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Thermal quantum metrology in memoryless and correlated environments
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In bosonic quantum metrology, the estimate of a loss parameter is typically performed by means of pure

states, such as coherent, squeezed or entangled states, while mixed thermal probes are discarded for their infe-

rior performance. Here we show that thermal sources with suitable correlations can be engineered in such a way

to approach, or even surpass, the error scaling of coherent states in the presence of general Gaussian decoher-

ence. Our findings pave the way for practical quantum metrology with thermal sources in optical instruments

(e.g., photometers) or at different wavelengths (e.g., far infrared, microwave or X-ray) where the generation of

quantum features, such as coherence, squeezing or entanglement, may be extremely challenging.

I. INTRODUCTION

Quantum metrology [1–6] is one of the most active re-

search areas in quantum information science [7–9]. The pos-

sibility to exploit quantum resources to boost the estimation

of unknown parameters encoded in quantum states or chan-

nels is appealing for a variety of practical tasks, from gravi-

tational wave detection [10, 11] to frequency standards [12]

and clock synchronization [13, 14]. In the specific framework

of continuous-variable systems [15, 16], parameter estimation

typically involves the statistical inference of the phase [18–31]

or loss [32–37] accumulated by a bosonic mode propagating

through a Gaussian channel. For this task, Gaussian and non-

Gaussian resources have been extensively studied [6].

While the minimization of the estimation error over all

quantum strategies is crucial to show the ultimate precision

achievable by quantum mechanics, it is also important to study

practical applications to realistic scenarios, where the access

to quantum resources may be limited and the presence of de-

coherence may even destroy the quantum advantage shown

for the noiseless models. This is an important gap to fill for

bosonic systems, where previous studies on loss estimation

were devoted to finding the optimal error scaling reachable

by squeezing, entanglement or other highly non-classical fea-

tures in decoherence-free scenarios [32–34, 36].

Here we extend the state-of-the-art on bosonic loss estima-

tion in two ways. First of all, we consider the practical use of

correlated-thermal sources which can be easily engineered by

using a beam splitter. These sources are generally designed

to be asymmetric so that only a few mean photons are irra-

diated through the unknown lossy channel, while the major-

ity of them are deviated onto an ancillary channel. Thanks to

this asymmetric splitting, the lossy channel is ‘non-invasively’

probed with low energy, while enough correlations are created

with the ancillary photons to improve the final detection.

This practical scheme is relevant in various realistic sce-

narios. For instance, this is the simplest strategy to im-

prove the optical setups of photometers and spectrophotome-

ters currently employed in experimental biology. These in-

struments use thermal lamps at optical or UV wavelengths to

measure the concentration of bacteria, cells, or nucleic acids

(DNA/RNA) in fragile biological samples via an estimation

of the transmissivity [38]. Our interferometric design would

introduce correlations and greatly improve their performance.

Other important scenarios are the far infrared and mi-

crowave regimes where quantum features are hard to gen-

erate. By contrast, correlated-thermal sources can be eas-

ily generated in these cases, and could be adopted (in the

long run) to advance applications such as protein Terahertz

spectroscopy or magnetic resonance imaging. Similar im-

plications could also be envisaged at very high-frequencies,

where quasi-monochromatic X-ray beams can now be gen-

erated by small-scale all-laser-driven Compton sources with

good spatial-temporal coherence [39]. These thermal beams

could be manipulated by X-ray beam splitters based on Laue-

Bragg diffraction [40] or other X-ray interferometry [41].

Besides the focus on cheap correlated-thermal sources, the

second novelty of our work is to provide the first study of loss

estimation assuming a general model of Gaussian decoher-

ence, which includes additional loss, thermal effects and even

the possibility of environmental correlations. Thanks to this

general model, we can potentially account for many effects,

including detector inefficiencies, thermal background (which

is non-trivial at the microwave regime) and also the presence

of non-Markovian dynamics in the environment.

In such a general scenario, we fix the benchmark to be the

performance of coherent states: The generation of minimum

uncertainty states can be regarded as the minimal requirement

for a single-mode source to be considered ‘quantum’. While

the direct use of single-mode thermal sources is clearly sub-

optimal, we show that the coherent-state benchmark can easily

be achieved by two-mode thermal sources which are asym-

metric and correlated. Surprisingly, these sources are even

able to largely outperform the coherent-state benchmark when

(separable) correlations are present in the environment.

II. QUANTUM METROLOGY WITH

CORRELATED-THERMAL SOURCES

Let us start with a detailed description of the correlated-

thermal source (see also Fig. 1). We consider two single-

mode thermal states, ρH and ρL, with mean numbers of pho-

tons equal to n̄H and n̄L, respectively. These are chosen to

satisfy n̄H > n̄L and we may specifically consider n̄L = 0. The

two thermal states are combined with a generally unbalanced

beam splitter, with transmissivity η ≤ 1/2. The three parame-

ters of the source (η, n̄H and n̄L) are chosen in such a way that
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the mean number of photons transmitted on mode A, equal to

n̄ = ηn̄H + (1− η)n̄L, is fixed to some low value (e.g., n̄ = 10),

while no energetic constraint is imposed for mode B.

As mentioned above, the most interesting situation is when

the source is highly asymmetric. This means that we take

n̄H ≫ n̄L ≃ 0 and η ≪ 1, in such a way that n̄ ≃ ηn̄H is

kept small, while mode B is very energetic with ≃ n̄H pho-

tons transmitted. Locally, the reduced state ρA (ρB) is a faint

(bright) thermal state, but globally the state ρAB is highly cor-

related. One can check that the quadrature operators associ-

ated with the two modes (q̂A, p̂A, q̂B and p̂B) have covariances

〈q̂Aq̂B〉 = 〈 p̂A p̂B〉 ≃ −n̄η−1/2, whose absolute value is≫ 1.
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FIG. 1: Bosonic loss estimation with correlated-thermal sources un-

der general Gaussian decoherence. On the left we show the prepara-

tion of a two-mode thermal source ρAB which is correlated and gen-

erally asymmetric. This is prepared using a beam splitter with trans-

missivity η ≤ 1/2, which mixes a bright thermal state (with photon

number n̄H) with a faint thermal state (with photon number n̄L < n̄H).

The three parameters of the source (η, n̄H and n̄L) are chosen in such

a way that the mean number of photons n̄ on mode A is fixed to some

low value, while the energy of mode B is not constrained. On the

right, the input thermal source and an optimal output measurement

are employed for estimating the unknown transmissivity τ of the red

box (lossy channel). This is done in the presence of Gaussian deco-

herence, modelled by two beam splitters with transmissivity T0 and

injecting thermal noise with variance ω. The environmental thermal

modes E1 and E2 may be uncorrelated or correlated.

The generated thermal source ρAB(η, n̄H, n̄L) is then used

to probe a lossy channel Eτ with unknown transmissivity

τ ∈ [0, 1] on mode A. In a realistic scenario, this is affected

by decoherence, here modelled by a generally-joint Gaussian

channel D affecting both modes A and B. This can be repre-

sented by two beam splitters with transmissivity T0 mixing A

and B with ancillary modes, E1 and E2, coming from the en-

vironment. These ancillas inject thermal noise ω = n̄env+1/2,

where n̄env is the mean number of photons of the bath. Further-

more, the two environmental ancillas may also be correlated,

which means that their quadrature operators, i.e., q̂E1
, p̂E1

, q̂E2

and p̂E2
, have non-zero covariance, i.e.,

〈

q̂E1
q̂E2

〉

= g and
〈

p̂E1
p̂E2

〉

= g′, satisfying suitable constraints [42, 43] (see

Appendix C). Thus, the output Gaussian state is given by

ρout
AB

(τ) = D ◦ (Eτ ⊗ I)(ρAB).

At the output a joint quantum measurementM is performed

on modes A and B whose outcome provides an estimate of τ.

In the basic formulation of quantum metrology, this process

is assumed to be performed many times, so that a large num-

ber N ≫ 1 of input states ρ⊗N
AB

are prepared and their outputs

ρout
AB

(τ)⊗N are subject to a collective quantum measurement

M⊗N , whose output is classically processed into an unbiased

estimator τ̃N of τ. For large N, the resulting error-variance

σ2(τ,N) := 〈(τ̃N − τ)2〉 satisfies the quantum Cramer-Rao

(QCR) bound σ2(τ,N) ≥ [NH(τ)]−1, where H(τ) is the quan-

tum Fisher information (QFI) [1]. The QFI can be expressed

as H(τ) = 8(1 − F)/dτ2, where F is the quantum fidelity be-

tween the two Gaussian states ρout
AB

(τ) and ρout
AB

(τ + dτ), which

can be computed using the general formula of Ref. [44]. It is

important to note that the QCR bound can always be achieved,

asymptotically, by an optimal measurementM⊗N [1].

In the following we show the performances achievable by

our correlated-thermal sources under various assumptions for

the Gaussian decoherence model, starting from the simple

case of a pure-loss environment, to including thermal noise

and, finally, noise-correlations. These performances are com-

pared with the use of a single-mode thermal source and, most

importantly, with a coherent-state benchmark. The latter can

easily be evaluated. Considering the scenario at the right of

Fig. 1, but neglecting mode B and considering an input coher-

ent state |α〉with |α|2 = n̄ on mode A, we derive the benchmark

(see Appendix B for details)

Hcoh(τ) =
γdecn̄

τ
, γdec :=

T0

T0 + 2(1 − T0)ω
. (1)

In this formula, we can see how the error-scaling ∝ n̄/τ is

moderated by the factor γdec taking into account of the Gaus-

sian decoherence.

III. PURE-LOSS DECOHERENCE

Let us start with the simplest decoherence model, which

only considers additional damping on top of the unknown

lossy channel under estimation. In other words, we consider

the two beam splitters with T0 < 1 in a zero temperature bath

(ω = 1/2) and without noise correlations (g = g′ = 0). This is

the most typical situation at the optical regime, where thermal

background is negligible. Such a pure-loss decoherence may

be found in many scenarios. For instance, it may be the effect

of detector inefficiencies, beam spreading, or the use of fiber

components. In other cases, it may due to the typical configu-

ration of an optical instrument. For example, in a photometer,

the measure of a concentration within a sample (via its optical

transmission) is typically performed with respect to a blank

sample whose intrinsic transmissivity is known and fixed.

Let us estimate the transmissivity parameter τ by constrain-

ing the mean number of photons in the signal mode A, e.g.,

n̄ = 10, and assuming additional (known) loss in modes A and

B, e.g., quantified by T0 = 0.7. We then construct correlated-

thermal sources combining a strongly attenuated thermal state

n̄L = 10−4 ≃ 0 (approximately the vacuum state) and a ther-

mal state with n̄H = n̄η−1, where the parameter η of the beam

splitter is variable and completely describes the source. The

corresponding QFI Hη(τ) is plotted in Fig. 2, where the perfor-

mances of these sources are compared with that of the single-

mode thermal state (achievable by setting η = 1) and that of

the coherent state probes, according to Eq. (1) with γdec = T0.



3

1/2

1/10

1/100

0.0 0.2 0.4 0.6 0.8 1.0

1

10

100

H

τ

η

FIG. 2: Quantum Fisher information Hη versus transmissivity τ for

probes irradiating n̄ = 10 signal photons. We plot the performances

of the correlated-thermal source for η = 1/2, 1/10 and 1/100 (solid

red lines); larger Hη indicates better precision. These are com-

pared with the single-mode thermal state (dotted blue line) and the

coherent-state benchmark (dashed blue line, which coincides with

the solid red line for η = 1/100). Here we consider T0 = 0.7,

ω = 1/2 (zero temperature bath), and g = g′ = 0 (corresponding

to no correlations in the environment).

As we can see from Fig. 2, the correlated-thermal source

is optimal in the most asymmetric configurations, where the

beam splitter is highly unbalanced (e.g., η = 1/100) so that

strong correlations are generated between the signal mode A

and the ancillary mode B, while keeping the signal energy

low at n̄ = 10 photons. The coherent-state benchmark is

easily approached already with reasonable asymmetries (e.g.,

η = 1/10). It is remarkable that the performance achievable

by coherent photons on mode A can also be achieved by em-

ploying an equivalent number of thermal photons (as long as

they are suitably correlated with the ancillary mode B).

Note that highly-asymmetric beam splitters are typical in

X-ray interferometry. A hard X-ray beam at 25 KeV (suitable

for medical applications, such as mammography) can be split

by Silicon crystals via Laue–Bragg diffraction. For crystals of

sufficient depth ≃ 200 µm, the diffraction efficiency (reflectiv-

ity of the beam splitter) can reach values of 1/100 [40].

IV. THERMAL-LOSS DECOHERENCE

We now include the presence of thermal noise in the

decoherence process. Besides various technical imperfec-

tions (e.g., stray photons emitted by the source), this noise

may come from a natural thermal background which is non-

negligible at far infrared and microwave wavelengths. As an

example, consider the frequency of 3.5 THz. At room temper-

ature (300 K) there will be n̄env ≃ 1.33 mean thermal photons

entering the interferometric setup (via the input ports E1 and

E2 of the two beam splitters of Fig. 1). Assuming a liquid-

nitrogen temperature (77 K) for the preparation beam splitter,

we have n̄L ≃ 0.12. We then consider high loss (T0 = 0.4)

and signals with n̄ = 20 photons. As we can see from Fig. 3,

correlated-thermal sources with enough asymmetry are again

able to approach the coherent-state benchmark.
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FIG. 3: Quantum Fisher information Hη versus transmissivity τ for

probes irradiating n̄ = 20 signal photons. We plot the performances

of the correlated-thermal source with n̄L ≃ 0.12 and having η = 1/2,

1/10 and 1/100 (solid red lines); larger Hη indicates better precision.

These are compared with the single-mode thermal state (dotted blue

line) and the coherent-state benchmark (dashed blue line). Here we

consider T0 = 0.4, ω ≃ 1.33 + 1/2 (room temperature at 3.5 THz),

and g = g′ = 0 (corresponding to no correlations in the environment).

V. CORRELATED-NOISE DECOHERENCE

We finally consider noise correlations in the Gaussian en-

vironment. There may be situations, e.g., on a small scale,

where two bosonic modes experience exactly the same fluctu-

ations. In these ‘non-Markovian’ environments, we find that

our correlated-thermal sources can even beat the coherent-

state benchmark. More specifically, we consider noise-

correlations of the type g = g′ = 1/2 − ω ≤ 0, which are

maximal but still separable (i.e., the state of the environmental

ancillas E1 and E2 is not entangled). These specific environ-

mental correlations constructively combine with those of the

input two-mode thermal source in a way as to reduce the net

effect of decoherence.

Consider T0 = 0.8 and n̄env ≃ 20.34 (e.g., corresponding to

300 GHz at room temperature). We shall assume we have

correlated-thermal sources with n̄L ≃ 8.3 × 10−3 (e.g., via

a cryogenic preparation), variable η, and irradiating n̄ = 50

photons on mode A. As we can see from Fig. 4, all choices

of sources beat the coherent-state benchmark. In particular,

the best solution is the fully-symmetric thermal source with

η = 1/2, which is the most effective at counterbalancing the

specific symmetric noise of the environment. We can easily

extend this analysis to considering an environment with asym-

metric thermal noise, in which case the best performance is

achieved by asymmetric thermal sources. This is shown in

Appendix D, where we also check that the coherent bench-

mark is not beaten if the environmental correlations are of the

“positive type” g = g′ > 0, therefore not sustaining those

“negative” 〈q̂Aq̂B〉 = 〈p̂A p̂B〉 < 0 of the input correlated state.

VI. CONCLUSIONS

We have shown that thermal sources can be engineered

in such a way that their correlations may non-trivially im-

prove the performance of loss estimation in practical setups
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FIG. 4: Quantum Fisher information Hη versus transmissivity τ for

probes irradiating n̄ = 50 signal photons. We plot the performances

of the correlated-thermal source with n̄L ≃ 8.3 × 10−3 and having

η = 1/2, 1/10 and 1/100 (solid red lines); larger Hη indicates better

precision. These are compared with the single-mode thermal state

(dotted blue line) and the coherent-state benchmark (dashed blue

line). Here T0 = 0.8, ω ≃ 20.34 + 1/2 and g = g′ = 1/2 − ω.

of quantum metrology considering various scenarios of Gaus-

sian decoherence. Correlated-thermal sources with strong en-

ergetic asymmetry are able to approach the performance of

coherent state probes in Markovian (memoryless) models of

Gaussian decoherence, where the bosonic modes are affected

by independent and identical noise fluctuations. In the pres-

ence of correlated noise in the environment, as typical of

non-Markovian dynamics, we have shown that the correlated-

thermal sources can even beat the coherent state benchmark,

a feature which may be achieved by correctly combining the

types of correlations created in the source with those present

in the environment.

According to our investigations, the behavior represented

in the previous numerical examples is generic as long as the

mean number of photons on mode A is reasonably low, and the

preparation of the correlated-thermal source involves a faint

thermal state with sufficiently low thermal number n̄L (ideally,

this should be the vacuum state). One may argue that the cor-

relations employed in our sources still have a quantum com-

ponent, e.g., as quantified by quantum discord [45] (which is

exactly computable for these types of Gaussian states [46]). In

this respect, we notice that discord may be considered as the

cheapest non-classical feature to be generated in a bipartite

source. Indeed, in our case, it just corresponds to the abil-

ity of combining thermal states at a beam splitter, which just

requires sufficient spatial-temporal coherence in the bosonic

modes. Clearly, this is much less demanding than the ability

to generate minimum uncertainty states or even squeezing.

Further work includes the analysis of loss estimation with

a finite number of signals, and the design of explicit detection

strategies able to approach the theoretical performance of the

quantum Cramer-Rao bound. For the case of a pure-loss en-

vironment (ω = 1/2), we provide this study in Appendix E,

where we show that photon-counting applied to a correlated-

thermal source achieve the same energy scaling in n̄ of the

coherent-state benchmark (but with a different pre-factor).

Another potential investigation is considering adaptive

strategies for loss estimation, whose optimal perfomance is

unknown. A possible methodology to exploit is that of

channel simulation recently developed in quantum metrol-

ogy [5, 47, 48] after successful applications in quantum and

private communications [49, 50]. It would also be very in-

teresting to analyze the explicit performance of correlated-

thermal sources for practical tasks of quantum hypothesis test-

ing [51–59], such as the quantum reading of optical memo-

ries [60–73] and the quantum illumination of targets [74–81].
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Appendix A: Relations with previous literature

Previous literature on quantum metrology with bosonic sys-

tems has been devoted to the estimation of various parameters

of a Gaussian channel, including displacement, phase-shift,

loss and thermal parameters. Optimal estimation of displace-

ments was studied in Ref. [17]. Phase estimation has under-

gone an extensive analysis: Bounds on the precision of phase-

estimation using Gaussian resources were studied in Ref. [18];

optimized interferometry for phase estimation was given in

Ref. [19]; and the use of squeezing in high-sensitive interfer-

ometry was analyzed in Refs. [20–22]. Phase estimation was

also extended to the presence of decoherence, mainly phase

diffusion and photon loss. For instance, it was extended to



6

phase diffusion in Refs. [23, 24], to unitary and random linear

disturbance in Ref. [25], and to lossy optical interferometry

in Refs. [26–28], with associated general studies of quantum

metrology with uncorrelated noise [29, 30]. Phase estimation

with displaced thermal states and squeezed thermal state was

studied in Ref. [31] also considering the presence of loss.

There is relatively less literature regarding the estimation

of the loss parameter. Optimal estimation of loss in Gaus-

sian channels was studied in Ref. [32] by using single-mode

pure Gaussian states (see also Ref. [33]). This analysis was

also carried out for entangled Gaussian states in Ref. [34] and

non-Gaussian sources in Ref. [35]. All these studies were

performed in the absence of decoherence. Use of squeezing

for estimating the interaction parameter in bilinear bosonic

Hamiltonians (including beam-splitter interactions) was also

discussed in Ref. [36]. Later, Ref. [37] considered the joint

estimation of damping and temperature of a Gaussian channel

by means of Gaussian states, specifically showing the supe-

rior performances achieved by the use of entanglement over

coherent states. Note that this study considered the presence

of thermal noise directly in the single-mode Gaussian channel

under estimation, not the presence of a lossy and thermal en-

vironment (affecting signal and ancillary modes) on top of the

channel to be estimated. Finally, the detection of loss by using

squeezed thermal states (in absence of decoherence) was ana-

lyzed in the framework of quantum hypothesis testing [59].

Our work departs from all this previous literature in several

aspects. First of all, it is clearly not related with the exten-

sive literature on phase estimation, since we are considering

the loss parameter. Then, with respect to previous works on

bosonic damping estimation, we are:

(i) Engineering new correlated-type of thermal states, void of

squeezing, and never investigated before for quantum metrol-

ogy tasks. These cheap sources are important for making

quantum metrology practical, especially when considering

longer wavelengths, where quantum features are challenging

to generate.

(ii) Considering a general model of Gaussian decoherence af-

fecting both signal and ancillary modes, which may introduce

loss, thermal noise, and even two-mode correlations. It is

important to note that this type of decoherence is added on

top of the lossy channel to be estimated, and may describe

various realistic scenarios, such as the detector inefficiencies,

thermal background (e.g., at the microwaves), and potential

non-Markovian effects.

Appendix B: Coherent-state benchmark

First of all, a brief remark on the notation. We consider

quadrature operators q̂ and p̂ with canonical commutation re-

lations [q̂, p̂] = i, so that the annihilation operator corresponds

to â = (q̂ + ip̂)/
√

2 and the vacuum shot-noise is equal to

1/2. Correspondingly, the covariance matrix (CM) of a single-

mode thermal state is equal to µI, where µ = n̄ + 1/2, with

n̄ being the mean number of thermal photons. For the gen-

eral formalism of continuous-variable systems and Gaussian

states, the reader may consult the reviews of Refs. [15, 16].

Let us prepare mode A in a coherent state |α〉 with n̄ =

|α|2 mean photons. This state has mean value x̄ = (q̄, p̄)T

where α = (q̄ + ip̄)/
√

2 and covariance matrix (CM) equal

to I/2. This is subject to the action of the lossy channel Eτ
followed by that of the thermal-loss decoherence channelDA

with transmissivity T0 and thermal noise ω. At the output, the

two statistical moments of ρα(τ, T0, ω) = (DA ◦ Eτ)(|α〉 〈α|)
are given by x̄′ =

√
T0τx̄ and V′ = a′I, where

a′ :=
T0

2
+ (1 − T0)ω . (B1)

To derive the QFI, we first compute the fidelity between

ρ1 := ρα(τ, T0, ω) and ρ2 := ρα(τ+dτ, T0, ω). These two states

have the same CM V1 = V2 = a′I, and their mean values differ

by δ =
√

T0(
√
τ + dτ−

√
τ)x̄. Using the formula of Ref. [44],

it is straightforward to compute their fidelity

F(ρ1, ρ2) = exp

[

−1

4
δT (V1 + V2)−1δ

]

(B2)

= exp

[

− T0

4a′
(
√
τ + dτ −

√
τ)2n̄

]

. (B3)

Using the latter expression in

H(τ) =
8
[

1 − F(ρ1, ρ2)
]

dτ2
, (B4)

and expanding in dτ, we derive the following expression of

the quantum Fisher information (QFI)

H(τ) =
T0

T0 + 2(1 − T0)ω

n̄

τ
+ O(dτ) . (B5)

Appendix C: Correlated-thermal sources

1. Characterization

First of all, let us construct the correlated-thermal source.

We start from two single-mode thermal states, ρH and ρL,

with mean number of photons equal to n̄H and n̄L, respectively

(with n̄H > n̄L). These states have zero mean and CMs

VH = µHI, VL = µLI, (C1)

where µH(L) = n̄H(L) + 1/2. These states are taken as input of a

beam-splitter of transmissivity η. At the output modes, A and

B, we have a Gaussian state with zero mean and CM

VAB =

(

aI cI

cI bI

)

, (C2)

where

a := ηµH + (1 − η)µL , b := ηµL + (1 − η)µH , (C3)

c :=
√

η(1 − η)(µL − µH) . (C4)



7

In our study we fix n̄ = a − 1/2 = ηn̄H + (1 − η)n̄L to some

low value, and we change η to create the desired asymmetry

between modes A and B.

Note that the correlations are of the negative type c < 0.

Their (unrestricted) quantum discord can be easily quantified,

since it coincides with their Gaussian discord, according to

the results of Ref. [46].

2. Evolution

This correlated-thermal source is sent to probe the lossy

channel Eτ in the presence of general Gaussian decoherence

D. To model the latter, let us assume a more general sce-

nario than that of Fig. 1, where the two ancillary modes E1

and E2 may have different thermal noise, ω1 and ω2. In other

words, we consider an environment described by a Gaussian

state with general CM

VE1 E2
=

(

ω1I G

G ω2I

)

, G =

(

g

g′

)

. (C5)

In order to be a physical state, this CM must satisfy a set of

constraints, given by [42, 43]

|g| <
√
ω1ω2,

∣

∣

∣g′
∣

∣

∣ <
√
ω1ω2, ν

2 ≥ 1

4
(C6)

where

ν2 :=
∆ −

√

∆2 − 4 det VE1 E2

2
, ∆ = ω2

1 + ω
2
2 + 2gg′ . (C7)

Then, we have a separable state if we also impose ν̃2 ≥ 1/4,

where

ν̃2 :=
∆̃ −

√

∆̃2 − 4 det VE1 E2

2
, ∆̃ = ω2

1 + ω
2
2 − 2gg′ . (C8)

We find that, in the specific case where g = g′, the condition

|g| =
√

(2ω1 − 1)(2ω2 − 1)

2
(C9)

guarantees that the state is both physical and separable.

After the action of the lossy channel and the Gaussian envi-

ronment, the output Gaussian state ρout
AB

(τ) = D◦ (Eτ⊗I)(ρAB)

has zero mean and CM

Vout
AB(τ) =





























ã c1

ã c2

c1 b̃

c2 b̃





























, (C10)

where

ã := T0τa +
T0(1 − τ)

2
+ (1 − T0)ω1, (C11)

b̃ := T0b + (1 − T0)ω2, (C12)

c1 := T0

√
τc + (1 − T0)g, c2 := T0

√
τc + (1 − T0)g′ .

(C13)

3. Numerical computation of the quantum Fisher information

To derive the QFI, we first compute the quantum fidelity be-

tween the two (zero-mean) Gaussian states ρout
AB

(τ) and ρout
AB

(τ+

dτ). Following the notation of Ref. [44], we re-arrange the

CM (C10) according the ordering q̂A, q̂B, p̂A and p̂B, so that

Vout
AB(τ) =

(

ã c1

c1 b̃

)

⊕
(

ã c2

c2 b̃

)

. (C14)

Setting V1 = Vout
AB

(τ) and V2 = Vout
AB

(τ + dτ), we compute the

auxiliary matrix

Vaux = Ω
T (V1 + V2)−1

(

Ω

4
+ V2ΩV1

)

,

whereΩ :=

(

0 I

−I 0

)

is the symplectic form. Finally, the quan-

tum fidelity is given by [44]

F(τ) =

4

√

√

√

√

det

[

2

(√

I + 1
4
(VauxΩ)−2 + I

)

Vaux

]

det(V1 + V2)
.

The latter expression can be expanded for small dτ and re-

placed in the following formula for the QFI

H(τ) =
8 [1 − F(τ)]

dτ2
. (C15)

With this approach we can numerically derive the curves

shown in the figures of the main text.

Appendix D: Asymmetrically-correlated environment

For the sake of completeness, we consider here an exam-

ple where the environment is correlated but its ancillas intro-

duce different values of thermal noise. The scenario coincides

with that of Fig. 1 of the main text, but now we allow for a

more general Gaussian state for the environment, where the

modes E1 and E2 have thermal noise ω1 and ω2, respectively.

We then assume that the environmental state is separable with

correlations of the type

g = g′ =
−
√

(2ω1 − 1)(2ω2 − 1)

2
. (D1)

From Fig. 5 we see that, for strongly asymmetric noise

ω2 ≫ ω1, the coherent-state benchmark can only be beaten by

a sufficiently asymmetric thermal source (η = 1/100), which

sends the majority of the photons through the noisier channel.

It is important to remark that the classical benchmark is out-

performed because the “negative type” of correlations in the

environment (g = g′ < 0) tend to sustain the “negative type”

of correlations in the input thermal source (c < 0). If the envi-

ronment has the “positive type” of correlations (g = g′ > 0),

then there is a destructive effect and the classical benchmark

is not beaten. See Fig. 6.
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FIG. 5: Quantum Fisher information Hη versus transmissivity τ for

probes irradiating n̄ = 50 signal photons. We plot the performances

of the correlated-thermal source with n̄L ≃ 8.3 × 10−3 and having

η = 1/2, 1/10 and 1/100 (solid red lines); larger Hη indicates better

precision. These are compared with the single-mode thermal state

(dotted blue line) and the coherent-state benchmark (dashed blue

line). Here we consider T0 = 0.8, ω1 = 1+ 1/2, ω2 = 100 + 1/2, and

g = g′ < 0 as in Eq. (D1).

0.0 0.2 0.4 0.6 0.8 1.0

1

10

10

10

10
4

3

2Hη

1/100

τ

1/2
1/10

FIG. 6: Quantum Fisher information Hη versus transmissivity τ for

probes irradiating n̄ = 50 signal photons. As in Fig. 5 but taking

positive correlations g = g′ =
√

(2ω1 − 1)(2ω2 − 1)/2.

Appendix E: Practical receiver designs

Here we consider explicit receiver designs based on photon

counting, homodyne and heterodyne detection. We obtain an-

alytical solutions for n̄L = 0, ω1 = ω2 = 1/2, and g = g′ = 0,

in which case the CM in Eq. (C10) reads

Vout
AB(τ) =

(

1
2
+ τηn′

H
I −n′

H

√

τη(1 − η)I

−n′
H

√

τη(1 − η)I 1
2
+ (1 − η)n′

H
I

)

, (E1)

and we have defined n′
H

:= T0n̄H .

Photon-counting. The symplectic eigenvalues of the CM in

Eq. (E1) are 1
2

and 1
2
+(1+τη−η)n′

H
. This means that the state

ρout
AB

(τ) can be written as tensor product, ρout
AB

(τ) = ρout
A′ ⊗ρout

B′ (τ),

where ρout
A′ is the vacuum state of the mode A′ and ρout

B′ (τ) is a

thermal state of the mode B′ with m = (1 + τη − η)n′
H

mean

photons. Denote as A, A† and B, B† the canonical creation and

annihilation operators of the original pair of modes, and de-

note as A′, A′† and B′, B′† those of the new pair of modes.

One can easily check that

A′ = (sin θ) A − (cos θ) B, B′ = (cos θ) A + (sin θ) B, (E2)

with

cos θ = −
√

τη

1 + τη − η , sin θ =

√

1 − η
1 + τη − η . (E3)

Therefore, the state ρout
B′ (τ) can be written as

ρout
AB(τ) =

1

1 + m

∞
∑

k=0

(

m

1 + m

)k

|ψk〉〈ψk |, (E4)

where ψk is the state with k photons in the mode B′, i.e.,

|ψk〉 =
1
√

k!

(

cos θ A† + sin θ B†
)k
|0〉 (E5)

=
1
√

k!

k
∑

j=0

(

k

j

)

(

cos θ A†
) j (

sin θ B†
)k− j
|0〉 (E6)

=
1
√

k!

k
∑

j=0

(

k

j

)

√

j!(k − j)! (cos θ) j (sin θ)k− j | j, k − j〉

(E7)

=

k
∑

j=0

√

(

k

j

)

(cos θ) j (sin θ)k− j | j, k − j〉 . (E8)

From the expression in Eq. (E4) we can easily compute the

joint probability of measuring NA and NB photons, which is

P(NA,NB)

=
1

1 + m

(

m

1 + m

)NA+NB

(

NA + NB

NA

)

(cos θ)2NA (sin θ)2NB (E9)

=
1

1 + m

(

n′
H

1 + m

)NA+NB
(

NA + NB

NA

)

(τη)NA (1 − η)NB . (E10)

To compute the (classical) Fisher information associated to

this measurement (photon-counting) we first compute the log-

arithmic derivative of P(NA,NB) with respect to τ, getting

∂ log P(NA,NB)

∂τ

=
1

τ

NA[1 + (1 − η)n′
H

] − (1 + NB)τηn′
H

1 + n′
H

(1 + τη − η)
(E11)

and then we derive the Fisher information

FI = 〈
[

∂ log P(NA,NB)

∂τ

]2

〉 (E12)

=
1 + (1 − η)n′

H

1 + (1 + τη − η)n′
H

ηn′
H

τ
. (E13)

In terms of n̄ = ηnH = ηn̄H = ηn′
H
/T0 we obtain the scaling

FI =
γphcn̄

τ
, γphc :=

T0 + (1 − η)T 2
0
n̄η−1

1 + (1 + τη − η)T0n̄η−1
. (E14)

Therefore, we recover the same behaviour (up to a small cor-

rection) of the coherent-state benchmark (ideally this bench-

mark is achieved in the limit η→ 0 with n kept constant).
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Homodyne and heterodyne detection. Consider, for exam-

ple, that the q quadratures of the two modes A and B are

detected. The outcomes of the measurements are two corre-

lated Gaussian variables qA, qB with joint probability density

G(qA, qB) with CM

Vq =

(

1
2
+ τηn′

H
−n′

H

√

τη(1 − η)

−n′
H

√

τη(1 − η) 1
2
+ (1 − η)n′

H

)

. (E15)

The (classical) Fisher information of these correlated Gaus-

sian variables reads:

FI =

∫

dqAdqBG(qA, qB)

[

∂ log G(qA, qB)

∂τ

]2

. (E16)

Instead of computing this integral directly, we can exploit uni-

tary invariance and work in the modes A′, B′ in which the state

becomes a direct product and the CM is diagonal with eigen-

values 1
2

and 1
2
+ (1 + τη − η)n′

H
. We then obtain

FI =

∫

dqBG(qB)

[

∂ log G(qB)

∂τ

]2

(E17)

=
1

2













ηn′
H

1
2
+ (1 + τη − η)n′

H













2

(E18)

Similarly, for heterodyne detection we obtain the following

expression for the CM:

FI =

[

ηn′
H

1 + (1 + τη − η)n′
H

]2

. (E19)

In conclusion, we notice that both homodyne and heterodyne

detection are far from being optimal measurements.


