	Fitness tracker
917	5. 6.	Fitness monitor
918	0. 7.	Physical activity tracker
919	7. 8.	Physical activity monitor
920	8. 9.	Exercise tracker
920 921	• •	Exercise monitor
921 922		
922 923		Electronic tracker Electronic monitor
925 924		
-		acceleromet
925		Step tracker
926	15.	Wearable
927		
928	AND	
929	1.	Energy expenditure
930	2.	Energy metabolism
931	3.	Calori*
932	3. 4.	Calori [*] expenditure
933	5.	Total energy expenditure
934	5. 6.	Activity energy expenditure
935	0. 7.	AEE
936	7. 8.	TDEE
)50	0.	
937	AND	
938	1.	Doubly labelled water
939	2.	Dlw
940	3.	Indirect caliomet*
941	4.	Caliomet*
942	5.	Direct caliomet*
943	6.	Metabolic chamber
944	7.	Metabolic cart
945	8.	Gold standard
946	9.	Criterion
947		
948		
949		

Database	Search	Results
Sport discus	(activity tracker or activity monitor or health tracker or health monitor or fitness tracker or fitness monitor or physical activity tracker or physical activity monitor or exercise tracker or exercise monitor or electronic tracker or electronic monitor or acceleromet* or step tracker or wearable tracker) AND (energy expenditure or energy metabolism or calori* or calori* expenditure or total energy expenditure or AEE or TDEE) AND (doubly labelled water or DLW or indirect caliomet* or metabolic chamber or metabolic cart or gold standard or criterion)	154
Pubmed	((((((((((((((((((((((((((((((((((((((605
MEDLINE	((activity tracker or activity monitor or health tracker or health monitor or fitness tracker or fitness monitor or physical activity tracker or physical activity monitor or exercise tracker or exercise monitor or electronic tracker or electronic monitor or acceleromet* or step tracker or wearable tracker).mp.	228

	 AND (energy expenditure or energy metabolism or calori* or calori* expenditure or total energy expenditure or activ* energy expenditure or AEE or TDEE).mp. AND (doubly labelled water or DLW or indirect caliomet* or caliomet* or direct caliomet* or metabolic chamber or metabolic cart or gold standard or criterion).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word] 	
Psycinfo	((activity tracker or activity monitor or health tracker or health monitor or fitness tracker or fitness monitor or physical activity tracker or physical activity monitor or exercise tracker or exercise monitor or electronic tracker or electronic monitor or acceleromet* or step tracker or wearable tracker).mp. AND (energy expenditure or energy metabolism or calori* or calori* expenditure or total energy expenditure or AEE or TDEE).mp. AND (doubly labelled water or DLW or indirect caliomet* or caliomet* or direct caliomet* or metabolic chamber or metabolic cart or gold standard or criterion).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word]	26
Embase	((activity tracker or activity monitor or health tracker or health monitor or fitness tracker or fitness monitor or physical activity tracker or physical activity monitor or exercise tracker or exercise monitor or electronic tracker or electronic monitor or acceleromet* or step tracker or wearable tracker).mp. AND (energy expenditure or energy metabolism or calori* or calori* expenditure or total energy expenditure or AEE or TDEE).mp.	317

	AND (doubly labelled water or DLW or indirect caliomet* or caliomet* or direct caliomet* or metabolic chamber or metabolic cart or gold standard or criterion).mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word]	
CINHAL	(activity tracker or activity monitor or health tracker or health monitor or fitness tracker or fitness monitor or physical activity tracker or physical activity monitor or exercise tracker or exercise monitor or electronic tracker or electronic monitor or acceleromet* or step tracker or wearable tracker) AND (energy expenditure or energy metabolism or calori* or calori* expenditure or total energy expenditure or activ* energy expenditure or AEE or TDEE) AND (doubly labelled water or DLW or indirect caliomet* or metabolic chamber or metabolic cart or gold standard or criterion)	142
Obtained from reference lists		63
		AFTER REMOVAL OF DUPLICATES: 825

959 Exclusions:

- **1** = not comparison to criterion
- **2** = not comparison to accelerometer
- **3** = not healthy adult population
- **4** = review
- **5 = not kcal/kj**
- **6= duplicate**

	aee	walk	bike	run	sedentar y and househo ld	tee
Actical	0.77	0.8	0.3	0.8	0.7	0.7
Actigraph GT3X+	0.72	0.72	0.68	0.72	0.88	0.88
Apple watch	0.79	0.54	0.53	0.65	0.46	0.46
Basis b1	0.51	0.55	0.45	0.55	0.51	0.51
Basis Peak	0.51	0.55	0.45	0.66	0.49	0.49
Beurer AS80	0.44	0.44	0.44	0.44	0.44	0.44
BodyMedia FIT CORE	0.73	0.72	0.66	0.73	0.77	0.77
Epson Pulsense	0.71	0.71	0.71	0.71	0.71	0.71
ePulse Personal Fitness Assistant (ePulse)	0.24	0.24	0.24	0.24	0.24	0.24
Fitbit charge	0.32	0.68	0.44	0.68	0.41	0.41
Fitbit charge HR	0.77	0.75	0.53	0.68	0.41	0.41
Fitbit Flex	0.8	0.8	0.71	0.8	0.71	0.71
Fitbit Surge	0.77	0.75	0.53	0.68	0.41	0.41
Garmin Forerunner 225	0.35	0.35	0.35	0.35	0.35	0.35
Garmin Forerunner 920XT	0.35	0.35	0.35	0.35	0.35	0.35
Garmin vivoactive	0.75	0.75	0.75	0.35	0.75	0.75
Garmin vivofit	0.75	0.75	0.75	0.35	0.75	0.75
Garmin Vivosmart	0.75	0.75	0.75	0.35	0.75	0.75
Jawbone UP	0.82	0.8	0.73	0.74	0.53	0.53
Jawbone UP24	0.69	0.69	0.69	0.69	0.69	0.69
LifeChek calorie sensor	0.45	0.45	0.45	0.45	0.45	0.45
Microsoft band	0.54	0.55	0.46	0.54	0.44	0.44
Mio Alpha	0.46	0.46	0.46	0.46	0.46	0.46
Misfit Shine	0.41	0.41	0.41	0.41	0.41	0.41
Nike Fuel Band	0.77	0.77	0.77	0.77	0.77	0.77
Polar Loop	0.46	0.46	0.47	0.46	0.46	0.46
Polar: Activity Watch 200 (AW200)	0.7	0.7	0.7	0.7	0.7	0.7
PulseOn	0.45	0.45	0.4	0.45	0.45	0.45
Samsung Gear S	0.76	0.76	0.76	0.76	0.76	0.76
SenseWear Armband	0.73	0.72	0.66	0.73	0.77	0.77
SenseWear Mini Armband	0.73	0.72	0.66	0.73	0.77	0.77
SenseWear Pro 2 Armband	0.73	0.72	0.66	0.73	0.77	0.77
SenseWear Pro 3 Armband	0.73	0.72	0.66	0.73	0.77	0.77
TOM TOM TOUCH	0.2	0.3	0.3	0.3	0.3	0.3
Vivago	0.79	0.79	0.79	0.79	0.79	0.79
Withings Pulse	0.71	0.71	0.71	0.71	0.71	0.71
Withings Pulse 02	0.78	0.78	0.78	0.78	0.78	0.78

Correlations imputed for specific devices and activities

⁹⁷⁸ 979 *S4:*

Study	Sample characterist ics	Study protocol	Settin g (Lab/ Field)	Criterion comparison	Device	Device placemen t	Results (overall error relative to criterion)
Alsubhee n, 2016	N=13 (5 F) Age: 40 ± 11.9 y	Subjects performed a graded	Lab	IC – Sable system (Sable Systems	Garmin vivofit (Garmin ltd, Olathe,	Wrist	Garmin vivofit: -41.63%

⁹⁷⁵ 976 977

	BMI: 27 ± 4.3 kg/m ²	treadmill test.		Internationa l, Las Vegas NV)	Kansas, USA)		
Bai, 2017	N=39 (16 F) Age: 32 ± 11 y BMI: 24.7 ± 4 kg/m ²	Subjects performed a semi- structured activity protocol consisting of sedentary activity, aerobic exercise, and light intensity physical activity on a	Lab	IC – Oxycon Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare, Germany)	Apple watch (Apple Inc, Cupertino, California, USA) Fitbit charge HR (Fitbit Inc, San Francisco, California, USA)	Wrist	Apple Watch -10.79% Fitbit Charge HR: 17.88%
Benito, 2012	N=29 (17 F) Age: 22.5 y BMI: 22 kg/m ²	treadmill. Subjects performed circuits of resistance exercise at 30%, 50% and 70% of 15 repetition maximum.	Lab	IC – Oxycon Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare,	SenseWear Pro2 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro2 Armband: - 46.60%
Berntsen, 2010	N=20 (6 F) Age: 35 y BMI: 24 kg/m ²	Subjects performed lifestyle and sporting activities including strength exercises, ball games, occupational and home- based activities	Lab	Germany) IC – MetaMax II (Cortex Biophysic, Leipzig, Germany)	SenseWear Pro2 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro2 Armband: - 9.00%
Berntsen, 2012	N=29 (29 F) Age: 31 ± 4.1 y BMI: 27 ± 3.2 kg/m ²	activities. Subjects participated in a period of sedentary behaviour. 9 subjects then performed callisthenics and cycling on a bicycle ergometer. The other 20 subjects performed outdoor walking followed by	Lab	IC – MetaMax II (Cortex Biophysic, Leipzig, Germany)	SenseWear Pro2 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro2 Armband: - 10.34%

		cycling and callisthenics.					
Bhammar , 2016	N=34 (26 F) Age: 30.1 ± 8.7 y BMI: 26.2 ± 5.1 kg/m ²	Subjects performed a semi structured and a structured routine. Semi- structured: 12 activities including 4 sedentary/lig ht-intensity activities, 4 moderate- intensity activities, and 4 vigorous- intensity activities. The activities performed were randomly selected from a list of common activities.	Lab	IC – Oxycon Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare, Germany)	SenseWear Mini Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Mini Armband: 14.76%
Boudreau x, 2018	N=50 (28 F) Age: 22.4 y BMI: 26.5 kg/m ²	Structured: A period of rest, followed by 7 activities of 8 minutes each. The activities performed were randomly selected from a list of common activities. Subjects performed separate trials of graded cycling and 3 sets of 4 resistance exercises at a 10-	Lab	IC – Parvo TrueOne 2400 (Parvo Medics, East Sandy, UT, USA)	Apple Watch 2 (Apple Inc, Cupertino, California, USA) Fitbit Blaze (Fitbit Inc, San		Apple Watch 2: 48.20% Fitbit Blaze: 28.66% Fitbit Charge 2: -30.97%

relaxing,

		repetition maximum load.			Francisco, California, USA) Fitbit Charge 2 (Fitbit Inc, San Francisco, California, USA) Garmin Vivosmart HR (Garmin Itd, Olathe, Kansas, USA) Polar: the Activity Watch 360 (Polar Electro Oy, Kempele, Finland) Tomtom touch (TomTom, Amsterdam , the Netherland s)		Garmin Vivosmart HR: 16.85% Polar: the Activity Watch 360: 28.68% Tomtom Touch: 28.66%
Brazeau, 2011	N=31 (16 F) Age: 26.7 y BMI: 27.5 kg/m ²	Subjects performed 45 minutes of stationary cycling at 50% VO _{2peak} .	Lab	IC – Ergocard exercise test station (MediSoft, Dinant, Belgium)	SenseWear Pro3 Armband (HealthWe ar, Bodymedia , Pittsburgh,	Upper arm	SenseWear Pro3 Armband: - 10.56%
Brazeau, 2014	N=38 (18 F) Age: 28.6 y BMI: 23.8 kg/m ²	Subjects performed 45 minutes of treadmill exercise at 40% VO _{2peak} then exercised on a stationary bike ergometer for 45 minutes at 50% VO _{2peak} .	Lab	IC – Ergocard exercise test station (MediSoft, Dinant, Belgium)	PA, USA) SenseWear Pro3 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro3 Armband: 14.94%

Brazeau, 2016	N=20 (0 F) Age: 26.2 ± 3.6 y BMI: 23.1 ± 2.3 kg/m ²	Subjects completed a field observation and a lab protocol. Field: 7-day comparison to DLW.	Lab/ Field	DLW – 7 days IC – Ergocard exercise test station (MediSoft, Dinant, Belgium)	SenseWear Pro3 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro3 Armband: 7.06%
Brugniau	N=31 (16	Lab: Subjects performed 60 minutes rest followed by treadmill exercise for 45 minutes at 22-41% VO _{2peak} then stationary cycling for 45 minutes at 50% VO _{2peak} . Subjects	Field	IC –	Polar: the	Wrist	Polar: the
x, 2010	F) Age: 42.9 y BMI: 22.7 kg/m ²	performed a 9.7km outdoor hike.		Metablogra ph with Hans Rudolph facemask (Hans Rudolph, Kansas City, MO, USA)	Activity Watch 200 (Polar Electro Oy, Kempele, Finland)		Activity Watch 200: - 13.17%
Calabro, 2014	N=40 (19 F) Age: 27.4 y BMI: 22.8 kg/m ²	Subjects performed 60 minutes of structured activities including stationary biking, walking/ running on a treadmill, road biking, elliptical exercise and stair stepping and unstructured movements. The semi- structured measuremen t periods were	Lab	IC – Oxycon Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare, Germany)	SenseWear Mini Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA) SenseWear Pro3 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Mini Armband: 0.89% SenseWear Pro3 Armband: 2.33%

Calabro, 2015	N=29 (17 F) Age: $68.8 \pm 6.3 \text{ y}$ BMI: $26.3 \pm 4.9 \text{ kg/m}^2$	performed in 5, 10, 10, 10, and 25- minute intervals and included sitting, walking, standing, stair climbing or light movements. 14-day comparison to DLW.	Field	DLW – 14 days	SenseWear Mini Armband (HealthWe ar, Bodymedia	Upper arm	SenseWear Mini Armband: - 0.86%
Casiraghi, 2013	N=18 (11 F) Age: 48.6 ± 21 y BMI: 24.6 ± 2.6 kg/m ²	Subjects performed a cycling protocol with three components: 1) Baseline where the subject sat on the cycle ergometer. 2) A 2- minute warm-up at 40 rpm at 40 watts. 3) Exercise increased to 60 rpm and intensity progressed by 7 watts/minute until exhaustion.	Lab	IC – SensorMedi cs Vmax 229 (SensorMed ics Inc, Yorba Linda, CA, USA).	Pittsburgh, PA, USA) SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Armband: - 8.00%
Chowdhr y, 2017	N=30 (15 F) Age: 27 ± 1.6 y BMI: 23.4 ± 2.5 kg/m ²	Subjects performed two components: 1) A protocol of 4 activities of designed to replicate daily living tasks 2) 4 activities of	Lab	IC – COSMED K4b2 (COSMED, Rome, Italy)	Apple watch (Apple Inc, Cupertino, California, USA) Microsoft Band (Microsoft Corporatio n, Redmond,	Wrist Bodymed ia core: Upper arm	Apple watch: -6.9% Microsoft Band: -49.15% Fitbit Charge HR: 15.49% Jawbone UP24:

		10 minutes in duration.			Washingto n, USA)		-21.01%
		These activities were walking on a treadmill, walking at the same speed with shopping bags, cycling on an ergometer and jogging on the treadmill.			Fitbit Charge HR (Fitbit Inc, San Francisco, California, USA) Jawbone UP24 (Jawbone, San Francisco, California, USA)		Bodymedia Core: 7.98%
					Bodymedia Core (HealthWe ar, Bodymedia , Pittsburg,		
Colbert, 2011	N=56 (45 F) Age: 74.7 \pm 6.5 y BMI: 25.8 \pm 4.2 kg/m ²	10-day comparison to DLW.	Field	DLW – 10 days	PA, USA) SenseWear Pro 3 Armband (HealthWe ar, Bodymedia	Upper arm	SenseWear Pro 3 Armband: 58.53%
Correa, 2016	N=87 (72 F) Age: 42 ± 13 y BMI: 31.6 ± 4.5 kg/m ²	7-day comparison to DLW.	Field	DLW – 7 days	, Pittsburgh, PA, USA) SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm Wrist	SenseWear Armband -416.95 kcal Actical: 194.52 kcal
Diaz, 2015	N=23 (13 F) Age: N/A BMI: N/A	Subjects performed a treadmill protocol consisting of walking at	Lab	IC – Ultima CPX (Medgraphi cs, Saint Paul, MN, USA)	Actical (Phillips Respironics Inc, Murrysville , PN, USA) Fitbit Flex (Fitbit Inc, San Francisco, CA, USA)	Wrist	Fitbit Flex: 17.36%
		slow, moderate and brisk		0011)			

Diaz,	N=13 (13	paces and jogging. Subjects	Lab	IC – Ultima	Fitbit Flex	Wrist	Fitbit Flex:
2016	F) Age: 32.0 ± 9.2 y BMI: 24.2 ± 3.4 kg/m ²	performed a treadmill protocol consisting of walking at slow, moderate and brisk paces and jogging.		CPX (Medgraphi cs, Saint Paul, MN, USA)	(Fitbit Inc, San Francisco, CA, USA)		30.27%
Dondzila, 2016	N=19 (5 F) Age: 24.6 ± 3.1 y BMI: 28.0 ± 3.8 kg/m ²	Subjects performed 5- minute stages of jogging on a treadmill at increasing velocity.	Lab	IC – Parvo TrueOne 2400 (Parvo Medics, East Sandy, UT, USA)	Fitbit Charge (Fitbit Inc, San Francisco, California, USA)	Wrist	Fitbit Charge: -13.01%
Dooley, 2017	N=62 (36 F) Age: 22.46 y BMI: 24.86 kg/m ²	Subjects performed 4 stages of treadmill exercise followed by	Lab	IC – Parvo TrueOne 2400 (Parvo Medics, East Sandy, UT, USA)	Apple watch (Apple Inc, Cupertino, CA, USA)	Wrist	Apple watch: 64.55% Fitbit charge HR: 18.70%
	Kg/III	a seated recovery period. The activity routine consisted of an			Fitbit charge HR (Fitbit Inc, San Francisco, CA, USA)		Garmin Forerunner 225: 44.23%
		unmeasured warm-up walking period and measured stages of slow, then brisk walking and			Garmin Forerunner 225 (Garmin ltd, Olathe, Kansas, USA)		
Drenowat z, 2011	N=20 (10 F) Age: 24.3 y BMI: N/A	jogging. Subjects performed three treadmill runs at 65, 75, and 85% VO _{2max} .	Lab	IC – Oxycon Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare,	SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Armband: - 32.80%
Erdogan, 2010	N=43 (27 F) Age: 34.9 ± 5.5 y	Subjects performed rowing exercises at 50% and	Lab	Germany) IC – COSMED K4b2 (COSMED, Rome, Italy)	SenseWear Armband (HealthWe ar, Bodymedia	Upper arm	SenseWear Armband: 5.23%

	BMI: 31.2 ± 3.7 kg/m ²	70% VO _{2max} on an ergometer.			, Pittsburgh, PA, USA)		
Fruin, 2010	Experiment 1: N=13 (0 F) Experiment 2: N=20 (10 F) Age: 20.2 ± 1 y BMI: N/A	Experiment 1: Subjects performed two resting and a cycle ergometer session at 60% VO _{2peak} . Experiment 2: Subjects completed a treadmill protocol of jogging, running and uphill running.	Lab	IC – SensorMedi cs Vmax 229 (SensorMed ics Inc, Yorba Linda, CA, USA).	SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Armband: - 1.76%
Furlanetto , 2010	N=30 (15 F) Age: 68 ± 7 y BMI: 25 ± 3 kg/m ²	Subjects performed a walking protocol on a treadmill at three intensities.	Lab	IC – VO ₂₀₀₀ aerograph (Medgraphi cs, Saint Paul, MN, USA)	SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Armband: - 6.99%
Gastin, 2017	N=26 (12 F) Age: 21.3 ± 2.4 y BMI: 23.2 ± 2 kg/m ²	Subjects performed a protocol Involving resting periods, walking, jogging, running or a sport- simulated circuit.	Lab	IC – MetaMax 3b (Cortex Biophysic, Leipzig, Germany)	SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Armband: - 19.90%
Heierman n, 2011	N=32 (19 F) Age: 68.6 y BMI: 26.4 kg/m ²	Subjects were required to rest.	Lab	IC – Vmax Spectra (SensorMed ics Viasys Healthcare, Bilthoven, The Netherlands)	SenseWear Pro2 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro2 Armband: 10.80%
Imboden, 2017	N=30 (15 F) Age: 49.2 ± 19.2 y BMI: 26.2 kg/m ²	Subjects performed a semi- structured activity protocol, performing ≥ 12 activities for	Lab	IC – COSMED K4b2 (COSMED, Rome, Italy)	Fitbit flex (Fitbit Inc, San Francisco, California, USA) Jawbone UP24	Wrist	Fitbit flex: - 15.29% Jawbone UP24: -40.00%

		subject- selected duration and pace. Activities were selected from a list of sedentary, household activities ambulatory and cycling activities.			(Jawbone, San Francisco, California, USA)		
Jakicic, 2004	N=40 (20 F) Age: 23.2 ± 3.8 y BMI: 23.8 ± 3.1 kg/m ²	Subjects performed 4 separate exercise protocols including treadmill walking, stair stepping, cycle ergometry, and arm	Lab	IC – SensorMedi cs Vmax 229 (SensorMed ics Inc, Yorba Linda, CA, USA).	SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Armband: - 11.76%
Johannsen , 2010	N=30 (15 F) Age: 38.2 ± 10.6 y BMI: 24 ± 3.4 kg/m ²	ergometry. 14-day comparison to DLW.	Field	DLW – 14 days	SenseWear Pro3 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA) SenseWear Mini Armband HealthWea r, Bodymedia , Pittsburgh,	Upper arm	SenseWear Pro3 Armband: - 2.48%
Kim, 2015	N=52 (19 F) Age: 23.8 ± 5.2 BMI: N/A	Subjects performed 15 activities including resting, stair climbing, cycling, walking and jogging. Each activity was performed for 5	Lab	IC – Oxycon Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare, Germany)	PA, USA) Bodymedia Core (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	Bodymedia Core: 5.80%

King, 2004	N=21 (10 F) Age: 37.55 y	minutes, with 1- minute resting intervals. Subjects performed 10 minutes of treadmill walking and running at various speeds.	Lab	IC – TrueMax 2400 (Consentius Technologie s, Sandy, UT, USA)	SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Armband: 20.33%
Koehler. 2011	N=14 (0 F) Age: 30.4 ± 6.2 y BMI: 23.2 ± 1.4 kg/m ²	7-day comparison to DLW.	Field	DLW – 7 days	SenseWear Pro3 Armband (HealthWe ar, Bodymedia , Pittsburgh,	Upper arm	SenseWear Pro3 Armband: - 1.83%
Lee, 2011	N=46 (21 F) Age: 24.8 ± 5.6 y BMI: 24.3 ± 3.6 kg/m ²	Subjects completed 4- minute periods of standing, walking, jogging, and running.	Lab	IC – Parvo TrueOne 2400 (Parvo Medics, East Sandy, UT, USA)	PA, USA) ePulse Personal Fitness Assistant (ePulse) (Impact Sports Technologi es, San Diego, CA, USA)	Forearm	ePulse Personal Fitness Assistant - 3.46%
Lee, 2014	N=60 (30 F) Age: 26.4 y BMI: 23.05 kg/m ²	Subjects performed 13 activities for 5 minutes. Activities were categorized into sedentary, treadmill walking, treadmill jogging and moderate-to- vigorous activities (ascending and descending stairs, stationary bike, elliptical exercise, Wii tennis play,	Lab	IC – Oxycon Mobile 5.0 (Erich Jaeger, Viasys Healthcare, Germany)	BodyMedia CORE (BodyMedi a Inc., Pittsburgh, PA, USA) Jawbone UP (Jawbone, San Francisco, California, USA) Basis B1 Band (Basis Science Inc, San Francisco, CA, USA) Nike Fuel Band (Nike Inc.,	Upper arm Wrist	BodyMedia CORE:-5.31% Jawbone UP: -6.92% Basis B1 Band: -31.65% Nike Fuel Band: -1.91%

and basketball). Beaverton, OR, USA)

Lopez, 2017 ¹	N=36 (16 F) Age: 37.7 ± 9.8 y BMI: 23.4 ± 2.8 kg/m ²	Subjects performed a structured protocol including rest, computer use, standing, slow walking, running, basketball and overground cycling.	Lab	IC – MetaMax 3x (Cortex Biophysic, Leipzig, Germany)	SenseWear Mini Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Mini Armband: - 16.00%
Mackey, 2011	N=19 (8 F) Age: 82 ± 3.3 y BMI: 28.1 ± 3.8 kg/m ²	12.5-day comparison to DLW.	Field	DLW – 12.5 days	SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Armband: - 0.05%
Martien, 2015	N=60 (47 F) Age: 85.5 ± 5.5 y BMI: N/A	Subjects performed activity for 4 minutes and separated by 4 minutes seated rest. Activities included: Walking, rising and sitting in chairs positioned 5 meters apart and moving light objects.	Lab	IC – Oxycon Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare, Germany)	SenseWear Mini Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Mini Armband: - 12.00%

Maschac, 2013 ¹	N=19 (13 F) Age: 55.65 y BMI: 31.5 ± 3.6 kg/m ²	Subjects performed three walking sessions on a treadmill with different combination s of speed and incline.	Lab	IC – VO ₂₀₀₀ aerograph (Medgraphi cs, Saint Paul, MN, USA)	SenseWear Pro 3 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro 3 Armband: 50.69%
McMinn, 2013	N=19 (6 F) Age: 30 y BMI: 23.6 kg/m ²	Subjects completed 3 treadmill walking trials at self- selected slow, medium, and fast speeds.	Lab	IC – Ultima CPX (Medgraphi cs, Saint Paul, MN, USA)	Actigraph GT3X+ (Actigraph Inc, Pensacola, FL, USA)	Wrist	Actigraph GT3X+ : - 8.84%
Melanson , 2009	N=7 (3 F) Age: 31.8 ± 7.2 y BMI: 27.8 ± 7.9 kg/m ²	Subjects performed individualise d protocols, including bench stepping and stationary cycling.	Lab	MC – 22.8 hours	LifeChek Calorie Sensor (LifeChek, LLC, Pittsburgh, PA, USA)	Wrist	LifeChek calorie sensor -4.87%
Mikulic, 2011	N=19 (11 F) Age: 28 ± 6 y BMI: 23 ± 3 kg/m ²	Subjects performed in-line skating exercises on a circular track at a self-selected pace.	Field	IC – COSMED K4b2 (COSMED, Rome, Italy)	SenseWear Pro 3 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro 3 Armband : - 73.33%
Montoye, 2017	N=32 (14 F) Age: 23.7 y BMI: 25.5 kg/m ²	Subjects completed 14 exercises, 11 in the laboratory including walking, jogging and cycling ergometry and 3 track exercises included self-paced walking at both a leisure and brisk pace for 200 meters and self-paced jogging for	Lab	IC – Parvo TrueOne 2400 (Parvo Medics, East Sandy, UT, USA)	Fitbit Charge HR (Fitbit Inc, San Francisco, California, USA)	Upper arm	Fitbit Charge HR: 7.59%

400 meters.
Each was 5
minutes in
duration.

Murakami , 2016	N=19 (10 F) Age: N/A BMI: N/A	 1) 12.5-day comparison to DLW. 2) 24 hours in metabolic chamber where subjects were required to perform deskwork, watch television, housework, treadmill walking, and sleeping. 	Lab/ Field	DLW – 12.5 days MC – 24 hours	 Withings Pulse O2 (Withings, Issy-les- Moulineau x, France) Garmin vivofit (Garmin ltd, Olathe, Kansas, USA) Fitbit Flex (Fitbit Inc, San Francisco, California, USA) Misfit Shine (Misfit, San Francisco, California, USA) Epson Pulsense (Epson, Suwa, Nagano Prefecture, Japan) 	Wrist	Withings Pulse O2: -22.03% Garmin vivofit: - 20.55% Fitbit Flex: - 1.04% Misfit Shine: - 2.36% Epson Pulsense: - 4.28%
Nelson, 2016	N=30 (15 F) Age: 48.9 ± 19.4 y BMI: 26.3 ± 5.2 kg/m ²	Subjects performed a structured protocol consisting of sedentary, household, and ambulatory activities.	Lab	IC – COSMED K4b2 (COSMED, Rome, Italy)	Jawbone UP (Jawbone, San Francisco, California, USA) Fitbit Flex (Fitbit Inc, San Francisco, California, USA)	Wrist	Jawbone UP: - 2.12% Fitbit Flex: 12.74%
Papazoglo u, 2006	N=29 Age: N/A BMI: N/A	Subjects performed a resting	Lab	IC – SensorMedi cs Vmax	SenseWear Pro 2 Armband	Wrist	SenseWear Pro 2

		protocol in a larger sample and 29 of the obese subjects participated in low intensity modes of exercise including cycle ergometry, stair stepping and treadmill walking.		229 (SensorMed ics Inc, Yorba Linda, CA, USA)	(HealthWe ar, Bodymedia , Pittsburgh, PA, USA)		Armband: 21.54%
Price, 2017	N=14 (3 F) Age: 23 y BMI: 22.8 kg/m ²	Subjects walked on a treadmill at increasing velocities.	Lab	IC – Parvo TrueOne 2400 (Parvo Medics, East Sandy, UT, USA)	Jawbone UP (Jawbone, San Francisco, California, USA) Garmin vivofit (Garmin Itd, Olathe, Kansas, USA)	Upper arm	Jawbone UP: 56.91% Garmin vivofit: 18.16%
Reece, 2015	N=22 (11 F) Age: N/A BMI: N/A	Subjects performed a protocol including rest, sedentary activities and walking.	Lab	IC – Oxycon Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare, Germany)	SenseWear Mini Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Wrist	SenseWear Mini Armband: -3.79%
Reeve, 2014 ¹	N: 18 (7 F) Age: 22.6 y BMI: 22.9 kg/m ²	Subjects performed 2 resistance training sessions that included 9 different exercises. The weight lifted was 70% of 1 repetition max with 90-second rest intervals.	Lab	IC – COSMED K4b2 (COSMED, Rome, Italy)	BodyMedia CORE (BodyMedi a Inc., Pittsburgh, PA, USA) SenseWear Mini Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	BodyMedia CORE: 13.8% SenseWear Mini Armband: 23.7%

Rousset, 2015	Free-living: N=41 (20 F) Lab: N=49 (26 F) Age: N/A BMI: N/A	 1) 10-day comparison to DLW. 2) 24 hours in metabolic chamber, which included eating, deskwork, watching television, housework, treadmill walking, and sleeping. 	Lab/ Field	DLW – 12.5 days MC – 17 hours	SenseWear Pro 3 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro 3 Armband: - 2.80%
Shcherbin a, 2017 ¹	N=60 (31 F) Age: 38.5 y BMI: 23.65 kg/m ²	Subjects performed treadmill flat and incline running and cycle ergometry at low and moderate intensity.	Lab	IC – COSMED Quark CPNET (COSMED, Rome, Italy)	Apple watch (Apple Inc, Cupertino, CA, USA) Basis Peak (Basis Science Inc, San Francisco, CA, USA) Fitbit surge (Fitbit Inc, San Francisco, CA, USA) Microsoft band (Microsoft Corporatio n, Redmond, WA, USA) PulseOn (PulseOn Oy, Espoo Finland)	Wrist	Apple watch: -38.23% Basis Peak: - 12.94% Fitbit Surge: -3.86% Microsoft Band -19.64% PulseOn: - 24.47%
Slinde, 2013	N=62 (62 F) Age: 33.2 ± 4.2 y	7-day comparison to DLW	Field	DLW – 7 days	SenseWear Pro 2 Armband (HealthWe ar,	Wrist	SenseWear Pro 2 Armband: - 2.90%

	BMI: 30 ± 2.8 kg/m ²				Bodymedia , Pittsburgh, PA, USA)		
Smith, 2012	N=30 (30 F) Age: 29.0 \pm 4.3 y BMI: 24.1 \pm 3.0 kg/m ²	Subjects performed a series of activities of daily living activities and treadmill walking at increasing intensities.	Lab	IC – Parvo TrueOne 2400 (Parvo Medics East Sandy, UT, USA)	SenseWear Mini Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA) Algorithm v2.2	Upper arm	SenseWear Mini Armband: 18.43%
Stackpool , 2014	N=20 (10 F) Age: N/A BMI: N/A	Subjects performed treadmill walking, treadmill running, elliptical exercise and an agility drills.	Lab	IC – Oxycon pro Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare, Germany)	Nike Fuel Band (Nike Inc, Beaverton, OR, USA) Jawbone UP (Jawbone, San Francisco, California, USA) Bodymedia Core (HealthWe ar, Bodymedia , Pittsburgh,	Upper arm	Nike Fuel Band: -3.99% Jawbone UP: 3.09%
St-Onge, 2007	N=45 (32 F) Age: $35.1 \pm 14 \text{ y}$ BMI: 23.9 $\pm 4.0 \text{ kg/m}^2$	10-day comparison to DLW.	Field	DLW – 10 days	PA, USA) SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh,	Upper arm	SenseWear Armband: 4.70%
Tucker, 2015	N=24 (13 F) Age: 28.4 ± 7.8 y BMI: 23.8 ± 3.9 kg/m ²	Subjects performed two, 60- minute semi- structured routines consisting of sedentary/lig ht-intensity, moderate- intensity and	Lab	IC – Oxycon Mobile portable metabolic system (Erich Jaeger, Viasys Healthcare, Germany)	PA, USA) Nike Fuel Band (Nike Inc., Beaverton, OR, USA) SenseWear Armband (HealthWe ar, Bodymedia	Upper arm	Nike Fuel Band: 1.22% SenseWear Armband: - 2.10%

Van Helst, 2012	N=21 (10 F) Age: 29.3 ± 5.1 y	vigorous- intensity physical activity. Subjects performed a treadmill protocol involving slow and moderate walking, running slowly, vigorously running and periods of rest.	Lab	IC – Gas analyzer (Respironics Novametrix Medical SystemW inc, NICO 7300, Wallingford , USA)	, Pittsburgh, PA, USA) Vivago (Vivago Wellness, Paris, France)	Wrist	Vivago: - 8.02%
Van Hoye, 2014	N=44 (20 F) Age: 21.1 ± 1.4 y BMI: 21.8 ± 1.4 kg/m ²	Subjects performed an incremental running test on a treadmill.	Lab	IC – Metalyzer 3B (Cortex Biophysic, Leipzig, Germany)	SenseWear Pro 3 Armband (HealthWe ar, Bodymedia	Upper arm	SenseWear Pro 3 Armband: - 32.96%
Van Hoye, 2015	N=39 (18 F) Age: 21.1 ± 1.4 y BMI: 21.8 ± 1.4 kg/m ²	Subjects performed exercise consisting of 5 minutes standing followed by alternating walking and running at 35% and 65% VO _{2max} .	Lab	IC – Metalyzer 3B (Cortex Biophysic, Leipzig, Germany)	Pittsburgh, PA, USA) SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA) Algorithm v2.2 SenseWear Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro 3 Armband: - -15.23%
Vernillo, 2015	N=20 (8 F) Age: 30.1 ± 7.2 y BMI: 22.1 ± 2.4 kg/m ²	Subjects performed randomized pole walking activities at a constant speed and a variety of gradients.	Lab	IC – COSMED Quark b2 (COSMED, Rome, Italy)	Algorithm v5.2 SenseWear Pro 3 Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)	Upper arm	SenseWear Pro 3 Armband: -9.76% SenseWear Mini Armband: - 12.50

				SenseWear Mini Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA)		
, N=20 (10 F) Age: 25.2 y BMI: 22.8 kg/m ²	Subjects performed a running protocol consisting of four 5- minute stages of treadmill running at different velocities followed by a period of intermittent running and then a 2.4 km outdoor run.	Lab/ Field	IC – Metalyzer 3B (Cortex Biophysic, Leipzig, Germany)	SenseWear Mini Armband (HealthWe ar, Bodymedia , Pittsburgh, PA, USA) Beurer AS80 (Beurer GmbH, Ulm, Germany) Polar Loop (Polar Electro, Kempele, Finnland) Garmin vivofit (Garmin Itd, Olathe, Kansas, USA) Garmin vivoactive (Garmin Itd, Olathe, Kansas, USA) Garmin vivoactive (Garmin Itd, Olathe, Kansas, USA)	Upper arm/Wris t	SenseWear Mini Armband: -21.27% Beurer AS80: -58.07% Polar Loop: 18.05% Garmin vivofit: -13.67% Garmin vivosmart: 5.98% Garmin vivoactive: 3.42% Garmin Forerunner 920XT: -21.02% Fitbit Charge: 3.58% Fitbit charge HR: 7.58% Withings Pulse O2: -15.98%

Wahl,

Wallen 2016	N=22 (11 F) Age: 24.9 y BMI: 24.3 kg/m ²	Subjects performed a protocol including treadmill exercise and cycling ergometry.	Lab	IC – Metalyzer 3B (Cortex Biophysic, Leipzig, Germany)	Kansas, USA) Fitbit Charge (Fitbit Inc, San Francisco, California, USA) Fitbit charge HR (Fitbit Inc, San Francisco, California, USA) Withings Pulse (Withings, Issy-les- Moulineau x, France) Apple watch (Apple Inc, Cupertino, California, USA) Fitbit charge HR (Fitbit Inc, San Francisco, California, USA) Fitbit charge HR (Fitbit Inc, San Francisco, California, USA) Samsung Gear S (Samsung Electronics Co, Ltd, Suwon, South Korea)	Wrist	Apple watch: -75.71 Fitbit charge HR: -26.31% Samsung Gear S: -9.98% Mio Alpha: -53.19%
Woodman , 2017	N=28 (8 F) Age: 24.85 y BMI: 24.25 kg/m ²	Subjects performed a range of activities including: supine rest, household	Lab/ Field	IC – Oxycon Mobile portable metabolic system (Erich	(Mio Global, Canada) Withings Pulse (Withings, Issy-les- Moulineau x, France)	Wrist	Withings Pulse: - 133.33% Basis Peak: 0.59%

tasks, treadmill walking, stair stepping, outdoor walking,	Jaeger, Viasys Healthcare, Germany)	Basis Peak (Basis Science Inc, San Francisco, CA, USA)	Garmin vivofit: -80.59%
cycling, and running at a self-selected pace. Seated rest, and ergometer cycling.		Garmin vivofit (Garmin ltd, Olathe, Kansas, USA)	

980 Characteristics of studies meeting inclusion criteria of systematic review. Results represents the mean

percentage error between device measurements and criterion measurements.

- 981 percentage error between device 982 ¹Not included in meta-analysis.
- 983 Abbreviations: Female (F), body mass index (BMI), indirect calorimetry (IC), metabolic chamber (MC), doubly
- 984 labelled water (DLW), Kilocalories (Kcal)
- 985
- 986 *S5:* 987

Device	Price	Wear site	Device grade	Input setup data	Sensors	Outp ut	Batter y life	Number of comparis ons in meta- analysis	Weight ed percent error
Actical (Phillips Respironi cs Inc, Murrysvil le, PN, USA)	€678 (incl. softwa re)/ €321 (unit)	Hip, ankle, wrist	Researc h	Age, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Activ ity intens ity Kcals , steps	194 days	1	
Actigraph GT3X+ (Actigrap h Inc, Pensacola , FL, USA)	\$250	Hip, ankle, wrist	Researc h	Age, Gender, Race, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Activ ity intens ity Kcals , sleep, steps	31 days	1	-8.84%
Apple watch (Apple Inc, Cupertino , California , USA)	£249	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce tracki ng, Kcals , HR, minut es of brisk	18 Hours	4	-6.59%

						activi			
						ty			
Apple watch 2 (Apple Inc, Cupertino , California , USA)	£315	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce tracki ng, Kcals , HR, minut es of brisk activi ty	18 Hours	1	48.20%
Basis b1 (Basis Science Inc, San Francisco, CA, USA)	£149	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors: Yes	Steps , distan ce, Kcals , HR, active minut es, sleep	5 days	1	31.65%
Basis Peak (Basis Science Inc, San Francisco, CA, USA)	£170	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors: Yes	Steps , distan ce, Kcals , HR, active minut es, sleep	5 days	1	0.59%
Beurer AS80 (Beurer GmbH, Ulm, Germany)	£29.99	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep	14 days	1	- 58.07%
BodyMed ia CORE (BodyMe dia Inc., Pittsburgh	\$150	Uppe r left arm	Researc h (comme rcially availabl e)	Age, Gender, H, W	Accelero meter: Triaxial Heart rate:	Steps , activi ty intens ity,	14 days	4	-1.06%

, PA, USA)					Heat sensors: Yes	Kcals , sleep			
Epson Pulsense (Epson, Suwa, Nagano Prefecture , Japan)	£79.99	Wrist	Comme rcial	Age, Gender, H, W, RHR	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce, kcals, active minut es, HR, sleep	36 hours	1	-4.28%
ePulse Personal Fitness Assistant (ePulse) (Impact Sports Technolo gies, San Diego, CA, USA)	\$129.9 5	Forea rm	Comme rcial	Age, Gender, H, W, RHR	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Kcals , HR		1	-3.46%
Fitbit blaze (Fitbit Inc, San Francisco, California , USA	£134.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors: Triaxial accelero meter, altimeter, optical HR	Steps , distan ce, Kcals , active minut es, sleep, HR, steps	5 days	1	28.66%
Fitbit charge (Fitbit Inc, San Francisco, California , USA)	£109.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep	5 days	2	-5.06%

					Triaxial accelero meter, altimeter				
Fitbit charge 2 (Fitbit Inc, San Francisco, California , USA)	£109.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep, HR, steps	5 days	1	- 30.97%
Fitbit charge HR (Fitbit Inc, San Francisco, California , USA)	£139.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep, HR, steps	5 days	6	1.3%
Fitbit Flex (Fitbit Inc, San Francisco, California , USA)	£79.99	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep	5 days	5	8.22%
Fitbit Surge (Fitbit Inc, San Francisco, California , USA)	£289.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce, Kcals , active minut es, altim eter, GPS	5 days		

Garmin Forerunne r 225 (Garmin ltd, Olathe, Kansas, USA)	£199.9 9	Wrist	Comme rcial	Age, Gender, H, W, RHR, HRmax	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , HR, distan ce, Kcals , active minut es, altim eter, GPS	7-10 Hours	1	44.23%
Garmin Forerunne r 920XT (Garmin ltd, Olathe, Kansas, USA)	£450	Wrist	Comme rcial	Age, Gender, H, W, RHR, HRmax	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, altim eter, sleep, HR, GPS	3 Days	1	21.02%
Garmin vivoactiv e (Garmin ltd, Olathe, Kansas, USA)	£250	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, altim eter, sleep, GPS	7 Days	1	3.42%
Garmin vivofit (Garmin ltd, Olathe, Kansas, USA)	£79.99	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep	1 Year	5	-26.09%
Garmin Vivosmar t (Garmin ltd, Olathe, Kansas, USA)	£139.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep	7 Days	1	5.98%

Garmin Vivosmar t HR (Garmin ltd, Olathe, Kansas, USA)	£129.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce, Kcals , HR, intens ity minut es, clapp	7 Days	1	16.85%
Jawbone UP (Jawbone, San Francisco, CA, USA)	£99.99	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	sleep Dista nce (app), Kcals , Steps , sleep	10 days	4	10.90%
Jawbone UP24 (Jawbone, San Francisco, CA, USA)	£89.99	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Dista nce (app), Kcal, Steps , sleep	14 Days	3	29.58%
LifeChek calorie sensor (LifeChek , LLC, Pittsburgh , PA, USA)		Uppe r right arm	Comme rcial		Accelero meter: Triaxial Heart rate: Heat sensors: Yes	Kcals		1	-4.87%
Microsoft band (Microsof t Corporati on, Redmond, WA, USA)	£169.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors: Yes	Steps , distan ce, kcals, active minut es, sleep, HR, GPS	48 Hours	1	- 49.15%

Mio Alpha (Mio Global, Canada)	£119.9 9	Wrist	Comme rcial	Age, Gender H, W, HRMAX, RHR	Accelero meter: Heart rate: Yes Heat sensors:	Kcals , HR	24 Hours	1	- 53.19%
Misfit Shine (Misfit, San Francisco, California , USA)	£99.99	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep		1	-2.36%
Nike Fuel Band (Nike Inc, Beaverton , OR, USA)	£129.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep	4 days	3	-0.48%
Polar Loop (Polar Electro, Kempele, Finnland)	£49.99	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep	12 days	1	18.05%
Polar: AW200 (Polar Electro Oy, Kempele, Finland	€152 (watch +softw are)	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , distan ce, Kcals , active minut es		1	- 13.17%
					accelero meter				

Polar: AW360 (Polar Electro Oy, Kempele, Finland	£149.9 9	Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep, HR	12 Days	1	28.68%
Samsung Gear S (Samsung Electronic s Co, Ltd, Suwon, South Korea)		Wrist	Comme rcial	Age, Gender, H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce, Kcals , active minut es, sleep, HR, GPS	2 Days	1	-9.98%
SenseWe ar Armband (HealthW ear, Bodymed ia, Pittsburgh , PA, USA)	€800 (device)+ €1597 (softw are)	Uppe r right arm	Researc h	Age, Gender H, W,	Accelero meter: Biaxial Heart rate: Heat sensors: Yes	Steps , activi ty intens ity, Kcals , sleep	14 days	12	-4.31%
SenseWe ar Mini Armband (HealthW ear, Bodymed ia, Pittsburgh , PA, USA)		Uppe r left arm	Researc h	Age, Gender H, W, smoking status	Accelero meter: Triaxial Heart rate: Heat sensors: Yes	Steps , activi ty intens ity, Kcals , sleep	28 days	9	-1.44%
SenseWe ar Pro 2 Armband (HealthW ear, Bodymed ia, Pittsburgh , PA, USA)		Uppe r right arm	Researc	Age, Gender H, W, smoking status	Accelero meter: Biaxial Heart rate: Heat sensors: Yes	Steps , activi ty intens ity, kcal, sleep	14 days	7	-7.54%

SenseWe ar Pro 3 Armband (HealthW ear, Bodymed ia, Pittsburgh , PA, USA)		Uppe r right arm	Researc h	Age, Gender H, W, smoking status	Accelero meter: Biaxial Heart rate: Heat sensors: Yes	Steps , activi ty intens ity, kcal, sleep	14 days	12	-4.56%
TomTom Touch (TomTom , Amsterda m, the Netherlan ds)	£129.9 9	Wrist	Comme rcial	Age, Gender H, W	Accelero meter: Triaxial Heart rate: Yes Heat sensors:	Steps , distan ce, activi ty intens ity, Kcal, sleep, HR,	5 Days	1	28.66%
Vivago (Vivago Wellness W, Paris, France).		Wrist	Comme rcial		Accelero meter: Triaxial Heart rate: Heat sensors:	Steps , activi ty intens ity, Kcal, sleep		1	-8.02%
Withings Pulse (Withings , Issy-les- Moulinea ux, France)	£39.99	Wrist , pocke t or clip on	Comme rcial	Age, Gender H,	Accelero meter: Triaxial Heart rate: (non continuo us) Heat sensors:	Steps , distan ce, Kcal, sleep	14 days	1	- 133.33 %
Withings Pulse 02 (Withings , Issy-les- Moulinea ux, France)	£79.99	Wrist	Comme rcial	Age, Gender H, W	Accelero meter: Triaxial Heart rate: (non continuo us) Heat sensors:	Steps , distan ce, activi ty intens ity, Kcal, sleep,	14 days	2	- 19.42%

HR, blood oxyg en

<i>S6:</i>							
	Activity	Hedges g	SE	Varian ce	Moderator	Moderator	Moderator
Alsubheen, 2016	AMBULAT ION	-1.26	0.32	0.10	GVF	ACC	Commercia l
Bai, 2017	AMBULAT ION MODERAT E	-0.12	0.15	0.02	AW	ACC + HR	Commercia I
Bai, 2017	RUN MODERAT E	-0.28	0.13	0.02	AW	ACC + HR	Commercia l
Bai, 2017	SEDENTA RY	-0.38	0.17	0.03	AW	ACC + HR	Commercia l
Bai, 2017	AMBULAT ION MODERAT E	0.72	0.13	0.02	FCHR	ACC + HR	Commercia I
Bai, 2017	RUN MODERAT E	0.37	0.13	0.02	FCHR	ACC + HR	Commercia l
Bai, 2017	SEDENTA RY	-0.56	0.18	0.03	FCHR	ACC + HR	Commercia l
Benito, 2012	AEE LIGHT	-0.75	0.15	0.02	SWA p2	ACC + HS	Research
Benito, 2012	AEE MODERAT E	-0.83	0.15	0.02	SWA p2	ACC + HS	Research
Benito, 2012	AEE VIGOROUS	-0.75	0.15	0.02	SWA p2	ACC + HS	Research
Berntsen, 2010	AEE MODERAT E	0.27	0.16	0.03	SWA p2	ACC + HS	Research
Berntsen, 2010	AEE VERY VIGOROUS	-2.22	0.30	0.09	SWA p2	ACC + HS	Research
Berntsen, 2010	AEE VIGOROUS	-1.52	0.24	0.06	SWA p2	ACC + HS	Research
Berntsen, 2011	AEE LIGHT	-0.35	0.16	0.03	SWA p2	ACC + HS	Research
Berntsen, 2011	AEE MODERAT E	-0.48	0.24	0.06	SWA p2	ACC + HS	Research
Bhammar, 2016	AEE	0.53	0.13	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	AEE 2	0.66	0.14	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	AMBULAT ION MODERAT E	0.57	0.14	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	AMBULAT ION MODERAT E 2	0.78	0.14	0.02	SWAM	ACC + HS	Research

Bhammar, 2016	AMBULAT ION VIGOROUS	0.31	0.13	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	AMBULAT ION VIGOROUS 2	0.58	0.14	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	BIKE LIGHT	-0.68	0.15	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	BIKE LIGHT 2	0.06	0.14	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	HOUSEHO LD	0.78	0.13	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	HOUSEHO LD 2	1.22	0.15	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	RUN MODERAT E	0.82	0.14	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	RUN MODERAT E 2	0.51	0.13	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	SEDENTA RY	0.65	0.13	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	SEDENTA RY 2	0.00	0.11	0.01	SWAM	ACC + HS	Research
Bhammar, 2016	SWEEP	0.65	0.13	0.02	SWAM	ACC + HS	Research
Bhammar, 2016	SWEEP 2	1.10	0.15	0.02	SWAM	ACC + HS	Research
Boudreaux, 2018	AEE	1.46	0.26	0.07	AWS2	ACC + HR	Commercia I
Boudreaux, 2018	BIKE	1.70	0.27	0.07	AWS2	ACC + HR	Commercia I
Boudreaux, 2018	AEE	-0.12	0.18	0.03	FB	ACC + HR	Commercia I
Boudreaux, 2018	BIKE	-0.91	0.18	0.03	FB	ACC + HR	Commercia I
Boudreaux, 2018	AEE	-0.20	0.19	0.04	FC2	ACC + HR	Commercia I
Boudreaux, 2018	BIKE	-1.05	0.22	0.05	FC2	ACC + HR	Commercia I
Boudreaux, 2018	AEE	0.65	0.20	0.04	GVHR	ACC + HR	Commercia I
Boudreaux, 2018	BIKE	0.15	0.15	0.02	GVHR	ACC + HR	Commercia I
Boudreaux, 2018	AEE	1.01	0.23	0.05	PA360	ACC + HR	Commercia I
Boudreaux, 2018	BIKE	0.60	0.18	0.03	PA360	ACC + HR	Commercia I
Boudreaux, 2018	AEE	0.57	0.19	0.04	TT	ACC + HR	Commercia I
Boudreaux, 2018	BIKE	0.76	0.19	0.04	TT	ACC + HR	Commercia I
Brazeau, 2011	BIKE LIGHT	-0.30	0.15	0.02	SWA p3	ACC + HS	Research
Brazeau, 2014	AMBULAT ION MODERAT E B	1.30	0.22	0.05	SWA p3	ACC + HS	Research

Brazeau, 2014	AMBULAT ION MODERAT E C	0.50	0.18	0.03	SWA p3	ACC + HS	Research
Brazeau, 2014	BIKE LIGHT B	-0.09	0.18	0.03	SWA p3	ACC + HS	Research
Brazeau, 2014	BIKE LIGHT C	-0.88	0.22	0.05	SWA p3	ACC + HS	Research
Brazeau, 2014	SEDENTA RY B	2.16	0.27	0.07	SWA p3	ACC + HS	Research
Brazeau, 2014	SEDENTA RY C	0.85	0.18	0.03	SWA p3	ACC + HS	Research
Brazeau, 2016	AMBULAT ION LIGHT	1.09	0.21	0.04	SWA p3	ACC + HS	Research
Brazeau, 2016	AMBULAT ION MODERAT E	1.09	0.21	0.04	SWA p3	ACC + HS	Research
Brazeau, 2016	AMBULAT ION VIGOROUS	0.56	0.17	0.03	SWA p3	ACC + HS	Research
Brazeau, 2016	BIKE	-0.83	0.21	0.04	SWA p3	ACC + HS	Research
Brazeau, 2016	SEDENTA RY	0.81	0.17	0.03	SWA p3	ACC + HS	Research
Brazeau, 2016	TEE	0.18	0.15	0.02	SWA p3	ACC + HS	Research
Brugniaux, 2010	AMBULAT ION VIGOROUS	-0.69	0.15	0.02	Polar AW200	ACC	Commercia I
Calabro, 2014	AEE	0.14	0.11	0.01	SWA p3	ACC + HS	Research
Calabro, 2014	AEE	0.03	0.11	0.01	SWAM	ACC + HS	Research
Calabro, 2015	TEE	-0.04	0.12	0.02	SWAM	ACC + HS	Research
Casiraghi, 2013	BIKE LIGHT	-0.19	0.19	0.04	SWA	ACC + HS	Research
Choudhry, 2017	AMBULAT ION	0.33	0.17	0.03	AW	ACC + HR	Commercia I
Choudhry, 2017	AMBULAT ION VIGOROUS	-0.05	0.17	0.03	AW	ACC + HR	Commercia I
Choudhry, 2017	BIKE	-0.09	0.15	0.02	AW	ACC + HR	Commercia I
Choudhry, 2017	COMPUTE R	1.25	0.25	0.06	AW	ACC + HR	Commercia I
Choudhry, 2017	HOUSEHO LD	-1.32	0.26	0.07	AW	ACC + HR	Commercia I
Choudhry, 2017	RUN	0.59	0.16	0.03	AW	ACC + HR	Commercia I
Choudhry, 2017	STAIRS	-1.00	0.21	0.04	AW	ACC + HR	Commercia I
Choudhry, 2017	SWEEP	-1.14	0.24	0.06	AW	ACC + HR	Commercia I
Choudhry, 2017	AMBULAT ION	0.34	0.14	0.02	BMC	ACC + HS	Research
Choudhry, 2017	AMBULAT ION VIGOROUS	0.52	0.14	0.02	ВМС	ACC + HS	Research
	1001000						

Choudhry, 2017	BIKE	-0.53	0.16	0.02	ВМС	ACC + HS	Research
Choudhry, 2017	COMPUTE R	0.55	0.13	0.02	BMC	ACC + HS	Research
Choudhry, 2017	HOUSEHO LD	0.75	0.14	0.02	BMC	ACC + HS	Research
Choudhry, 2017	RUN	0.33	0.13	0.02	BMC	ACC + HS	Research
Choudhry, 2017	STAIRS	-1.01	0.17	0.03	BMC	ACC + HS	Research
Choudhry, 2017	SWEEP	0.93	0.15	0.02	BMC	ACC + HS	Research
Choudhry, 2017	AMBULAT ION	1.78	0.21	0.04	FCHR	ACC + HR	Commercia I
Choudhry, 2017	AMBULAT ION VIGOROUS	1.60	0.19	0.04	FCHR	ACC + HR	Commercia I
Choudhry, 2017	BIKE	-2.15	0.35	0.12	FCHR	ACC + HR	Commercia I
Choudhry, 2017	COMPUTE R	-0.24	0.20	0.04	FCHR	ACC + HR	Commercia I
Choudhry, 2017	HOUSEHO LD	-0.29	0.20	0.04	FCHR	ACC + HR	Commercia I
Choudhry, 2017	RUN	0.92	0.17	0.03	FCHR	ACC + HR	Commercia I
Choudhry, 2017	STAIRS	-0.01	0.13	0.02	FCHR	ACC + HR	Commercia I
Choudhry, 2017	SWEEP	0.89	0.23	0.05	FCHR	ACC + HR	Commercia
Choudhry, 2017	AMBULAT ION	0.91	0.17	0.03	JU24	ACC	Commercia I
Choudhry, 2017	AMBULAT ION VIGOROUS	0.21	0.14	0.02	JU24	ACC	Commercia I
Choudhry, 2017	BIKE	-3.67	0.40	0.16	JU24	ACC	Commercia l
Choudhry, 2017	COMPUTE R	-0.05	0.14	0.02	JU24	ACC	Commercia I
Choudhry, 2017	HOUSEHO LD	-1.72	0.22	0.05	JU24	ACC	Commercia I
Choudhry, 2017	RUN	0.92	0.17	0.03	JU24	ACC	Commercia I
Choudhry, 2017	STAIRS	-1.39	0.20	0.04	JU24	ACC	Commercia I
Choudhry, 2017	SWEEP	-1.05	0.18	0.03	JU24	ACC	Commercia I
Choudhry, 2017	AMBULAT ION	-1.50	0.25	0.06	MB	ACC + HR + HS	Commercia I
Choudhry, 2017	AMBULAT ION VIGOROUS	-2.15	0.31	0.10	MB	ACC + HR + HS	Commercia I
Choudhry, 2017	BIKE	-0.90	0.22	0.05	MB	ACC + HR + HS	Commercia I
Choudhry, 2017	COMPUTE R	0.13	0.19	0.04	MB	ACC + HR + HS	Commercia I
Choudhry, 2017	HOUSEHO LD	-2.13	0.35	0.12	MB	ACC + HR + HS	Commercia I

Choudhry, 2017	RUN	0.17	0.17	0.03	MB	ACC + HR + HS	Commercia I
Choudhry, 2017	STAIRS	-3.42	0.50	0.25	MB	ACC + HR + HS	Commercia I
Choudhry, 2017	SWEEP	-2.01	0.33	0.11	MB	ACC + HR + HS	Commercia l
Colbert, 2011	TEE	-1.10	0.11	0.01	SWA p3	ACC + HS	Research
Correa, 2016	AEE	0.56	0.11	0.01	ACT	ACC	Research
Correa, 2016	AEE	-0.43	0.11	0.01	SWA	ACC + HS	Research
Diaz, 2015	AMBULAT ION LIGHT L	-0.08	0.13	0.02	FF	ACC	Commercia I
Diaz, 2015	AMBULAT ION LIGHT R	-0.15	0.13	0.02	FF	ACC	Commercia I
Diaz, 2015	AMBULAT ION MODERAT E L	0.95	0.16	0.02	FF	ACC	Commercia I
Diaz, 2015	AMBULAT ION MODERAT E R	0.96	0.16	0.02	FF	ACC	Commercia I
Diaz, 2015	AMBULAT ION VIGOROUS L	1.44	0.19	0.03	FF	ACC	Commercia l
Diaz, 2015	AMBULAT ION VIGOROUS R	0.94	0.15	0.02	FF	ACC	Commercia l
Diaz, 2015	RUN L	0.57	0.14	0.02	FF	ACC	Commercia l
Diaz, 2015	RUN R	0.27	0.13	0.02	FF	ACC	Commercia l
Diaz, 2016	AMBULAT ION LIGHT	1.36	0.24	0.06	FF	ACC	Commercia l
Diaz, 2016	AMBULAT ION MODERAT E	3.04	0.41	0.17	FF	ACC	Commercia I
Diaz, 2016	AMBULAT ION VIGOROUS	1.07	0.21	0.04	FF	ACC	Commercia I
Diaz, 2016	RUN	0.78	0.19	0.04	FF	ACC	Commercia l
Dondzilla, 2016	AMBULAT ION LIGHT	0.84	0.21	0.04	FC	ACC	Commercia l
Dondzilla, 2016	AMBULAT ION MODERAT E	-0.52	0.19	0.04	FC	ACC	Commercia I
Dondzilla, 2016	RUN LIGHT	-0.51	0.19	0.04	FC	ACC	Commercia l
Dondzilla, 2016	RUN MODERAT E	-1.13	0.24	0.06	FC	ACC	Commercia I

Dooley, 2017	AMBULAT ION LIGHT	0.49	0.13	0.02	AW	ACC + HR	Commercia I
Dooley, 2017	AMBULAT ION MODERAT E	0.29	0.12	0.02	AW	ACC + HR	Commercia l
Dooley, 2017	AMBULAT ION VIGOROUS	0.27	0.12	0.01	AW	ACC + HR	Commercia l
Dooley, 2017	SEDENTA RY	1.48	0.19	0.04	AW	ACC + HR	Commercia I
Dooley, 2017	STAND	1.80	0.21	0.05	AW	ACC + HR	Commercia I
Dooley, 2017	AMBULAT ION LIGHT	1.60	0.13	0.02	FCHR	ACC + HR	Commercia I
Dooley, 2017	AMBULAT ION MODERAT E	1.13	0.11	0.01	FCHR	ACC + HR	Commercia I
Dooley, 2017	AMBULAT ION VIGOROUS	0.08	0.09	0.01	FCHR	ACC + HR	Commercia I
Dooley, 2017	SEDENTA RY	0.28	0.14	0.02	FCHR	ACC + HR	Commercia I
Dooley, 2017	STAND	-0.39	0.14	0.02	FCHR	ACC + HR	Commercia I
Dooley, 2017	AMBULAT ION LIGHT	0.72	0.10	0.01	GF225	ACC + HR	Commercia I
Dooley, 2017	AMBULAT ION MODERAT E	1.27	0.12	0.01	GF225	ACC + HR	Commercia I
Dooley, 2017	AMBULAT ION VIGOROUS	0.63	0.10	0.01	GF225	ACC + HR	Commercia I
Dooley, 2017	SEDENTA RY	1.45	0.20	0.04	GF225	ACC + HR	Commercia l
Dooley, 2017	STAND	1.14	0.18	0.03	GF225	ACC + HR	Commercia l
Drenowatz, 2011	RUN	-2.21	0.30	0.09	SWA	ACC + HS	Research
Drenowatz, 2011	RUN LIGHT	-1.10	0.20	0.04	SWA	ACC + HS	Research
Drenowatz, 2011	RUN MODERAT E	-1.95	0.28	0.08	SWA	ACC + HS	Research
Drenowatz, 2011	RUN VIGOROUS	-2.41	0.32	0.10	SWA	ACC + HS	Research
Erdogan, 2010	AEE	0.08	0.11	0.01	SWA	ACC + HS	Research
Erdogan, 2010	AEE VIGOROUS	-0.01	0.11	0.01	SWA	ACC + HS	Research
Fruin, 2004	AMBULAT ION MODERAT E	0.23	0.16	0.03	SWA	ACC + HS	Research
Fruin, 2004	AMBULAT ION	-0.21	0.16	0.03	SWA	ACC + HS	Research

	UPHILL VIGOROUS						
Fruin, 2004	AMBULAT ION	0.51	0.17	0.03	SWA	ACC + HS	Research
Fruin, 2004	VIGOROUS BIKE	-0.50	0.23	0.05	SWA	ACC + HS	Research
Fruin, 2004	EARLY BIKE LATE	-0.05	0.21	0.05	SWA	ACC + HS	Research
Fruin, 2004	BIKE MIDDLE	-0.27	0.22	0.05	SWA	ACC + HS	Research
Furlanetto, 2010	AMBULAT ION LIGHT	-0.19	0.13	0.02	SWA	ACC + HS	Research
Furlanetto, 2010	AMBULAT ION MODERAT E	-0.04	0.13	0.02	SWA	ACC + HS	Research
Furlanetto, 2010	AMBULAT ION VIGOROUS	-0.11	0.13	0.02	SWA	ACC + HS	Research
Gastin, 2017	AEE 1	-1.71	0.22	0.05	SWA	ACC + HS	Research
Gastin, 2017	AEE 2	-1.83	0.23	0.05	SWA	ACC + HS	Research
Gastin, 2017	AEE 3	-1.61	0.22	0.05	SWA	ACC + HS	Research
Gastin, 2017	AMBULAT ION	2.87	0.33	0.11	SWA	ACC + HS	Research
Gastin, 2017	RUN LIGHT	1.06	0.18	0.03	SWA	ACC + HS	Research
Gastin, 2017	RUN MODERAT E	-0.68	0.16	0.02	SWA	ACC + HS	Research
Heiermann, 2011	REST	0.76	0.13	0.02	SWA p2	ACC + HS	Research
Imboden, 2017	AEE	-0.65	0.12	0.02	FF	ACC	Commercia l
	AEE	-0.65 -1.30	0.12 0.15	0.02 0.02	FF JU24	ACC ACC	Commercia I Commercia I
2017 Imboden,							1
2017 Imboden, 2017	AEE	-1.30	0.15	0.02	JU24	ACC	l Commercia l
2017 Imboden, 2017 Jakicic, 2004	AEE	-1.30 2.43	0.15 0.25	0.02 0.06	JU24 SWA	ACC ACC + HS	l Commercia l Research
2017 Imboden, 2017 Jakicic, 2004 Jakicic, 2004	AEE AEE 1 AMBULAT ION MODERAT	-1.30 2.43 0.90	0.15 0.25 0.14	0.02 0.06 0.02	JU24 SWA SWA	ACC ACC + HS ACC + HS	l Commercia l Research Research
2017 Imboden, 2017 Jakicic, 2004 Jakicic, 2004 Jakicic, 2004	AEE AEE 1 AEE 1 AMBULAT ION MODERAT E AMBULAT ION UPHILL MODERAT E AMBULAT ION	-1.30 2.43 0.90 1.92	0.15 0.25 0.14 0.22	0.02 0.06 0.02 0.05	JU24 SWA SWA SWA	ACC ACC + HS ACC + HS ACC + HS	l Commercia l Research Research Research
2017 Imboden, 2017 Jakicic, 2004 Jakicic, 2004 Jakicic, 2004	AEE AEE 1 AEE 1 AMBULAT ION MODERAT E AMBULAT ION UPHILL MODERAT E AMBULAT ION UPHILL VIGOROUS BIKE	-1.30 2.43 0.90 1.92 -0.31	0.15 0.25 0.14 0.22 0.13	0.02 0.06 0.02 0.05 0.02	JU24 SWA SWA SWA	ACC + HS ACC + HS ACC + HS ACC + HS	I Commercia I Research Research Research
2017 Imboden, 2017 Jakicic, 2004 Jakicic, 2004 Jakicic, 2004 Jakicic, 2004	AEE AEE 1 AEE 1 AMBULAT ION MODERAT E AMBULAT ION UPHILL MODERAT E AMBULAT ION UPHILL VIGOROUS	-1.30 2.43 0.90 1.92 -0.31	0.15 0.25 0.14 0.22 0.13 0.20	0.02 0.06 0.02 0.05 0.02	JU24 SWA SWA SWA SWA	ACC + HS ACC + HS ACC + HS ACC + HS	I Commercia I Research Research Research Research

Jakicic, 2004	STAIRS MODERAT E	-1.46	0.20	0.04	SWA	ACC + HS	Research
Johannsen, 2010	TEE	-0.20	0.12	0.01	SWA p3	ACC + HS	Research
Johannsen, 2010	TEE	-0.04	0.12	0.01	SWAM	ACC + HS	Research
Kim, 2015	AEE LIGHT	0.16	0.10	0.01	BMC	ACC + HS	Research
Kim, 2015	AEE MODERAT E	-0.09	0.10	0.01	BMC	ACC + HS	Research
Kim, 2015	AEE VIGOROUS	0.29	0.10	0.01	BMC	ACC + HS	Research
Kim, 2015	SEDENTA RY	0.30	0.09	0.01	BMC	ACC + HS	Research
King, 2004	AMBULAT ION LIGHT M	4.46	0.78	0.60	SWA	ACC + HS	Research
King, 2004	AMBULAT ION M	1.56	0.34	0.11	SWA	ACC + HS	Research
King, 2004	AMBULAT ION MODERAT E F	1.94	0.37	0.14	SWA	ACC + HS	Research
King, 2004	AMBULAT ION MODERAT E M	3.76	0.66	0.44	SWA	ACC + HS	Research
King, 2004	AMBULAT ION VIGOROUS F	2.05	0.39	0.15	SWA	ACC + HS	Research
King, 2004	AMBULETI ON F	0.72	0.24	0.06	SWA	ACC + HS	Research
King, 2004	RUN LIGHT F	2.20	0.45	0.20	SWA	ACC + HS	Research
King, 2004	RUN LIGHT M	2.73	0.56	0.31	SWA	ACC + HS	Research
King, 2004	RUN MODERAT E F	1.77	0.39	0.15	SWA	ACC + HS	Research
King, 2004	RUN MODERAT E M	1.69	0.39	0.15	SWA	ACC + HS	Research
King, 2004	RUN VERY VIGOROUS F	0.71	0.26	0.07	SWA	ACC + HS	Research
King, 2004	RUN VERY VIGOROUS M	0.69	0.27	0.07	SWA	ACC + HS	Research
King, 2004	RUN VIGOROUS F	1.32	0.33	0.11	SWA	ACC + HS	Research
King, 2004	RUN VIGOROUS M	0.48	0.25	0.06	SWA	ACC + HS	Research
Koehler, 2011	TEE	-0.06	0.17	0.03	SWA p3	ACC + HS	Research
Lee, 2011	AMBULAT ION LIGHT	-0.74	0.20	0.04	EPUL	ACC + HR	Commercia I

Lee, 2011	AMBULAT ION MODERAT E	0.04	0.18	0.03	EPUL	ACC + HR	Commercia I
Lee, 2011	RUN LIGHT	0.01	0.18	0.03	EPUL	ACC + HR	Commercia I
Lee, 2011	RUN MODERAT E	0.12	0.18	0.03	EPUL	ACC + HR	Commercia I
Lee, 2011	SEDENTA RY	-0.31	0.18	0.03	EPUL	ACC + HR	Commercia l
Lee, 2014	AEE	-1.37	0.18	0.03	BB1	ACC + HR + HS	Commercia l
Lee, 2014	AEE	-0.28	0.10	0.01	BMC	ACC + HS	Research
Lee, 2014	AEE	-0.34	0.08	0.01	JU	ACC	Commercia l
Lee, 2014	AEE	-0.10	0.09	0.01	NF	ACC	Commercia l
Mackey, 2011	TEE	0.05	0.15	0.02	SWA	ACC + HS	Research
Mackey, 2011	TEE 6	-0.06	0.15	0.02	SWA	ACC + HS	Research
Martien, 2015	AEE	-0.25	0.11	0.01	SWAM	ACC + HS	Research
Martien, 2015	SEDENTA RY	-0.99	0.11	0.01	SWAM	ACC + HS	Research
McMinn, 2013	AMBULAT ION LIGHT	-1.55	0.25	0.06	AGT3X	ACC	Research
McMinn, 2013	AMBULAT ION MODERAT E	0.04	0.16	0.03	AGT3X	ACC	Research
McMinn, 2013	AMBULAT ION VIGOROUS	0.48	0.17	0.03	AGT3X	ACC	Research
Melanson, 2009	TEE	-0.05	0.35	0.12	LC	ACC + HS	Commercia I
Mikulic, 2011	AEE	-1.95	0.28	0.08	SWA p3	ACC + HS	Research
Montoye, 2017	AMBULAT ION LIGHT	0.23	0.12	0.02	FCHR	ACC + HR	Commercia I
Montoye, 2017	AMBULAT ION MODERAT E	0.22	0.12	0.02	FCHR	ACC + HR	Commercia I
Montoye, 2017	AMBULAT ION UPHILL	0.42	0.13	0.02	FCHR	ACC + HR	Commercia I
Montoye, 2017	AMBULAT ION UPHILL LIGHT	0.45	0.13	0.02	FCHR	ACC + HR	Commercia I
Montoye, 2017	AMBULAT ION UPHILL MODERAT E	0.47	0.13	0.02	FCHR	ACC + HR	Commercia l
Montoye, 2017	AMBULAT ION VIGOROUS	0.36	0.13	0.02	FCHR	ACC + HR	Commercia I
Montoye, 2017	BIKE	0.43	0.18	0.03	FCHR	ACC + HR	Commercia l

Montoye,	RUN	0.52	0.15	0.02	FCHR	ACC + HR	Commercia
2017 Montoye,	SITTING	0.06	0.19	0.04	FCHR	ACC + HR	l Commercia
2017 Montoye, 2017	STAND	0.00	0.19	0.04	FCHR	ACC + HR	l Commercia
2017 Montoye, 2017	SUPINE	-0.23	0.19	0.04	FCHR	ACC + HR	Commercia
Murakami, 2016	TEE	-0.68	0.19	0.04	EP	ACC + HR	Commercia
Murakami, 2016	TEE MC	0.12	0.17	0.03	EP	ACC + HR	Commercia I
Murakami, 2016	TEE	-0.48	0.15	0.02	FF	ACC	Commercia I
Murakami, 2016	TEE MC	0.38	0.11	0.01	FF	ACC	Commercia I
Murakami, 2016	TEE	-1.62	0.30	0.09	GVF	ACC	Commercia I
Murakami, 2016	TEE MC	-0.83	0.23	0.05	GVF	ACC	Commercia I
Murakami, 2016	TEE	-1.96	0.30	0.09	JU24	ACC	Commercia I
Murakami, 2016	TEE MC	-0.95	0.21	0.04	JU24	ACC	Commercia I
Murakami, 2016	TEE	-0.68	0.27	0.07	MS	ACC	Commercia I
Murakami, 2016	TEE MC	0.40	0.25	0.06	MS	ACC	Commercia I
Murakami, 2016	TEE	-1.68	0.23	0.05	WPO	ACC	Commercia I
Murakami, 2016	TEE MC	-0.93	0.18	0.03	WPO	ACC	Commercia I
Nelson, 2016	AMBULAT ION	0.92	0.14	0.02	FF	ACC	Commercia I
Nelson, 2016	HOUSEHO LD	-0.27	0.14	0.02	FF	ACC	Commercia I
Nelson, 2016	SEDENTA RY	-0.33	0.14	0.02	FF	ACC	Commercia I
Nelson, 2016	AMBULAT ION	0.48	0.12	0.01	JU	ACC	Commercia I
Nelson, 2016	HOUSEHO LD	-1.30	0.24	0.06	JU	ACC	Commercia I
Nelson, 2016	SEDENTA RY	-0.39	0.18	0.03	JU	ACC	Commercia I
Papazoglou, 2006	AMBULAT ION	0.82	0.19	0.04	SWA p2	ACC + HS	Research
Papazoglou, 2006	BIKE	0.54	0.17	0.03	SWA p2	ACC + HS	Research
Papazoglou, 2006	STAIRS	0.88	0.17	0.03	SWA p2	ACC + HS	Research
Price, 2017	AMBULAT ION	-1.15	0.29	0.09	GVF	ACC	Commercia I
Price, 2017	RUN	-0.50	0.31	0.09	GVF	ACC	Commercia I
Price, 2017	AMBULAT ION	-0.12	0.16	0.03	JU	ACC	Commercia l

Price, 2017	RUN	0.48	0.19	0.04	JU	ACC	Commercia
Reece, 2015	AMBULAT ION	0.40	0.16	0.03	SWAM	ACC + HS	Research
Reece, 2015	COMPUTE R	-1.22	0.19	0.04	SWAM	ACC + HS	Research
Reece, 2015	SEDENTA RY	0.20	0.14	0.02	SWAM	ACC + HS	Research
Reece, 2015	SITTING	0.19	0.14	0.02	SWAM	ACC + HS	Research
Reece, 2015	STAND	-0.58	0.15	0.02	SWAM	ACC + HS	Research
Reece, 2015	STAND COMPUTE R	-1.10	0.18	0.03	SWAM	ACC + HS	Research
Rousset, 2015	TEE CC	-0.49	0.10	0.01	SWA p3	ACC + HS	Research
Rousset, 2015	TEE DLW	-0.05	0.10	0.01	SWA p3	ACC + HS	Research
Ryan, 2013	AMBULAT ION	0.82	0.17	0.03	SWA p2	ACC + HS	Research
Ryan, 2013	AMBULAT ION MODERAT E	-0.08	0.14	0.02	SWA p2	ACC + HS	Research
Ryan, 2013	AMBULAT ION UPHILL MODERAT E	-2.27	0.27	0.08	SWA p2	ACC + HS	Research
Ryan, 2013	RUN	-0.38	0.15	0.02	SWA p2	ACC + HS	Research
Ryan, 2013	SEDENTA RY	0.65	0.14	0.02	SWA p2	ACC + HS	Research
Slinde, 2013	TEE	0.20	0.09	0.01	SWA p2	ACC + HS	Research
Slinde, 2013	TEE 6	-0.67	0.09	0.01	SWA p2	ACC + HS	Research
Smith, 2012	AMBULAT ION	1.29	0.18	0.03	SWAM	ACC + HS	Research
Smith, 2012	AMBULAT ION 2	1.96	0.23	0.05	SWAM	ACC + HS	Research
Smith, 2012	AMBULAT ION LIGHT	1.43	0.19	0.04	SWAM	ACC + HS	Research
Smith, 2012	AMBULAT ION LIGHT 2	1.77	0.22	0.05	SWAM	ACC + HS	Research
Smith, 2012	AMBULAT ION MODERAT E	1.57	0.20	0.04	SWAM	ACC + HS	Research
Smith, 2012	AMBULAT ION MODERAT E 2	1.43	0.19	0.04	SWAM	ACC + HS	Research
Smith, 2012	AMBULAT ION UPHILL MODERAT E	-0.16	0.13	0.02	SWAM	ACC + HS	Research
Smith, 2012	AMBULAT ION UPHILL MODERAT E 2	-0.22	0.13	0.02	SWAM	ACC + HS	Research

2015 AEE 1 0.00 0.13 0.02 JU ACC 0 2015 Stackpool, 2015 AMBULAT 0.56 0.15 0.02 JU ACC 0 2015 ION 0.15 0.02 JU ACC 0	ResearchResearchResearchResearchResearchResearchResearchResearchResearchResearchResearchResearchResearchResearch
LD Smith, 2012 HOUSEHO LD 2 1.78 0.20 0.04 SWAM ACC + HS Smith, 2012 SEDENTA RY 2 0.36 0.12 0.02 SWAM ACC + HS Smith, 2012 SWEEP 0.52 0.13 0.02 SWAM ACC + HS Smith, 2012 SWEEP 0.52 0.13 0.02 SWAM ACC + HS Smith, 2012 SWEEP 2 1.50 0.18 0.03 SWAM ACC + HS Smith, 2012 SWEEP 2 1.50 0.18 0.03 SWAM ACC + HS Stackpool, 2015 AEE -0.77 0.18 0.03 BMC ACC + HS Stackpool, 2015 AEE 1 -1.29 0.22 0.05 BMC ACC + HS Stackpool, 2015 AMBULAT 0.16 0.17 0.03 BMC ACC + HS Stackpool, 2015 AEE -1.15 0.17 0.03 JU ACC ACC Stackpool, 2015 AEE 1 0.00 0.13	Research Research Research Research Research Research
Smith, 2012 HOUSEHO LD 2 1.78 0.20 0.04 SWAM ACC + HS Smith, 2012 SEDENTA RY 2 0.36 0.12 0.02 SWAM ACC + HS 1.78 Smith, 2012 SWEEP 0.52 0.13 0.02 SWAM ACC + HS 1.78 Smith, 2012 SWEEP 0.52 0.13 0.02 SWAM ACC + HS 1.78 Smith, 2012 SWEEP 2 1.50 0.18 0.03 SWAM ACC + HS 1.78 Stackpool, 2015 AEE -0.77 0.18 0.03 BMC ACC + HS 1.78 1.79 1.78 1.79 1.79 1.79	Research Research Research Research Research Research
Smith, 2012 SEDENTA RY 2 0.36 0.12 0.02 SWAM ACC + HS Smith, 2012 SWEEP 0.52 0.13 0.02 SWAM ACC + HS Image: Comparison of the temperature of tempe	Research Research Research Research Research
Smith, 2012 SWEEP 0.52 0.13 0.02 SWAM ACC + HS Smith, 2012 SWEEP 2 1.50 0.18 0.03 SWAM ACC + HS Stackpool, 2015 AEE -0.77 0.18 0.03 BMC ACC + HS Stackpool, 2015 AEE 1 -1.29 0.22 0.05 BMC ACC + HS Stackpool, 2015 AEE 1 -1.29 0.22 0.05 BMC ACC + HS Stackpool, 2015 AMBULAT 0.16 0.17 0.03 BMC ACC + HS Stackpool, 2015 RUN -0.65 0.18 0.03 BMC ACC + HS Stackpool, 2015 RUN -0.65 0.18 0.03 BMC ACC + HS Stackpool, 2015 AEE 1 0.17 0.03 JU ACC + HS QU Stackpool, 2015 AEE 1 0.00 0.13 0.02 JU ACC QU Stackpool, 2015 AMBULAT 0.56 0.15 0.02 JU	Research Research Research Research
Stackpool, 2015 AEE -0.77 0.18 0.03 BMC ACC + HS Stackpool, 2015 AEE 1 -1.29 0.22 0.05 BMC ACC + HS Stackpool, 2015 AMBULAT 0.16 0.17 0.03 BMC ACC + HS Stackpool, 2015 AMBULAT ION 0.16 0.17 0.03 BMC ACC + HS Stackpool, 2015 RUN -0.65 0.18 0.03 BMC ACC + HS Stackpool, 2015 RUN -0.65 0.18 0.03 BMC ACC + HS Stackpool, 2015 AEE -1.15 0.17 0.03 JU ACC 0 Stackpool, 2015 AEE 1 0.00 0.13 0.02 JU ACC 0 Stackpool, 2015 AMBULAT ION 0.56 0.15 0.02 JU ACC 0	Research Research Research
2015 AEE 1 -1.29 0.22 0.05 BMC ACC + HS 2015 Stackpool, 2015 AMBULAT 0.16 0.17 0.03 BMC ACC + HS Stackpool, 2015 AMBULAT 0.16 0.17 0.03 BMC ACC + HS Stackpool, 2015 RUN -0.65 0.18 0.03 BMC ACC + HS Stackpool, 2015 RUN -0.65 0.18 0.03 BMC ACC + HS Stackpool, 2015 AEE -1.15 0.17 0.03 JU ACC O Stackpool, 2015 AEE 1 0.00 0.13 0.02 JU ACC O Stackpool, 2015 AMBULAT 0.56 0.15 0.02 JU ACC O	Research Research
Stackpool, 2015 AEE 1 -1.29 0.22 0.05 BMC ACC + HS Stackpool, 2015 AMBULAT ION 0.16 0.17 0.03 BMC ACC + HS Stackpool, 2015 RUN -0.65 0.18 0.03 BMC ACC + HS Stackpool, 2015 RUN -0.65 0.18 0.03 BMC ACC + HS Stackpool, 2015 AEE -1.15 0.17 0.03 JU ACC O Stackpool, 2015 AEE 1 0.00 0.13 0.02 JU ACC O Stackpool, 2015 AMBULAT ION 0.56 0.15 0.02 JU ACC O	Research
2015 ION Stackpool, 2015 RUN -0.65 0.18 0.03 BMC ACC + HS 2015 Stackpool, 2015 AEE -1.15 0.17 0.03 JU ACC 0 Stackpool, 2015 AEE 1 0.00 0.13 0.02 JU ACC 0 Stackpool, 2015 AMBULAT 0.56 0.15 0.02 JU ACC 0	
2015 Stackpool, 2015 Stackpool, 2015 AEE -1.15 0.17 0.03 JU ACC Stackpool, 2015 AEE 1 0.00 0.13 0.02 JU ACC Stackpool, 2015 AMBULAT 0.56 0.15 0.02 JU ACC QU15 ION	Research
2015 AEE 1 0.00 0.13 0.02 JU ACC 0 2015 Stackpool, 2015 AMBULAT 0.56 0.15 0.02 JU ACC 0 Stackpool, 2015 ION 0.15 0.02 JU ACC 0	
2015 AMBULAT 0.56 0.15 0.02 JU ACC 0 2015 ION	Commercia I
2015 ION	Commercia I
Stackpool, RUN 0.77 0.19 0.03 JU ACC 0	Commercia I
2015	Commercia I
Stackpool, AEE -0.63 0.16 0.03 NF ACC 0	Commercia I
Stackpool, AEE 1 -1.14 0.19 0.04 NF ACC 0	Commercia I
Stackpool, AMBULAT -0.08 0.15 0.02 NF ACC 0 2015 ION	Commercia I
Stackpool, RUN 0.63 0.17 0.03 NF ACC 0	Commercia I
St-Onge, 2007 TEE 0.27 0.10 0.01 SWA ACC + HS	Research
Tucker, 2015 AEE 0.04 0.13 0.02 NF ACC 0	Commercia I
Tucker, 2015 AEE -0.08 0.15 0.02 SWA ACC + HS	Research
Van Helst, AMBULAT -1.42 0.20 0.04 V ACC O 2012 ION <	Commercia I
Van Helst, 2012 RUN -0.22 0.14 0.02 V ACC C MODERAT E	Commercia I
Van Helst,RUN-0.230.140.02VACC02012VIGOROUS	Commercia l
Van Helst, 2012 SEDENTA 0.00 0.14 0.02 V ACC O	Commercia l
Van Hoye, AMBULAT 0.14 0.16 0.03 SWA p3 ACC + HS 2014 ION F	Research
Van Hoye, AMBULAT -0.52 0.17 0.03 SWA p3 ACC + HS 2014 ION LIGHT F	Research
Van Hoye, AMBULAT -1.06 0.19 0.04 SWA p3 ACC + HS 2014 ION LIGHT M	- ·
Van Hoye, AMBULAT -0.08 0.15 0.02 SWA p3 ACC + HS 2014 ION M	Research

Van Hoye, 2014	AMBULAT ION MODERAT E F	-0.47	0.17	0.03	SWA p3	ACC + HS	Research
Van Hoye, 2014	AMBULAT ION MODERAT E M	-1.13	0.20	0.04	SWA p3	ACC + HS	Research
Van Hoye, 2014	AMBULAT ION VIGOROUS F	-0.62	0.18	0.03	SWA p3	ACC + HS	Research
Van Hoye, 2014	AMBULAT ION VIGOROUS M	-1.16	0.20	0.04	SWA p3	ACC + HS	Research
Van Hoye, 2014	RUN LIGHT F	-1.30	0.22	0.05	SWA p3	ACC + HS	Research
Van Hoye, 2014	RUN LIGHT M	-1.35	0.21	0.04	SWA p3	ACC + HS	Research
Van Hoye, 2014	RUN MODERAT E F	-1.88	0.28	0.08	SWA p3	ACC + HS	Research
Van Hoye, 2014	RUN MODERAT E M	-2.02	0.26	0.07	SWA p3	ACC + HS	Research
Van Hoye, 2014	RUN VERY LIGHT F	-0.76	0.18	0.03	SWA p3	ACC + HS	Research
Van Hoye, 2014	RUN VERY LIGHTM	-0.93	0.18	0.03	SWA p3	ACC + HS	Research
Van Hoye, 2014	RUN VERY VIGOROUS M	-3.08	0.41	0.17	SWA p3	ACC + HS	Research
Van Hoye, 2014	RUN VIGOROUS F	-2.24	0.33	0.11	SWA p3	ACC + HS	Research
Van Hoye, 2014	RUN VIGOROUS M	-3.03	0.36	0.13	SWA p3	ACC + HS	Research
Van Hoye, 2015	AMBULAT ION LIGHT	-0.36	0.12	0.01	SWA p3	ACC + HS	Research
Van Hoye, 2015	AMBULAT ION MODERAT E	-0.28	0.12	0.01	SWA p3	ACC + HS	Research
Van Hoye, 2015	RUN	-1.04	0.14	0.02	SWA p3	ACC + HS	Research
Van Hoye, 2015	RUN MODERAT E	-0.77	0.13	0.02	SWA p3	ACC + HS	Research
Van Hoye, 2015	STAND	0.23	0.11	0.01	SWA p3	ACC + HS	Research
Van Hoye, 2015	STAND 1	0.62	0.12	0.01	SWA p3	ACC + HS	Research
Vernillo, 2015	AMBULAT ION	0.78	0.19	0.03	SWA p3	ACC + HS	Research
Vernillo, 2015	AMBULAT ION DOWNHIL L LIGHT	2.01	0.29	0.08	SWA p3	ACC + HS	Research

Vernillo, 2015	AMBULAT ION DOWNHIL L MODERAT E	2.28	0.31	0.10	SWA p3	ACC + HS	Research
Vernillo, 2015	AMBULAT ION DOWNHIL L VIGOROUS	2.09	0.29	0.09	SWA p3	ACC + HS	Research
Vernillo, 2015	AMBULAT ION MODERAT E	0.30	0.16	0.03	SWA p3	ACC + HS	Research
Vernillo, 2015	AMBULAT ION UPHILL VIGOROUS	-2.33	0.32	0.10	SWA p3	ACC + HS	Research
Vernillo, 2015	AMBULAT ION UPHILL MODERAT E	-1.07	0.20	0.04	SWA p3	ACC + HS	Research
Vernillo, 2015	AMBULAT ION UPHILL VERY VIGOROUS	-2.83	0.37	0.14	SWA p3	ACC + HS	Research
Vernillo, 2015	SEDENTA RY	0.00	0.15	0.02	SWA p3	ACC + HS	Research
Vernillo, 2015	AMBULAT ION	0.56	0.17	0.03	SWAM	ACC + HS	Research
Vernillo, 2015	AMBULAT ION DOWNHIL L LIGHT	2.29	0.32	0.10	SWAM	ACC + HS	Research
Vernillo, 2015	AMBULAT ION DOWNHIL L MODERAT E	2.28	0.31	0.10	SWAM	ACC + HS	Research
Vernillo, 2015	AMBULAT ION DOWNHIL L VIGOROUS	2.27	0.31	0.10	SWAM	ACC + HS	Research
Vernillo, 2015	AMBULAT ION MODERAT E	0.00	0.16	0.03	SWAM	ACC + HS	Research
Vernillo, 2015	AMBULAT ION UPHILL MODERAT E	-1.49	0.24	0.06	SWAM	ACC + HS	Research
Vernillo, 2015	AMBULAT ION UPHILL	-2.78	0.37	0.13	SWAM	ACC + HS	Research

	VERY VIGOROUS						
Vernillo, 2015	AMBULAT ION UPHILL VIGOROUS	-2.46	0.33	0.11	SWAM	ACC + HS	Research
Vernillo, 2015	SEDENTA RY	0.00	0.15	0.02	SWAM	ACC + HS	Research
Wahl, 2017	AMBULAT ION	0.14	0.22	0.05	ВА	ACC	Commercia I
Wahl, 2017	RUN INTERMIT TENT	-1.13	0.28	0.08	BA	ACC	Commercia I
Wahl, 2017	RUN LIGHT	0.40	0.22	0.05	BA	ACC	Commercia l
Wahl, 2017	RUN MODERAT E	-0.68	0.24	0.06	BA	ACC	Commercia I
Wahl, 2017	RUN OUTDOOR	-0.83	0.34	0.12	BA	ACC	Commercia I
Wahl, 2017	RUN VIGOROUS	-0.82	0.25	0.06	BA	ACC	Commercia I
Wahl, 2017	AMBULAT ION	1.12	0.28	0.08	FC	ACC	Commercia l
Wahl, 2017	RUN INTERMIT TENT	0.00	0.21	0.05	FC	ACC	Commercia I
Wahl, 2017	RUN LIGHT	0.58	0.23	0.05	FC	ACC	Commercia I
Wahl, 2017	RUN MODERAT E	0.37	0.22	0.05	FC	ACC	Commercia I
Wahl, 2017	RUN OUTDOOR	-0.19	0.29	0.09	FC	ACC	Commercia I
Wahl, 2017	RUN VIGOROUS	-0.05	0.21	0.05	FC	ACC	Commercia I
Wahl, 2017	AMBULAT ION	0.78	0.25	0.06	FCHR	ACC + HR	Commercia l
Wahl, 2017	RUN INTERMIT TENT	0.42	0.22	0.05	FCHR	ACC + HR	Commercia I
Wahl, 2017	RUN LIGHT	0.11	0.22	0.05	FCHR	ACC + HR	Commercia I
Wahl, 2017	RUN MODERAT E	0.33	0.22	0.05	FCHR	ACC + HR	Commercia I
Wahl, 2017	RUN OUTDOOR	-0.35	0.30	0.09	FCHR	ACC + HR	Commercia l
Wahl, 2017	RUN VIGOROUS	0.31	0.22	0.05	FCHR	ACC + HR	Commercia I
Wahl, 2017	AMBULAT ION	-0.50	0.23	0.05	GF920XT	ACC	Commercia I
Wahl, 2017	RUN INTERMIT TENT	-0.16	0.22	0.05	GF920XT	ACC	Commercia l
Wahl, 2017	RUN LIGHT	-0.32	0.22	0.05	GF920XT	ACC	Commercia I

Wahl, 2017	RUN MODERAT E	-0.19	0.22	0.05	GF920XT	ACC	Commercia l
Wahl, 2017	RUN OUTDOOR	-0.47	0.31	0.09	GF920XT	ACC	Commercia I
Wahl, 2017	RUN VIGOROUS	-0.22	0.22	0.05	GF920XT	ACC	Commercia I
Wahl, 2017	AMBULAT ION	-0.16	0.22	0.05	GVA	ACC	Commercia l
Wahl, 2017	RUN INTERMIT TENT	-0.01	0.21	0.05	GVA	ACC	Commercia l
Wahl, 2017	RUN LIGHT	0.46	0.23	0.05	GVA	ACC	Commercia I
Wahl, 2017	RUN MODERAT E	0.95	0.26	0.07	GVA	ACC	Commercia I
Wahl, 2017	RUN OUTDOOR	-0.25	0.29	0.09	GVA	ACC	Commercia I
Wahl, 2017	RUN VIGOROUS	0.15	0.22	0.05	GVA	ACC	Commercia I
Wahl, 2017	AMBULAT ION	-0.13	0.22	0.05	GVF	ACC	Commercia I
Wahl, 2017	RUN INTERMIT TENT	-0.50	0.23	0.05	GVF	ACC	Commercia l
Wahl, 2017	RUN LIGHT	0.22	0.22	0.05	GVF	ACC	Commercia I
Wahl, 2017	RUN MODERAT E	0.15	0.22	0.05	GVF	ACC	Commercia l
Wahl, 2017	RUN OUTDOOR	-0.90	0.35	0.12	GVF	ACC	Commercia I
Wahl, 2017	RUN VIGOROUS	-0.29	0.22	0.05	GVF	ACC	Commercia I
Wahl, 2017	AMBULAT ION	-0.10	0.22	0.05	GVS	ACC	Commercia I
Wahl, 2017	RUN INTERMIT TENT	0.03	0.21	0.05	GVS	ACC	Commercia I
Wahl, 2017	RUN LIGHT	0.37	0.22	0.05	GVS	ACC	Commercia I
Wahl, 2017	RUN MODERAT E	0.39	0.22	0.05	GVS	ACC	Commercia I
Wahl, 2017	RUN OUTDOOR	-0.05	0.29	0.08	GVS	ACC	Commercia I
Wahl, 2017	RUN VIGOROUS	0.14	0.22	0.05	GVS	ACC	Commercia I
Wahl, 2017	AMBULAT ION	0.36	0.22	0.05	PL	ACC	Commercia I
Wahl, 2017	RUN INTERMIT TENT	0.02	0.21	0.05	PL	ACC	Commercia l
Wahl, 2017	RUN LIGHT	0.27	0.22	0.05	PL	ACC	Commercia I

Wahl, 2017	RUN MODERAT E	0.34	0.22	0.05	PL	ACC	Commercia I
Wahl, 2017	RUN OUTDOOR	0.15	0.22	0.05	PL	ACC	Commercia I
Wahl, 2017	RUN VIGOROUS	0.25	0.22	0.05	PL	ACC	Commercia I
Wahl, 2017	AMBULAT ION	-0.11	0.22	0.05	SWAM	ACC + HS	Research
Wahl, 2017	RUN INTERMIT TENT	-0.43	0.23	0.05	SWAM	ACC + HS	Research
Wahl, 2017	RUN LIGHT	-0.10	0.22	0.05	SWAM	ACC + HS	Research
Wahl, 2017	RUN MODERAT E	-0.59	0.23	0.05	SWAM	ACC + HS	Research
Wahl, 2017	RUN OUTDOOR	-0.70	0.33	0.11	SWAM	ACC + HS	Research
Wahl, 2017	RUN VIGOROUS	-0.85	0.25	0.06	SWAM	ACC + HS	Research
Wahl, 2017	AMBULAT ION	-1.12	0.38	0.15	WPO	ACC	Commercia l
Wahl, 2017	RUN INTERMIT TENT	-1.86	0.51	0.26	WPO	ACC	Commercia I
Wahl, 2017	RUN LIGHT	0.12	0.29	0.08	WPO	ACC	Commercia I
Wahl, 2017	RUN MODERAT E	0.04	0.29	0.08	WPO	ACC	Commercia l
Wahl, 2017	RUN OUTDOOR	-0.15	0.29	0.08	WPO	ACC	Commercia l
Wahl, 2017	RUN VIGOROUS	-0.27	0.30	0.09	WPO	ACC	Commercia l
Wallen 2016	AEE	-2.44	0.27	0.07	AW	ACC + HR	Commercia l
Wallen 2016	AEE	-0.80	0.16	0.03	FCHR	ACC + HR	Commercia l
Wallen 2016	AEE	-1.19	0.28	0.08	MA	HR	Commercia l
Wallen 2016	AEE	-0.54	0.16	0.03	SG	ACC + HR	Commercia I
Woodman, 2017	AMBULAT ION	2.25	0.34	0.12	BP	ACC + HR + HS	Commercia I
Woodman, 2017	AMBULAT ION UPHILL MODERAT E	0.73	0.20	0.04	BP	ACC + HR + HS	Commercia I
Woodman, 2017	BIKE LIGHT	-0.45	0.20	0.04	BP	ACC + HR + HS	Commercia l
Woodman, 2017	BIKE MODERAT E	-1.01	0.23	0.05	BP	ACC + HR + HS	Commercia l
Woodman, 2017	COMPUTE R	-0.37	0.20	0.04	BP	ACC + HR + HS	Commercia I

Woodman,	HOUSEHO	-0.78	0.22	0.05	BP	ACC + HR	Commercia
2017 Woodman, 2017	LD RUN	0.20	0.16	0.03	BP	+ HS ACC + HR + HS	l Commercia l
Woodman, 2017	SEATED	0.03	0.19	0.04	BP	ACC + HR + HS	Commercia
Woodman, 2017	SEDENTA RY	-0.97	0.23	0.05	BP	ACC + HR + HS	Commercia I
Woodman, 2017	STAIRS	0.49	0.19	0.04	BP	ACC + HR + HS	Commercia l
Woodman, 2017	SWEEP	-1.80	0.31	0.10	BP	ACC + HR + HS	Commercia I
Woodman, 2017	AMBULAT ION	-1.36	0.23	0.05	GVF	ACC	Commercia I
Woodman, 2017	AMBULAT ION UPHILL MODERAT E	-2.84	0.38	0.14	GVF	ACC	Commercia l
Woodman, 2017	BIKE LIGHT	-6.59	0.84	0.71	GVF	ACC	Commercia I
Woodman, 2017	BIKE MODERAT E	-0.80	0.19	0.04	GVF	ACC	Commercia I
Woodman, 2017	COMPUTE R	-0.27	0.17	0.03	GVF	ACC	Commercia I
Woodman, 2017	HOUSEHO LD	-2.31	0.32	0.10	GVF	ACC	Commercia I
Woodman, 2017	RUN	-0.98	0.28	0.08	GVF	ACC	Commercia I
Woodman, 2017	SEATED	-1.21	0.22	0.05	GVF	ACC	Commercia I
Woodman, 2017	SEDENTA RY	-0.32	0.17	0.03	GVF	ACC	Commercia I
Woodman, 2017	STAIRS	-4.16	0.53	0.28	GVF	ACC	Commercia l
Woodman, 2017	SWEEP	-2.18	0.31	0.10	GVF	ACC	Commercia l
Woodman, 2017	AMBULAT ION	-1.88	0.24	0.06	WP	ACC	Commercia I
Woodman, 2017	AMBULAT ION UPHILL MODERAT E	-2.80	0.32	0.10	WP	ACC	Commercia I
Woodman, 2017	BIKE LIGHT	-5.53	0.61	0.38	WP	ACC	Commercia I
Woodman, 2017	BIKE MODERAT E	-2.25	0.28	0.08	WP	ACC	Commercia I
Woodman, 2017	COMPUTE R	1.94	0.25	0.06	WP	ACC	Commercia I
Woodman, 2017	HOUSEHO LD	-0.83	0.17	0.03	WP	ACC	Commercia l
Woodman, 2017	RUN	-2.37	0.30	0.09	WP	ACC	Commercia l
Woodman, 2017	SEATED	-1.41	0.20	0.04	WP	ACC	Commercia I

Woodman, 2017	SEDENTA RY	-1.05	0.18	0.03	WP	ACC	Commercia l
Woodman, 2017	STAIRS	-3.47	0.39	0.15	WP	ACC	Commercia I
Woodman, 2017	SWEEP	-1.76	0.23	0.05	WP	ACC	Commercia l

991

S7:

<i>S</i> 7:												
			Heteroge neity		Effect size				Publica tion bias			
Overall activitie s												
		n	I-squared (between studies)	P- val ue	Hedg es'g (95% CI)	Lo wer Lim it	Up per limi t	P- val ue	Egger's interce pt	Low er limit	Upp er limi t	P- Valu e
	ACT	1.00	0.00	1.0 0	0.56	- 0.46	1.5 8	0.2 8				
	AGT3X	1.00	0.00	1.0 0	-0.35	- 1.42	0.7 3	0.5 3				
	AW	4.00	97.30	0.0 0	-0.43	- 0.97	0.1 0	0.1 1	-19.41	- 65.7 6	26.9 4	0.21
	AWS2	1.00	0.00	1.0 0	1.58	0.45	2.7 0	0.0 1				
	BA	1.00	0.00	1.0 0	-0.49	- 1.61	0.6 4	0.4 0				
	BB1	1.00	0.00	1.0 0	-1.37	- 2.42	- 0.3 1	0.0 1				
	BMC	4.00	87.47	$\begin{array}{c} 0.0 \\ 0 \end{array}$	-0.12	- 0.64	0.4 0	0.6 5	-2.60	- 30.9 5	25.7 4	0.73
	BP	1.00	0.00	1.0 0	-0.15	- 1.25	0.9 4	0.7 8		C		
	EP	1.00	0.00	1.0 0	-0.28	- 1.34	0.7 8	0.6 0				
	EPUL	1.00	0.00	1.0 0	-0.18	- 1.24	0.8	0.7 4				
	FB	1.00	0.00	1.0 0	-0.51	- 1.57	0.5 4	4 0.3 4				
	FC	2.00	74.54	0.0	-0.02	-	0.7	0.9				
	FC2	1.00	0.00	5 1.0	-0.62	0.79	5 0.4	5 0.2				
	FCHR	6.00	89.06	0 0.0 0	0.13	1.70 - 0.31	5 0.5 6	6 0.5 7	-2.32	- 20.2 6	15.6 2	0.74
	FF	5.00	94.80	$\begin{array}{c} 0.0 \\ 0 \end{array}$	0.27	- 0.20	0.7 4	0.2 6	13.81	-4.45	32.0 7	0.09
	GF225	1.00	0.00	0 1.0 0	1.04	0.20	4 2.0 8	6 0.0 5			1	
	GF920X T	1.00	0.00	1.0 0	-0.31	- 1.41	0.7 9	0.5 8				

GVA	1.00	0.00	1.0 0	0.19	- 0.91	1.2 9	0.7 4				
GVF	5.00	79.33	0.0 0	-1.09	-	- 0.5	0.0 0	-11.66	- 24.7 5	1.42	0.06
GVHR	1.00	0.00	1.0 0	0.40	- 0.66	1.4 6	0.4 6		5		
GVS	1.00	0.00	1.0 0	0.13	- 0.97	1.2 3	0.8 1				
JU	4.00	73.04	0.0 1	-0.13	- 0.66	0.3 9	0.6 2	2.81	-7.67	13.2 8	0.37
JU24	3.00	66.91	0.0 5	-1.16	- 1.78	- 0.5 4	$\begin{array}{c} 0.0 \\ 0 \end{array}$	1.15	- 71.7 5	74.0 5	0.87
LC	1.00	0.00	1.0 0	-0.05	- 1.26	1.1 5	0.9 3		-		
MA	1.00	0.00	1.0 0	-1.19	- 2.34	- 0.0 5	0.0 4				
MB	1.00	0.00	1.0 0	-1.48	- 2.64	- 0.3 1	0.0 1				
MS	1.00	0.00	1.0 0	-0.14	- 1.26	0.9 8	$\begin{array}{c} 0.8 \\ 0 \end{array}$				
NF	3.00	25.44	0.2 6	-0.12	- 0.72	0.4 8	0.6 9	-1.04	- 43.0 9	41.0 0	0.80
PA360	1.00	0.00	1.0 0	0.80	- 0.27	1.8 8	0.1 4				
PL	1.00	0.00	1.0 0	0.23	- 0.85	1.3 2	0.6 7				
Polar AW200	1.00	0.00	1.0 0	-0.69	- 1.73	0.3 5	0.1 9				
SG	1.00	0.00	1.0 0	-0.54	- 1.59	0.5 1	0.3 1				
SWA	12.0 0	87.57	$\begin{array}{c} 0.0 \\ 0 \end{array}$	-0.12	- 0.43	0.1 9	0.4 5	-1.11	-6.72	4.49	0.67
SWA p2	7.00	94.47	$\begin{array}{c} 0.0 \\ 0 \end{array}$	-0.17	- 0.57		0.3 9	-2.05	- 16.3 7	12.2 6	0.73
SWA p3	12.0 0	93.03	$\begin{array}{c} 0.0\\ 0 \end{array}$	-0.32	- 0.62	- 0.0 1	0.0 4	-0.49	-8.81	7.82	0.89
SWAM	9.00	91.19	$\begin{array}{c} 0.0 \\ 0 \end{array}$	0.02	- 0.33	0.3 7	0.9 0	2.30	-8.15	12.7 6	0.61
TT	1.00	0.00	1.0 0	0.67	- 0.40	1.7 3	0.2 2				
V	1.00	0.00	1.0 0	-0.47	- 1.51	0.5 7	0.3 8				
WP	1.00	0.00	1.0 0	-1.95	- 3.12	- 0.7 8	$\begin{array}{c} 0.0\\ 0 \end{array}$				
WPO	2.00	71.58	0.0 6	-0.97	- 1.77	- 0.1 6	0.0 2				
Between			0.0								
			0								

	Overall	104. 00	92.18		-0.23	- 0.44	- 0.0 3	0.0 3				
E												
		n	I-squared (between studies)	P- val ue	Effect size (Hedg es' g) (95% CI)	Lo wer Lim it	Up per limi t	P- val ue				
	ACT	1.00	0.00	1.0	0.56	-	1.7	0.3				
	AW	1.00	0.00	0 1.0 0	-2.44	0.61 - 3.71	3 - 1.1	5 0.0 0				
	AWS2	1.00	0.00	1.0	1.46	0.21	8 2.7	0.0				
	BB1	1.00	0.00	0 1.0 0	-1.37	- 2.57	1 - 0.1 7	2 0.0 3				
	BMC	3.00	92.83	0.0 0	-0.38	- 1.06	0.3 0	0.2 8	-8.62	- 94.1 8	76.9 4	0.42
	FB	1.00	0.00	1.0 0	-0.12	- 1.32	1.0 8	0.8 5		Ū		
	FC2	1.00	0.00	1.0 0	-0.20	- 1.40	1.0 1	0.7 5				
	FCHR	1.00	0.00	1.0 0	-0.80	- 1.99	0.3 9	0.1 9				
	FF	1.00	0.00	1.0 0	-0.65	- 1.82	0.5 2	0.2 8				
	GVHR	1.00	0.00	1.0 0	0.65	- 0.56	1.8 6	0.2 9				
	JU	2.00	47.50	0.1 7	-0.46	- 1.28	0.3 7	0.2 8				
	JU24	1.00	0.00	1.0 0	-1.30	- 2.48	- 0.1 2	0.0 3				
	MA	1.00	0.00	1.0 0	-1.19	- 2.47	0.0 8	0.0 7				
	NF	3.00	89.88	0.0 0	-0.31	- 0.99	0.3 7	0.3 8	-5.94	- 91.5 5	99.6 5	0.53
	PA360	1.00	0.00	1.0 0	1.01	- 0.22	2.2 4	0.1 1		-		
	SG	1.00	0.00	1.0 0	-0.54	- 1.73	0.6 5	0.3 8				
	SWA	5.00	97.12	0.0 0	-0.10	- 0.63	0.4 3	0.7 1	-12.22	- 233. 83	209. 39	0.61

AEE

	SWA p2	3.00	64.19	0.0 6	-0.78	- 1.48	- 0.0 8	0.0 3	-1.93	- 90.6 0	86.7 5	0.82
	SWA p3	2.00	97.87	$\begin{array}{c} 0.0 \\ 0 \end{array}$	-0.81	- 1.67	0.0 5	0.0 6		Ū		
	SWAM	3.00	91.43	0.0 0	0.12	- 0.55	0.8 0	0.7 2	34.56	- 115. 76	184. 88	0.21
	TT	1.00	0.00	1.0 0	0.57	- 0.64	1.7 7	0.3 6				
	Between			0.0								
	Overall	35.0 0	94.96	0	-0.34	- 0.71	0.0 4	0.0 8				
Ambula tion and stairs		U				0.71	-	0				
		n	I-squared (between studies)	P- val ue	Effect size (Hedg es' g) (95% CI)	Lo wer Lim it	Up per limi t	P- val ue				
	AGT3X	1.00	0.00	1.0	-0.35	-	0.8	0.5				
	AW	3.00	78.96	0 0.0	0.00	1.50 -	1 0.6	6 1.0	-10.13	-	48.1	0.27
				1		0.65	5	0		68.3 7	1	
	BA	1.00	0.00	1.0 0	0.14	- 1.02	1.3 1	0.8 1				
	BMC	2.00	0.00	0.3 6	0.05	- 0.75	0.8 5	0.9 0				
	BP	1.00	0.00	1.0 0	1.15	- 0.04	2.3 5	0.0 6				
	EPUL	1.00	0.00	1.0 0	-0.35	- 1.50	0.8	0.5 5				
	FC	2.00	87.37	0.0 0	0.61	- 0.23	1.4 5	0.1 5				
	FCHR	5.00	76.12	0.0 0	0.78		1.2 9	0.0 0	1.63	- 11.5 4	14.7 9	0.72
	FF	3.00	82.83	0.0 0	1.10	0.43	1.7 7	$\begin{array}{c} 0.0 \\ 0 \end{array}$	5.87	- 37.1 8	48.9 3	0.33
	GF225	1.00	0.00	1.0 0	0.87	- 0.24	1.9 8	0.1 2				
	GF920X T	1.00	0.00	1.0 0	-0.50	- 1.68	0.6 7	0.4 0				
	GVA	1.00	0.00	1.0 0	-0.16	- 1.33	1.0 0	0.7 8				
	GVF	4.00	91.90	0.0 0	-1.24	- 1.86	- 0.6 2	0.0 0	-13.76	- 19.7 2	- 7.80	0.01
	GVS	1.00	0.00	1.0 0	-0.10	- 1.26	1.0 7	0.8 7				

	JU	3.00	83.19	$\begin{array}{c} 0.0\\ 0 \end{array}$	0.31	- 0.34	0.9 5	0.3 5	-9.01	- 165. 97	147. 94	0.60
	JU24	1.00	0.00	1.0 0	-0.09	- 1.23	1.0 4	0.8 7				
	MB	1.00	0.00	1.0 0	-2.36	3.67	- 1.0 5	0.0 0				
	NF	1.00	0.00	1.0 0	-0.08	- 1.21	1.0 4	0.8 8				
	PL	1.00	0.00	1.0 0	0.36	- 0.81	1.5 3	0.5 4				
	Polar AW200	1.00	0.00	1.0 0	-0.69	- 1.81	0.4 3	0.2 3				
	SWA	5.00	95.95	0.0 0	0.79	0.25	1.3 3	0.0 0	9.82	1.24	20.8 8	0.07
	SWA p2	2.00	96.06	0.0 0	0.18	- 0.63	0.9 9	0.6 7			0	
	SWA p3	5.00	93.40	0.0 0	0.20	- 0.32	9 0.7 1	0.4 6	6.93	- 13.2 5	27.1 1	0.35
	SWAM	5.00	81.80	$\begin{array}{c} 0.0 \\ 0 \end{array}$	0.43	- 0.09	0.9 4	0.1 0	-3.29	- 18.4 0	11.8 1	0.54
	V	1.00	0.00	1.0 0	-1.42	- 2.58	- 0.2 7	0.0 2		Ū		
	WP	1.00	0.00	1.0 0	-2.72	- 3.98	- 1.4 6	$\begin{array}{c} 0.0\\ 0 \end{array}$				
	WPO	1.00	0.00	1.0 0	-1.12	- 2.44	0.2 0	0.1 0				
	Between			0.0 0								
Cycling	Overall	55.0 0	93.74	0	-0.09	- 0.45	0.2 7	0.6 2				
Cycinig		n	I-squared (between studies)	P- val ue	Effect size (Hedg es' g) (95% CI)	Lo wer Lim it	Up per limi t	P- val ue				
	AW	1.00	0.00	1.0	-0.09	-	1.3	0.9				
	AWS2	1.00	0.00	0 1.0 0	1.70	1.54 0.18	5 3.2 1	0 0.0 3				
	BMC	1.00	0.00	1.0 0	-0.53	- 1.98	0.9 2	0.4 7				
	BP	1.00	0.00	0 1.0 0	-0.73	- 2.21	2 0.7 4	0.3 3				
	FB	1.00	0.00	1.0 0	-0.91	- 2.36	0.5 5	0.2 2				
	FC2	1.00	0.00	1.0 0	-1.05	- 2.53	0.4 3	2 0.1 6				
	FCHR	2.00	97.72	0.0 0	-0.76	- 1.83	0.3 1	0.1 6				

	GVF	1.00	0.00	1.0 0	-3.70	- 5.55	- 1.8 4	$\begin{array}{c} 0.0 \\ 0 \end{array}$				
	GVHR	1.00	0.00	1.0 0	0.15	- 1.30	1.6 0	0.8 4				
	JU24	1.00	0.00	1.0 0	-3.67	- 5.28	- 2.0 5	$\begin{array}{c} 0.0 \\ 0 \end{array}$				
	MB	1.00	0.00	1.0 0	-0.90	- 2.38	0.5 8	0.2 3				
	PA360	1.00	0.00	1.0 0	0.60	- 0.86	2.0 6	0.4 2				
	SWA	3.00	89.39	0.0 0	-0.60	- 1.45	0.2 5	0.1 7	-15.80	- 409. 77	378. 16	0.70
	SWA p2	1.00	0.00	1.0 0	0.54	- 0.92	1.9 9	0.4 7				
	SWA p3	3.00	54.95	0.1 1	-0.54	- 1.38	0.3 1	0.2 1	-6.68	- 54.8 0	41.4 3	0.32
	SWAM	1.00	0.00	1.0	-0.31	- 1.75	1.1 4	0.6 8		0		
	TT	1.00	0.00	1.0 0	0.76	- 0.70	2.2 3	0.3 1				
	WP	1.00	0.00	1.0 0	-3.89	- 5.58	- 2.1 9	$\begin{array}{c} 0.0\\ 0 \end{array}$				
	Between			0.0								
	Overall	23.0	94.74	0	-0.73	-	-	0.0				
		0				1.39	0.0 6	3				
Runnin g												
Б		n	I-squared (between studies)	P- val ue	Effect size (Hedg es' g)	Lo wer Lim it	Up per limi t	P- val ue				
	AW	2.00	94.12	0.0	0.15	-	1.0	0.7				
	BA	1.00	0.00	0 1.0	-0.61	0.70	0 0.6	3 0.3				
	BMC	2.00	94.58	0	-0.15	1.90 -	7 0.7	5 0.7				
	BP	1.00	0.00	0 1.0	0.20	1.01	1 1.4	3 0.7				
	EPUL	1.00	0.00	0 1.0	0.07	1.02	1 1.2	5 0.9 1				
	FC	2.00	88.84	0 0.0	-0.35	1.16 -	9 0.5	1 0.4 5				
	FCHR	4.00	66.80	0 0.0 3	0.50	1.23 - 0.11	4 1.1 1	0.1 1	-0.45	- 22.5 4	21.6 4	0.94
	FF	2.00	58.63	0.1 2	0.60	- 0.26	1.4 5	0.1 7				

	GF920X	1.00	0.00	1.0	-0.27	-	0.9	0.6				
	T GVA	1.00	0.00	0 1.0	0.26	1.53	9 1.5	7 0.6				
	GVF	3.00	46.39	0 0.1	-0.58	1.01 -	3 0.1	9 0.1	-5.20	-	161.	0.76
				5		1.33	7	3		171. 72	34	
	GVS	1.00	0.00	1.0 0	0.18	- 1.08	1.4 4	0.7 8				
	JU	2.00	15.55	0.2 8	0.63	- 0.24	1.5 0	0.1 6				
	JU24	1.00	0.00	1.0 0	0.92	- 0.30	2.1 3	0.1 4				
	MB	1.00	0.00	1.0 0	0.17	- 1.04	1.3 9	0.7 8				
	NF	1.00	0.00	1.0 0	0.63	- 0.59	1.8 4	0.3 1				
	PL	1.00	0.00	1.0 0	0.21	- 1.04	1.4 5	0.7 4				
	SWA	3.00	96.79	0.0 0	-0.14	- 0.89	0.6 0	4 0.7 0	-0.73	- 178. 03	176. 57	0.97
	SWA p2	1.00	0.00	1.0 0	-0.38	- 1.59	0.8 3	0.5 4		03		
	SWA p3	2.00	88.85	0.0 0	-1.34	- 2.22	- 0.4	4 0.0 0				
	SWAM	2.00	94.20	0.0	0.10	- 0.77	6 0.9 8	0.8 2				
	V	1.00	0.00	0 1.0 0	-0.23	- 1.43	0.9 8	0.7 1				
	WP	1.00	0.00	1.0 0	-2.37	- 3.68	- 1.0 6	0.0 0				
	WPO	1.00	0.00	1.0 0	-0.42	- 1.78	0.9 3	0.5 4				
	Between			0.0 4								
	Overall	38.0 0	92.05		-0.08	- 0.41	0.2 5	0.6 5				
Sedenta ry and househ old												
		n	I-squared (between studies)	P- val ue	Effect size (Hedg es'g) (95% CI)	Lo wer Lim it	Up per limi t	P- val ue				
	AW	3.00	97.07	$\begin{array}{c} 0.0\\ 0 \end{array}$	0.29	- 0.49	1.0 7	0.4 7	3.11	- 389. 99	396. 22	0.93
	BMC	2.00	85.52	0.0 1	0.52	- 0.41	1.4 5	0.2 7		22		

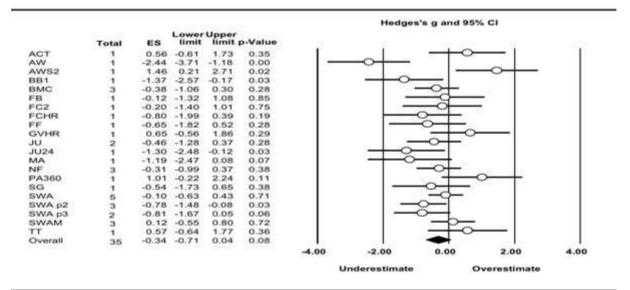
BP	1.00	0.00	1.0 0	-0.78	- 2.14	0.5 9	0.2 7				
EPUL	1.00	0.00	1.0 0	-0.31	- 1.65	1.0 2	0.6 5				
FCHR	4.00	59.60	0.0 6	-0.14	- 0.81	0.5 3	0.6 9	-0.31	- 27.4 2	26.7 9	0.96
FF	1.00	0.00	1.0 0	-0.30	- 1.62	1.0 2	0.6 6				
GF225	1.00	0.00	1.0 0	1.30	- 0.04	2.6 4	0.0 6				
GVF	1.00	0.00	1.0 0	-1.26	- 2.64	0.1 2	0.0 7				
JU	1.00	0.00	1.0 0	-0.85	- 2.20	0.5 1	0.2 2				
JU24	1.00	0.00	1.0 0	-0.94	- 2.28	0.4 0	0.1 7				
MB	1.00	0.00	1.0 0	-1.34	- 2.75	0.0 8	0.0 6				
SWA p2	2.00	0.00	0.6 0	0.71	- 0.23	1.6 4	0.1 4				
SWA p3	4.00	91.27	$\begin{array}{c} 0.0 \\ 0 \end{array}$	0.67	0.00	1.3 4	0.0 5	8.42	- 16.9 1	33.7 4	0.29
SWAM	5.00	97.42	$\begin{array}{c} 0.0 \\ 0 \end{array}$	0.04	- 0.55	0.6 3	0.9 0	22.71	- 42.4 7	87.8 9	0.35
V	1.00	0.00	1.0 0	0.00	- 1.32	1.3 2	1.0 0				
WP	1.00	0.00	1.0 0	-0.62	- 1.97	0.7 3	0.3 7				
Between			0.0 6								
Overall	30.0 0	94.84		-0.09	- 0.51	0.3 2	0.6 6				

TEE (DLW)

	n	I-squared (between studies)	P- val ue	Effect size (Hedg es' g) (95% CI)	Lo wer Lim it	Up per limi t	P- val ue
EP	1.00	0.00	1.0 0	-0.68	- 1.58	0.2 1	0.1 6
FF	1.00	0.00	1.0 0	-0.48	- 1.35	0.3 8	0.2 7
GVF	1.00	0.00	1.0 0	-1.62	- 2.63	- 0.6 2	0.0 0
JU24	1.00	0.00	1.0 0	-1.96	- 2.97	- 0.9 5	0.0 0
MS	1.00	0.00	1.0 0	-0.68	- 1.65	0.2 9	0.1 7

SWA	2.00	57.21	0.1 3	0.14	- 0.46	0.7 5	0.6 5				
SWA p2	1.00	0.00	1.0 0	-0.23	- 1.07	0.6 0	0.5 9				
SWA p3	5.00	94.20	$\begin{array}{c} 0.0 \\ 0 \end{array}$	-0.25	- 0.64	0.1 3	0.1 9	7.03	- 31.0 1	45.0 7	0.60
SWAM	2.00	0.00	0.9 9	-0.04	- 0.64	0.5 6	0.9 0				
WPO	1.00	0.00	1.0 0	-1.68	- 2.62	- 0.7 5	$\begin{array}{c} 0.0 \\ 0 \end{array}$				
Between			$\begin{array}{c} 0.0 \\ 0 \end{array}$								
Overall	16.0 0	92.71		-0.68	- 1.15	- 0.2 1	0.0 0				

993 994

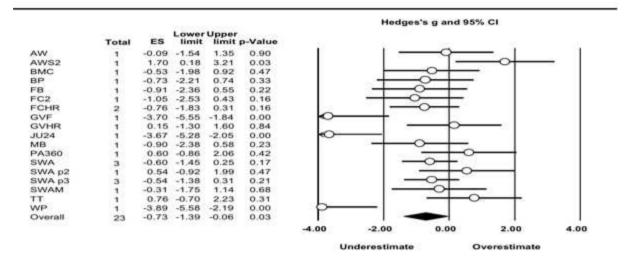

S8:

	Reporting (/11)	External validity (/3)	Internal validity (/4)
Alsubheen, 2016	10	0	4
Bai, 2017	9	0	4
Benito, 2012	8	0	4
Berntsen, 2010	9	0	4
Berntsen, 2012	9	2	4
Bhammar, 2016	11	0	4
Boudreaux, 2018	10	0	4
Brazeau, 2011	10	0	4
Brazeau, 2014	11	0	3
Brazeau, 2016	11	1	4
Brugniaux, 2010	8	1	3
Calabro, 2014	9	0	4
Calabro, 2015	11	1	4
Casiraghi, 2013	11	0	4
Choudhry, 2017	9	0	4
Colbert, 2011	10	1	3
Correa, 2016	10	0	3
Diaz, 2015	7	0	4
Diaz, 2016	9	0	4
Dondzilla, 2016	8	0	4
Dooley, 2017	10	0	4
Drenowatz, 2011	9	0	4
Erdogan, 2010	9	0	3
Fruin, 2010	9	0	3
Furlanetto, 2010	11	0	4

Gastin, 2017	8	0	4
Heiermann, 2011	8	2	4
Imboden, 2017	9	0	4
Jakicic, 2004	10	0	4
Johannsen, 2010	9	1	4
Kim, 2015	8	0	4
King, 2004	9	0	4
Koehler, 2011	10	1	4
Lee, 2011	9	0	4
Lee, 2014	9	0	4
Mackey, 2011	11	3	4
Martien, 2015	9	2	4
McMinn, 2013	9	0	4
Melanson, 2009	5	0	2
Mikulic, 2011	10	0	4
Montoye, 2017	10	0	4
Murakami, 2016	7	1	4
Nelson, 2016	10	0	4
Papazoglou, 2006	9	0	4
Price, 2017	9	0	4
Reece, 2015	9	0	4
Rousset, 2015	9	1	4
Ryan, 2013	10	0	2
Slinde, 2013	10	2	4
Smith, 2012	10	0	4
St-Onge, 2007	9	1	3
Stackpool, 2015	9	0	4
Tucker, 2015	11	0	4
Van helst, 2012	9	0	4
Van Hoye, 2014	9	0	4
Van Hoye, 2015	10	0	4
Vernillo, 2015	8	0	4
Wahl, 2017	9	0	4
Wallen 2016	9	0	4
Woodman, 2017	8	0	4

S9:

1. Is the hypothesis/aim/objective of the study clearl	y				
2. Are the main outcomes to be measured clearly describe					
3. Are the characteristics of the patients included in th	ie				
4. Are the interventions of interest clearly described?					
5. Are the funders (1) and confounders (2) of the researc	:h				
6. Are the main findings of the study clearly described?					
7. Does the study provide estimates of the random variabilit	y				
8. Have all important adverse events that may be	a				
9. Have the characteristics of patients lost been described?	,				
10. Have actual probability values been reported	1?				
11. Were the subjects asked to participate in the stud	ly				
12. Were those subjects who were prepared to participat	te				
13. Were the staff, places, and facilities where the patient	ts				
14	4				
15. Were the statistical tests used to assess the mai	n				
16. Was compliance with the intervention/s reliable?					
17. Were the main outcome measures used accurate (vali	id				
			60	80	1(



Meta Analysis AEE

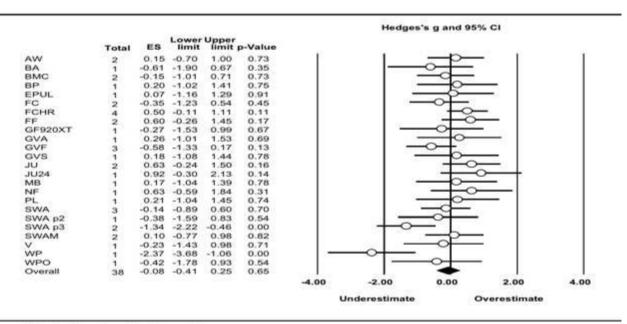
1002

1001

- 1003 Pooled Hedges' g and 95% confidence intervals (CI) for estimates of energy expenditure
- relative to criterion measures per device for AEE. Total refers to number of effect sizes. A
 negative Hedges' g statistic represents an underestimation and a positive Hedges' g
- negative Hedges' g statistic represents an underestimation and a positive Hedges' g
 represents an overestimation.
- 1007 represents an overestimatio
- 1007

Meta Analysis Cycling

1009


Pooled Hedges' g and 95% confidence intervals (CI) for estimates of energy expenditure 1010

1011

relative to criterion measures per device during cycling. Total refers to number of effect 1012 sizes. A negative Hedges' g statistic represents an underestimation and a positive Hedges' g

1013 represents an overestimation.

1014

Meta Analysis Running

1015 Pooled Hedges' g and 95% confidence intervals (CI) for estimates of energy expenditure 1016

- relative to criterion measures per device during running. Total refers to number of effect 1017
- 1018 sizes. A negative Hedges' g statistic represents an underestimation and a positive Hedges' g 1019 represents an overestimation.
- 1020