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Chaos and quantum-nondemolition measurements 

Stefan Weigert 
Institut f u r  Physik der Universitat Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland 

(Received 22 October 1990) 

The problem of chaotic behavior in quantum mechanics is investigated against the background of 
the theory of quantum-nondemolition (QND) measurements. The analysis is based on two relevant 
features: The outcomes of a sequence of QND measurements are unambiguously predictable, and 
these measurements actually can be performed on one single system without perturbating its time 
evolution. Consequently, QND measurements represent an appropriate framework to analyze the 
conditions for the occurrence of "deterministic randomness" in quantum systems. The general ar- 
guments are illustrated by a discussion of a quantum system with a time evolution that possesses 
nonvanishing algorithmic complexity. 

I. INTRODUCTION 

In this paper it is demonstrated that the theory of 
quantum-nondemolition (QND) measurements is an ap- 
propriate framework for the analysis of deterministic ran- 
domness in quantum systems. Within the theory of clas- 
sical mechanics the occurrence of deterministic random- 
ness, or, in other words, the existence of exponentially 
instable motion, has far-reaching consequences. To  pre- 
dict the time evolution of a chaotic system over long 
times with fixed accuracy involves exponentially increas- 
ing resources of computing time and/or storage, hence 
quickly becomes practically impossible. In quantum 
mechanics the situation is not clear cut because it is 
difficult to separate in a physically relevant manner the 
deterministic time evolution given by Schrodinger's equa- 
tion from the probabilistic element which enters 
quantum-mechanical predictions via measurements. One 
way out of this difficulty is to follow directly the time 
evolution of wave functions in computer experiments, a 
point of view put forward, e.g., by Chirikov.' Yet, the 
very consequences of possible deterministic randomness 
still have to be investigated on the level of actual mea- 
surements. It is important to note that the existence of a 
dynamic  source of unpredictability in quantum mechan- 
ics may turn out to be even more fundamental than in 
classical mechanics which, considered as a clever approx- 
imation to quantum mechanics,' is only valid for 
finite-but possibly long times. 

The consideration of Q N D  measurements in this con- 
text is promising for the following reasons. The fact that 
~ e i s e n b e r ~  operators at  different times may commute 
with themselves leads to the possibility of predicting ex- 
actly the outcomes of later measurements -not only of 
the evolution of the wave function. Furthermore an even 
closer analogy to classical mechanics arises from the pos- 
sibility of actually performing these measurements on one 
single system. This allows one to apply the concept of al- 
gorithmic complexity to the time evolution of an ap- 
propriately chosen set of basis vectors. 

This paper is organized as follows. First, some general 
aspects of classical and quantum mechanics are reviewed. 
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The subsequent discussion of classically chaotic systems 
emphasizes the intrinsic difficulty of long-time predic- 
tions in such systems. In  Sec. I11 the concept of 
quantum-nondemolition measurements is developed as 
far as it is necessary for the subsequent arguments. In  
Sec. IV it is explained that by performing quantum- 
nondemolition measurements in quantum mechanics one 
possibly faces problems which typically occur in classi- 
cally chaotic systems. These features are briefly illustrat- 
ed by the configurational quantum cat map.3 It is associ- 
ated with the motion of a charged particle in a bounded 
two-dimensional region of space which is subject to exter- 
nal time-periodic electromagnetic fields. 

11. CLASSICAL CHAOS 

A. Structure of classical and quantum mechanics 

From a general point of view dynamical theories in 
physics consist of three parts. First of all a particular set 
of "states" is defined corresponding to all possible states 
of the physical system to be modeled. Secondly, a group 
of deterministic automorphisms of the state space is 
postulated-also called a flow in state space- which 
aims at mimicking the actual time evolution of the under- 
lying physical system. (For simplicity, only autonomous 
systems are considered here.) Thirdly, a relationship of 
the statements derived from the theory to experimental 
observations has to be established, be it of deterministic 
or probabilistic type. Phenomenological theories in- 
herently containing stochastic elements are not taken into 
account. 

Within this general framework one has to answer the 
basic question of (nonstationary) physics: Given some in- 
itial state, what does the future behavior of the system 
look like? 

The spaces of states and, consequently, the explicit 
form of the groups of automorphisms called "time evolu- 
tion" are completely different in classical and quantum 
mechanics. In the former, Hamilton's equations map a 
sympletic phase space to itself, and in the latter, 
Schrodinger's equation determines the time evolution of 
rays in Hilbert space.4 Yet, in both theories one can fol- 
low exactly the path in state space which is traced out 
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deterministically in the course of time starting from an 
arbitrary initial state. Hence, on this level the structures 
of classical and quantum mechanics are similar. With 
respect to the relationship of states to possible outcomes 
of experiments, however, these theories are fundamental- 
ly different. 

Predictions stemming from classical theories are unam- 
biguous if the initial state has been defined exactly. 
Smooth phase-space densities introduce a statistical ele- 
ment and are not taken into account here. When measur- 
ing final positions and momenta of the constituents of the 
physical system (i.e., determining the phase-space point) 
one principally expects the result to be in perfect agree- 
ment with the theoretical forecast. The assumption that 
the interaction between the observer and the physical sys- 
tem during a measurement can be made arbitrarily small 
even allows one to follow the unperturbed time evolution 
of one single system by consecutive observations. 

Although the time evolution of a particular initial state 
in Hilbert space is deterministic, as a rule there is no pos- 
sibility to predict the outcome of one single observation 
from quantum theory. A large number of equivalent 
measurements on an ensemble of equally prepared sys- 
tems is necessary in order to compare theoretical predic- 
t i o z  with the bshavior of r e 1  systezs. C!ea;?rly the pro- 
babilistic nature of quantum-mechanical predictions 
strongly contrasts the deterministic character of classical 
predictions. Furthermore, it is generally impossible to 
keep track of the time evolution of a quantum system: 
Measurements change the state of the system in an 
unpredictable way rendering it useless for subsequent ob- 
servation. The system and the measuring device general- 
ly do not decouple. 

Hence, the predictive power of classical mechanics 
exceeds by far that of quantum mechanics, at least within 
its range of applicability. I t  came as a surprise then that 
predictability in classical mechanics-even for simple 
systems with a small number of degrees of freedom-has 
fundamental limits. too. 

B. Chaotic motion 

In the following, autonomous Hamiltonian systems 
with N degrees of freedom are considered. I t  turned out 
that all classical phase-space flows can be divided into 
two classes according to the way in which they permute 
phase-space points in the course of time. Loosely speak- 
ing, one can distinguish regular from chaotic behavior of 
trajectories in phase space. 

Integrable systems5 are distinguished by the fact that 
only regular-that is, quasiperiodic-motion occurs 
when the time evolution of phase-space points is con- 
sidered. A global foliation of the 2N-dimensional phase 
space into N-dimensional tori is associated with the ex- 
istence of N global constants of the motion. Hence for 
any initial state the system in its time evolution is re- 
stricted to a relatively small portion of the (2N - 1)-  

dimensional energy surface, namely, an N-dimensional 
topologically simple toroidal phase-space submanifold. 

In contrast, trajectories in nonintegrable systems prin- 
cipally may explore the full (2N - l)-dimensional energy 

surface in phase space.6 There are no conditions arising 
from the existence of constants of the motion which 
would confine the accessible phase space. Consequently 
the time evolution of such systems is much more intri- 
cate, and, typically, no simple description is available. 

A useful tool in order to measure the irregularity of or- 
bits of physical systems is the concept of algorithmic 
complexity originating from the information theory. ' It 
can be applied likewise to time-independent and time- 
dependent systems. Typically-there are exceptionss- 

the algorithmic complexity of trajectories in nonintegr- 
able systems is different from zero,9 whereas trajectories 
of integrable systems in classical mechanics have vanish- 
ing complexity. Roughly speaking, the time evolution of 
a physical system has nonvanishing complexity if the ini- 
tial conditions of an orbit have to be given with exponen- 
tial accuracy in order to maintain constant numerical ac- 
curacy of the predictions for increasing time t. This con- 
cept is closely related to the notion of the Lyapunov ex- 
ponent. 

The definition of algorithmic complexity is based on 
the analysis of computer programs. A program to calcu- 
late numerically the time evolution of a physical system is 
composed of three different parts. (i) There is an algo- 
rithrr, of fixed !mgth N ,  ir, bits vzhich star,& for the 

dynamical laws of the system under consideration. (ii) A 
certain amount of data is needed in order to specify the 
initial state of the system. The length ND(A,t)  of this 

part is not a fixed number: A prescribed accuracy A of 
the output at time t requests ND(A,t)  bits as initial data. 
(iii) Finally one has to state the tlme t at  which the pro- 
gram should stop. This requires roughly log$ bits. Algo- 
rithmic complexity of the program then is defined as its 
total length divided by t in the limit of arbitrary long 
times 

It is important to note that in the limit only ND(A,t) will 

contribute to the complexity. A linear growth of the 
inaccuracy with time t is characteristic for integrable 
systems-the resulting logarithmic t ~ m e  dependence of 
iVD(h,t)  on t does not yield positive complexity. In 
chaotic systems with Lyapunov exponents different from 
zero, i.e., in systems which are exponentially instable, the 
exponential growth of errors leads to a linear time depen- 
dence of ND(A, t )  and therefore to positive complexity. 

111. THEORY OF QND MEASUREMER-TS 

A. QND observables 

Consider a physical system described by a Hamiltonian 
which in addition may depend explicitly on time. 

Using the Heisenierg picture of quantum mechanics a 
QND observable O ( t )  is defined by the c ~ n d i t i o n ' ~  

where 'T may be a discrete or continuous set of times. 
Commuting observables possess a common set of eigen- 
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states. Therefore, havingforced the system into an eigen- 
state of the observable O by a measurement at time to, 
the outcome of a measurement of the same observable at 
%later tim? t E 1 will be an eigenstate of both operators, 
Oit,) and @it). 

A simple example of a continuous QND observable (I 
being the full time axis) is the energy A(%,@) of an arbi- 
trary autonomous system. As a constant of the motion, 
dfi/dt =0, the Hamiltonian commutes with itself at all 
times 

Obviously, having once measured the energy 2, another 
measurement of this observable at any later time t will 
find the system to be in the same eigenstate of the energy. 
It is important to note the fact that from the first mea- 
surement one can predict without any uncertainty the 
outcome of all later measurements of the same observ- 
able. These remarks likewise apply to any other constant 
of the motion. 

QND observables, however, are not necessarily con- 
stants of motion. Consider, for example, the momentum 
operator P i t )  for a one-dimensional harmonic oscillator 
of mass m = 1 and with frequency m. Its time evolution 
is given by 

p ( t )=p iO)  coswt - o x ^ ( O )  sinwt (4) 

leading to  

Consequently, for all times T E l= ( t l t = n-n /a; n E Z ] 
the commutator (5) vanishes and therefore the momen- 
tum p^( t )  is called a discrete QND observable. 

Apart from the fact that in both examples the results 
of later measurements can be predicted without any un- 
certainty it is remarkable that such measurements actual- 
ly can be performed on one single system without dis- 
turbing its time evolution. Here and in the following it is 
assumed that ideal measurements can be performed. In 
general, the state of a system_ is not changed by a mea- 
surement of the observable AAif the system already is in 
an eigenstate of the operator A. For this reason the class 
of observables described above is called "quantum non- 
demolition." 

It is a peculiar feature of the examples mentioned 
above that the states present at later times r E  'T coincide 
with those resulting from the first measurement. In prin- 
ciple, other eigenstates of the same operator are possible 
outcomes, too. This situation will be studied in some de- 
tail later on. 

The notion of a "complete set of commuting observ- 
able~" (CC01 denotes a set of observables the eieenstates 

ample of a continuous CCNO. The momentum operator 
p l t )  of the one-dimensional harmonic oscillator 
represents another CCNO being of discrete or strobos- 
copical type, however. 

B. QND measurements 

Besides the concept of QND observables, the notion of 
QND measurements turns out to be useful. It is defined 
as a sequence of preci2e measurements of a set of com- 
muting observables (O,] such that the result of each 
measurement is completely predictable from the result of 
the first measurement. l0 

QND measurements have unusual properties. The 
probabilistic character of quantum-mechanical predic- 
tions is suppressed when dealing with QND measure- 

ments. The deterministic time evolution of quantum 
states governed by the time-dependent Schrodinger equa- 
tion can be monitored on the macroscopic level without 
any perturbation of the system. Of course, one is restrict- 
ed to QND observables and possibly only stroboscopical 
observations. Another interesting feature is the fact that 
for QND measurements it is not necessary to use ensem- 
bles in order to keep track of the time evolution of the 
system. One single system is sufficient to perform QND 
measurements: the specific interaction between the sys- 
tem and apparatus does not introduce an unpredictable 
perturbation of the system. 

Suppose that for a particular physical system there ex- 
ists a CCNO which consists of stroboscopical QND ob- 
servable~ only. Performing QND measurements on this 
system leads to a situation which strongly resembles clas- 
sical mechanics. Measuring in a first experiment simul- 
taneously all observables of the CCNO completely deter- 
mines the state of the system. The results of subsequent 
measurements of the same set of observables are unambi- 
guously predictable from the initial state. The actual 
time evolution of the single system at hand can be moni- 
tored by repeated measurements which in principle do 
not perturb the state of the system. Note that these state- 
ments accordingly apply to a classical system the phase- 
space trajectory of which is observed stroboscopically. 

From one time r E  I to another time T'E I ,  the time 
evolution of a basis in Hilbert space-consisting at time 
T of the eigenfunctions of a complete set of commuting 
QND observables-is particularly simple. It is just given 
by a permutation of its elements-whereas, in general, 
superpositions of the original states occur. This can be 
seen as follows. As a unitary transformation the time 
evolution maps any basis in Hilbert space toAanother 
basis. Denote the _original CCNO by (C?;], the 
transformed set by ( 6:), and the associated bases by 

( / $ ) J and ( I $ ) I  1, respectively. The quantum- 
nondemolition condition then says 

" 
of which span the Hilbert space of the system under con- 
sideration and which allow to label uniquely all states 

[(~,~,@:II=o, ( 6 )  

with the corresponding eigenvalues. If, in addition, all that is every element of the transformed set commutes 
observables of such a set are QND observables for some with all elements o t t h e  origi%al one. Consequently, the 
set 7, this collection of observables may be called a sets of operators l@i) and {Oil have a common set of 
"complete set of commuting QND observables" (CCNO). eigenfunctions spanning the full Hilbert space of the sys- 
Any C C 0  consisting of constants of the motion is an ex- tem. Necessarily, the associated sets of basis elements of 
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both CCNO's coincide: ( $ ) ) - ( 1 y5 ) ) . The states 

( I$ ) : ) ,  however, may be labeled according to a rule 
different from that one used for the original set ( ly5 ) i  1. 
As a simple example consider a complete set o_f commyt- 
ing observables consisting of two operators, and 02. 
If the time evolution after a time At effects an exchange 
of these operators, 

the quantum-nondemolition condition obviously is 
fulfilled and the new set of eigenvectors-spanning the 
same Hilbert space-is obtained from a simple exchange 
of labels. In a time-periodic system, in the course of time 
the same permutation is applied again and again to the 
states (Schrodinger picture) or to the operators (Heisen- 
berg picture), respectively. 

Before exploiting the formal analogy between the time 
evolution of classical and quantum systems when de- 
scribed by a CCNO, the original motivation for the intro- 
duction of Q N D  measurements is briefly presented in the 
next section. 

C, Physics behind QND measurements 

Q N D  measurements1' have their origin in the problem 
of detecting gravity waves to which the earth may be sub- 
ject. The resulting classical gravitational forces on a 
macroscopic aluminum bar are extremely weak:'' the re- 
quired high precision of measurements at  first sight seems 
to be unattainable when the quantum-mechanical uncer- 
tainty relation is taken into account. Performing Q N D  

measurements, however, allows one, in principle, to 
detect arbitrarily small classical forces-even when the 
measuring device has to be treated quantum mechanical- 

ly. 
The idea behind the application of Q N D  measurements 

in this context is simple. sonsider a closed sxstem de- 
scribed by a Hamiltonian H(?,@) and assume 6 to be a 
~roboscopical  Q N D  observable. Then a measurement of 
6 at time allows us to predict exactly the result of 
measuring 6(7) at  a later time r E  7. Any actually ob- 
served deviation from the predictions necessarily must be 
attributed to an  external perturbation. Thus, the ob- 
served differences of prediction and experimental out- 
come monitor an additional "force" acting on the system. 
In principle the disturbance may be arbitrarily weak be- 
cause the predictions pertaining to the unperturbed sys- 
tem are of arbitrary precision. 

Caves et al. l 2  discuss at  length models of "antennas" 
for the detection of gravity waves and actual realizations 
thereof. Clearly, the accuracy of experiments is limited 
because of the fact that "ideal" measurements cannot be 
performed. Typically the antenna consists of an alumi- 
num bar of several tons which is treated as a quantum- 
mechanical oscillator. The coupling of the bar to the 
classical gravity waves is assumed to be linear making a 
thorough analysis of the problem feasible. l3  

IV. QND MEASUREMENTS AND CHAOS 

A. General relationship 

As shown above measurements performed with a com- 
plete set of QND observables lead to a situation which is 
similar to the observation of classical objects. Not only 
the time evolution of the quantum state is deterministic 
but also the outcomes of measurements are unambiguous- 
ly predictable. Even for one single system a sequence of 
measurements can be carried out-it is not necessary to 
use ensembles of equivalently prepared systems in order 
to  compare theoretical predictions with actual experi- 
ments. 

This particular quantum-mechanical situation where at  
first sight determinism prevails is suitable for investigat- 
ing the occurrence of deterministic randomness in quan- 
tum mechanics. The statistical properties of quantum 
mechanics are suppressed, and one can fully concentrate 
on the question whether chaotic behavior may emerge 
from the underlying deterministic time evolution in Hil- 
bert space. I t  should be clear at  this point that, in princi- 
ple, the door is open to both types of behavior, regular 
and irregular. 

In the following, discrete Q N D  observables are as- 

sumed for simplicity. Furthermore, only the determinis- 
tic transformation of the attached basis of eigenvectors in 
Hilbert space is considered-this, of course, is sufficient 
to construct the evolution of any state. 

As a first example assume the set of eigenvectors of a 
CCNO to have a finite number of elements. Any repeat- 
ed automorphism of this set will provide a periodic time 
evolution leaving no room for chaotic behavior. 

However, a continuously labeled set of (generalized) 
basis vectors may give rise to irregular behavior and, con- 
sequently, to a limitation of long-time predictions as the 
following arguments indicate. Assume the labels which 
are necessary to mark uniquely all elements of the basis 
to vary over a compact manifold r endowed with a natu- 
ral metric which should be clearly distinguished from the 
familiar Hilbert-space metric (cf. below). The determinis- 

tic time evolution from one time T E  T to the next T'E T 
induces an  automorphism of the set of basis elements 
onto itself as was shown in Sec. 111 B. If the underlying 
manifold J? of labels effectively is "stretched and folded" 
in the course of time, arbitrarily fine structures may 
evolve, a process which typically is accompanied by posi- 
tive algorithmic complexity of the time evolution. But 

this is just another way of saying that tremendous numer- 
ical efforts have to be made in order to predict reliably 
the long-time behavior of the system. "Sensitive depen- 
dence on initial conditions" will manifest itself in the 
quantum system as follows: after a few iterations of the 
automorphism basis vectors with initially close labels are 
mapped (according to the transformation of the labels) to 
other "distant" states-separated on the manifold r with 
respect to the metric of the labels. Therefore, states ini- 
tially localized with respect to the labels on the manifold 
J? will quickly be spread over a large portion of r, that is 
over the basis vectors of the CCNO. This phenomenon is 
closely analogous to  the exponentially quick distribution 
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of an initially localized phase-space density in classical 
mechanics. 

The intermediate case of an infinite but countable num- 
ber of basis elements is of physical importance but a gen- 
eral discussion seems to be quite subtle. Here only some 
arguments pertaining to this case will be sketched. As- 
sume a time evolution which periodically maps an enu- 
merable Hilbert-space basis onto itself. Formally this 
process is equivalent to a periodically repeated permuta- 
tion of the positive integers, N+.  The specification of a 
particular initial state does not require initial data 
ND(A, t )  [cf. Eq. ( l ) ]  increasing exponentially in time t. 
Therefore, in systems with a countable number of basis 
elements, this term does not give rise to positive algo- 
rithmic complexity. But in such systems algorithmic 
complexity may arise from encoding the time evolution. 
Although there is no evidence for dynamical systems pos- 
sessing this property, a short discussion of this situation 
is given for the sake of completeness. 

The number of bits needed for the specification of the 
dynamical law N A  is not necessarily a fixed number as 

was assumed above (cf. Sec. I1 B). Indeed, in order to 
prove that this term actually may give rise to positive al- 
gorithmic complexity of the underlying time evolution it 
is sufficient to show that there exist permutations of N+ 
the specification of which requires a program with posi- 
tive algorithmic complexity. This can be done as follows. 
The number of permutations of N+ may be shown to be 
uncountable by using essentially Cantor's proof of the 
nondenumerability of the real numbers. n he set of real 
numbers with zero complexity, however, is countable.' 
Consequently, there are permutations of the set N+ 

which cannot be compressed algorithmically, and this in 
turn may lead to positive algorithmic complexity of the 
time evolution of the underlying physical system. As was 
mentioned above no physical system is known for which 
algorithmic complexity stems from encoding the time 
evolution. 

The basis vectors of position operators usually carry la- 
bels defining a compact manifold if the configuration 
space of the system is bounded. The natural metric is 
then given by the spatial distance of points in 
configuration space which unambiguously correspond to 
the eigenstates under consideration. If, in addition, for a 
particular system the position operators represent a com- 
plete set of commuting quantum-nondemolition observ- 
ab le~ ,  they are suited to demonstrate the presence or ab- 
sence of deterministic randomness in the time evolution 
of the system. 

Such behavior actually exists. In the next section it is 
demonstrated that the scheme of QND measurements is 
useful in order to discuss the configurational quantum-cat 
map, a quantum system that was shown to have a time 
evolution with positive algorithmic complexity. It is in- 
teresting to note that the model to be presented is explic- 
itly time-dependent-dynamic evolution arising from 
"natural" autonomous Hamilton operators apparently 
does not permute basis elements in such a way that the 
associated map of the manifold of labels undergoes 
stretching and folding. 

It is important to be aware of the fact that QND mea- 

surements are in no way related to the formation of deter- 
ministic randomness. They only provide a framework 
where quantum-mechanical statements apply to reality 
without introducing a statistical element, thereby allow- 
ing one to isolate the phenomenon to study. Having un- 
covered the role of deterministic randomness, its conse- 
quences may be investigated in the general situation, that 
is in the presence of typical quantum-mechanical uncer- 
tainties. It is plausible to expect a simple superposition 
of both effects. 

Two points are worth mentioning before dealing with a 
specific example. First, the general scheme introduced 
above represents one possible scenario of how determinis- 
tic randomness may enter quantum mechanics. Further 
investigations have to clarify its relevance for typical sys- 
tems. The examples in the following section demonstrate 
that the formation of arbitrarily fine structures is accom- 
panied by an exponential growth of the momenta and, 
hence, the energy. Secondly, an immediate physical 
consequence of deterministic randomness in quantum 
mechanics becomes apparent: Not all systems will be 
suited a priori for monitoring small forces with QND 
measurements. An exact determination of the initial 
state is impossible; any initial inaccuracy quickly will 
predominate all subsequent measurements if the underly- 
ing dynamics shows sensitive dependence on initial condi- 
tions. In addition, any external perturbation will strongly 
influence the actual time evolution because of the ex- 
ponentially instable motion. 

B. Examples 

The configurational quantum-cat map3 provides a non- 
trivial example where chaotic behavior can be observed 
in QND measurements. The physical system underlying 
the configurational quantum-cat map consists of a 
charged particle constrained to move in a unit square of 
the (X,  ,X,) plane with periodic-boundary conditions 

(period 1) under the influence of time-dependent elec- 
tromagnetic fields. The Hamiltonian reads 

Here, A,,,(t) is a sequence of smooth kicks of period T, 
duration E ,  and height 1 / E  with E << T. /' is a constant 
2 X 2 matrix such that _C = e x p ( g  is integer hyperbolic 
and has determinant 1. The transpose of _V is denoted by 
p. Comparing (8) with - 

one can determine the vector potential A(x,t)  and the 
scalar potential 4(x,  t). It turns out14 that the associated 
magnetic field B( X, t ) is spatially uniform and directed 
along the X ,  axis, whereas the electric field E(x,t)  has 
components in the ix, ,x,)  plane only. Although it con- 
tains terms proportional to the square and the derivative 
of the kick function A,,,( t) ,  such an electric field can, in 
principle, be realized for any Jinite kick width E .  Due to 
the bilinearity of the Hamiltonian H ( x , p , t )  the classical 
as well as the quantum-mechanical model can be dis- 
cussed in full detail. 33 '4  
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The quantum-mechanical time-evolution operator 
O ( T )  over o%e perio?, the Floquet operator, consists of 
two parts: U( T )  = U,( T ) O ~ ,  representing free-particle 
motion during time intervals of length T and the kick 
transformation, respectively. Explicit calculations reveal 
that in this model the unit square, representing the com- 
pact manifold l- defined by the labels of the position 
eigenstates, undergoes a transformation which is known 
to have algorithmic complexity. In this process both mo- 
menta and energy generically grow at  an exponential 
rate. Furthermore, the spectrum of quasienergies associ- 
ated to the Floquet operator is found to be absolutely 
continuous. 

The connection with Q N D  measurements can be estab- 
lished in the following way. One complete set of observ- 
ables used to describe the system consists of the position 
operators in the Heisenberg picture, 2 ( t )  and XhZ ( t ), 
which for all times do commute 

For particular values of the kicking period, 
T = 2n / h ,  n E E, the operator OF( T )  becomes equal to 
the identity and the components of the operator 2 ( t )  
commute with themselves periodically (r,s = 1,2): 

This equation establishes that the position operators ^x( t ) 
build a C C 0  of stroboscopical Q N D  observables. The set 
of times ?-can be taken as ? - = ] t l t = ( l ~ j - , l ~ E j  corre- 
sponding to all times just before the application of the 
kicks. This approach naturally explains the importance 
of "quantum resonances," first observed by Casati 
et al. I S  

The w a r e  suppression of the free-time evolution, 
that is U,( T )  1, and the map of the position basis onto 

itself can be seen clearly in the Schrodinger picture. 
Each state is mapped according to a two-dimensional hy- 
perbolic map to another state in the unit square 

The algorithmic complexity of the quantum motion is a 
direct consequence of this relation. In  order to specify 
the time evolution of any position eigenstate one has to 
perform exactly those calculations which are necessary to 
determine orbits for the Arnold cat map16 where the unit 
square represents the phase space of a classical one- 
dimensional system. Therefore, the quantum motion of 
almost all position eigenstates and, a fortiori, of linear su- 
perpositions is algorithmically complex. I t  has been 
shown3,l4 that this system exhibits a number of features 
typical for classically irregular motion. For example, the 
exponential instability in the mapping of the 
configuration space onto itself indeed entails the evolu- 

tion of arbitrary fine structure of the wave function in the 
configuration representation. Consequently the long-time 
behavior of the wave function-and hence of all physical 
properties of the system-becomes extremely sensitive to 
an inaccurate determination of the initial state and to 
external perturbations, both of which are inevitable for 
realistic systems. 

The nonresonant time evolution, i.e., T f  2n /h ,  n E Z, 

is more complicated. In addition to the permutation of 
basis vectors rotations in Hilbert space do occur stem- 
ming from the free-time evolution of the particle. Conse- 
quently, from one time just before a kick to the next one 
has to consider the mapping of the total Hilbert space 
onto itself-basis elements are no longer permuted 
among themselves. The possibility of making Q N D  mea- 
surements is lost; the mechanism giving rise to deter- 
ministic randomness, however, still is present in the time 
evolution of the system, namely, the periodically applied 
kick transformation. This illustrates the fact that the 
possibility of Q N D  measurements is not connected to the 
(regular or irregular) time evolution but just represents a 
convenient way of tackling the problem. 

There is another example where Q N D  measurements 
have been exploited in order to investigate the occurrence 
of deterministic randomness in quantum mechanics. 
Chirikov, Izraelev, and ~ h e ~ e l ~ a n s k ~ "  introduced an 
abstract Hamiltonian system with three degrees of free- 
dom showing "true quantum chaos." The Hamiltonian is 
constructed in such a way that the time evolution of the 
wave function in configuration space-more precisely, of 
the quantum-mechanical probability distribution- 
exactly parallels the time evolution of the classical densi- 
ty in configuration space. Again, at the expense of grow- 
ing momenta the classical density develops arbitrarily 
fine structures entailing sensitive dependence on initial 
conditions. Hence, these properties also have to be attri- 
buted to the quantum system. In  this example, all three 
position operators constitute a C C 0  consisting of con- 
tinuous Q N D  observables. I t  is possible to follow the 
time evolution of a position eigenstate by (continuously) 
repeated measurements of the particle position without 
disturbing the system. 

In a paper on measurements in quantum theory Su- 
darshanI8 presents a theory having some aspects in com- 
mon with the approach developed here. Yet, the problem 
of deterministic randomness is not touched upon. 
Embedding a classical system with N degrees of freedom 
into a quantum system with 2N degrees of freedom, it is 
shown that the N pairs of canonically conjugate classical 
variables formally may be considered as 2N commuting 
position operators of an abstract quantum system. These 
2 N  commuting observables may be measured simultane- 
ously for all times. In certain circumstances-which 
translate into the condition of dealing with continuous 
Q N D  observables-the time evolution of an associated 
eigenstate can be followed by repeated measurements. 
Consequently, the time evolution of such a state related 
to a CCNO with 2N elements may be compared with the 
motion of a phase-space point of an  N-dimensional classi- 
cal system. This fact actually is exploited in the 
configurational quantum-cat map: The time evolution of 
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a two-dimensional quantum system in configuration space 
parallels that of a one-dimensional classical system in 
phase space. In contrast to Sudarshan's theory where the 
Hamilton operator is not an observable, the particular 
quantum model treated here has a natural physical inter- 
pretation. 

V. SUMMARY 

In this paper a method is presented allowing for partic- 
ular systems to separate in a physically realizable way the 
processes which determine the time evolution of quantum 
systems, namely, the deterministic evolution of states in 
Hilbert space according to Schrodinger's equation on the 
one hand and the process of measurement on the other. 
By performing measurements of a complete set of com- 
muting QND observables it is possible to create a situa- 
tion in which the intrinsic probabilistic character of 
quantum-mechanical statements is completely absent. 
This setting is appropriate to investigate the occurrence 
of deterministic randomness in the deterministic 
quantum-mechanical time evolution. As a result particu- 
lar flows containing maps of uncountable sets of basis ele- 
ments onto themselves are found to be capable of gen- 
erating algorithmically complex quantum motions. 

Equivalently one may speak of the quantum motion to be 
exponentially instable. This is demonstrated explicitly 
for the configurational quantum-cat map, the time evolu- 
tion of which in configuration space formally parallels the 
motion of Arnold's cat map known from classical 
mechanics. 

The approach introduced here indicates that a more 
general characterization of the types of deterministic 
motion in quantum systems and the conditions for their 
occurrence may possibly be achieved by investigating sys- 
tematically abstract one-to-one maps of Hilbert-space 
bases onto themselves, i.e., permutations of the basis vec- 
tors. Such a characterization should be compared with 
the hierarchy of statistical behavior for classical systems 
and may shed light on the foundations of statistical 
mechanics. 

It is a pleasure for me to thank H. Thomas for valuable 
comments on the manuscript and W. Breymann for help- 
ful discussions on various arguments given in Sec. IV A. 
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