
This is a repository copy of Compact real-valued teaching-learning based optimization with
the applications to neural network training.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/135734/

Version: Accepted Version

Article:

Yang, Z, Li, K, Guo, Y et al. (2 more authors) (2018) Compact real-valued 
teaching-learning based optimization with the applications to neural network training. 
Knowledge-Based Systems, 159. pp. 51-62. ISSN 0950-7051 

https://doi.org/10.1016/j.knosys.2018.06.004

© 2018 Elsevier B.V. This manuscript version is made available under the CC-BY-NC-ND 
4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs 
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long 
as you credit the authors, but you can’t change the article in any way or use it commercially. More 
information and the full terms of the licence here: https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Compact Real-valued Teaching-Learning Based Optimization with the Applications

to Neural Network Training

Zhile Yanga, Kang Lib, Yuanjun Guo∗a, Haiping Mac, Min Zhengd

aShenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China
bSchool of Electronic and Electrical Engineering, University of Leeds, Leeds, LS2 9JT

cDepartment of Electrical Engineering, Shaoxing University, Shaoxing, China
dShanghai Key Laboratory of Power Station Automation Technology, School of Mechatronic Engineering and Automation, Shanghai

University, Shanghai, China

Abstract

The majority of embedded systems are designed for specific applications, often associated with limited hardware resources
in order to meet various and sometime conflicting requirements such as cost, speed, size and performance. Advanced
intelligent heuristic optimization algorithms have been widely used in solving engineering problems. However, they
might not be applicable to embedded systems, which often have extremely limited memory size. In this paper, a new
compact teaching-learning based optimization method for solving global continuous problems is proposed, particularly
aiming for neural network training in portable artificial intelligent (AI) devices. Comprehensive numerical experiments
on benchmark problems and the training of two popular neural network systems verify that the new compact algorithm is
capable of maintaining the high performance while the memory requirement is significantly reduced. It offers a promising
tool for continuous optimization problems including the training of neural networks for intelligent embedded systems
with limited memory resources.

1. Introduction1

Compact embedded systems have been widely used2

in many engineering fields, from portable monitoring,3

autonomous control devices, to battery management sys-4

tems in electric vehicles. In order to meet various5

often conflicting requirements such as cost, size, speed,6

reliability and performance, embedded systems are there-7

fore often implemented with limited hardware resources.8

Many embedded systems require intelligence for system9

operation, adding that computational intelligent (CI)10

techniques are indispensable tools to achieve complex11

tasks. The majority of them require strong support12

of sufficient hardware resources. For example, neural13

network training for robot route planning, proportional-14

integral-derivative (PID) controllers design for chemical15

production processes [1], as well as the smart clustering16

for large scale multiple wireless sensor network [2], all of17

which require intelligent optimization methods. However,18

embedded systems using microprocessors like Intel MCS 5119

series, one of the most popular micro controllers used in20

the robotic systems and process control systems, has only21

128K on-chip RAM [3]. Such small memory size presents22

an extremely limited design environment in implementing23

on-board intelligent optimization algorithms.24

Compact algorithms have been an independent cluster25

relating to the estimation distribution based algorithm26

(EDA) [4]. They generate the solutions in each generation27

using a certain distribution information and improve the28

performance through the evolutionary process. It needs29

to maintain only a very limited number of particles in30

the process other than updating a group of particles31

in traditional meta-heuristic methods. The memory32

usage is therefore significantly reduced by adopting the33

compact algorithm structure. The compact algorithms are34

originated from binary compact genetic algorithms (cGA)35

[4, 5, 6], and have been extended to solve real-valued36

optimization problems [7, 8, 9, 10, 11, 12].37

Teaching-learning based optimization (TLBO) pro-38

posed in 2011 [13, 14] is a popular meta-heuristic optimiza-39

tion approach. A classroom teaching situation is mimicked40

within the particle learning strategy. The relatively41

competitive performance of TLBO and its variants have42

been verified [15, 16, 17, 18] and demonstrated in a43

number of applications [19, 20, 21, 22, 23]. The merit44

of this algorithm is claimed to be free of algorithm specific45

parameters, such as the crossover rate and the mutation46

rate in GA, and social and cognitive rates in particle47

swarm optimization (PSO), therefore significantly reduces48

the parameter tuning effort in algorithm applications.49

On the other hand, how to train neural networks (NNs)50

has been a long intractable problem due to the high51

dimensional and non-linear characteristics. A significant52

number of non-linear parameters in the neural networks53

need to be optimized. Many meta-heuristic methods54

have been adopted to optimize theses non-linear param-55

eters such as genetic algorithm (GA) [24], PSO [25, 26],56

biogeography-based optimization (BBO) [27], monarch57

Preprint submitted to Journal of Knowledge-based systems Templates June 1, 2018



butterfly optimization (MBO) [28], artificial fish swarm58

algorithm (AFSA) [29], glowworm swarm optimization59

(GSO) [30] etc. However, very few publications have60

utilized the novel and efficient TLBO method for NN61

parameter optimization. In addition, it is also a new topic62

to utilize compact algorithms to train NNs used in an63

increasing number of independent intelligent systems.64

Our previous work [31] provided a preliminary study65

of the compact TLBO but with very limited numerical66

comparison and no applications. In this paper, the67

detailed compact teaching learning optimization (cTLBO)68

is presented, where the TLBO algorithm logic is embed-69

ded into the compact structure. One solution particle70

is generated from an updated Gaussian distribution in71

each iteration and the population distribution is im-72

proved through a competition between the particle and73

a teacher. Numerical results on 32 well-known bench-74

marks are conducted. Comprehensive results show that75

the novel cTLBO method outperforms the other typical76

meta-heuristics as well as other compact algorithms by77

significantly reducing the memory storage and improving78

the optimization performance. In addition, the cTLBO79

method is adopted to train feedfoward neural network80

(FNN) and radial basis function (RBF) neural network81

for approximating various non-linear systems, and again it82

offers competitive performance in comparison with other83

counterparts.84

2. Compact Optimization85

2.1. Compact Binary Optimization86

Compact algorithm was first termed by Harik et al.87

[4, 32]. The original compact genetic algorithm design88

focuses on the crossover scheme of a binary GA. For each89

bit in a single gene (i.e. a solution), a probability number90

in a probability vector (PV) is maintained to represent91

the likelihood of 0 or 1. The evolution process will92

generate two new particles and select a winner based on93

the fitness values, then the winner will be used to update94

the probability through a bit-to-bit improvement. Ahn et95

al. [5] proposed two elitism based cGA methods, namely96

the persistent elitist cGA and nonpersistent elitist cGA.97

The winner is maintained as the global elitist in a bid to98

retain the best performer and speed up the convergence.99

Gallagher et al. [6] further designed a mutation step and100

a re-sampling step to enhance the algorithm performance.101

2.2. Compact Real-valued Optimization102

The initial cGAs are specialized for binary optimization
problems as the maintained PV corresponds to the proba-
bility of the bit in gene only for GA. For the particles, their
values have to be converted into or coded in the binary
form. It will generally require significant computational
resources and huge memory size. On the other hand,
float point number has been widely supported by Micro
control units (MCUs). Therefore, it is less difficult for the

implementation of real-valued methods in the embedded
control system. A real-valued cGA (rcGA) is proposed
by Mininno et al. [7], where the PVs are replaced by
truncated normal distributed probability density showed
in (1). The idea of this truncated function is to transfer the
original normal distributed variables ranging from [−∞,∞]
to [-1,1], through which the boundary values of variables
[a,b] could be easily linked by linear conversion from [-
1,1] as mentioned in [7]. The PDFj below denotes the
probability density function of the ith variable where erf
is the error function.

PDF i =
e
−

(x− µ [i])
2

2σ [i]
2

√

2

π

σ [i]

(

erf

(

µ [i] + 1√
2σ [i]

)

− erf

(

µ [i]− 1√
2σ [i]

)) (1)

The values in each dimension are generated from103

the corresponding PDF which are updated through a104

straightforward elite strategy illustrated in [7]. Another105

elegant property of the compact real-valued method is106

that this structure enables the integration of the compact107

algorithms with numerous meta-heuristic algorithms. The108

advantages of the small memory size necessity of compact109

algorithms and the powerful learning capability of con-110

ventional heuristic methods will be retained within such a111

structure.112

In addition to the rcGA, some other real-valued opti-113

mization methods have been proposed in association with114

the differential evolution (DE) algorithm [8, 10, 9, 33, 34],115

particle swarm optimization (PSO) [11, 35], artificial bee116

colony [36, 12], bat algorithm [37] and flower pollination117

algorithm [38] respectively. Fig.1 illustrates the process118

of cDE. In the initialization stage, the mean value µ119

and standard deviation σ of a Gaussian distribution are120

defined as the probability vector and valued as 0 and 10121

respectively according to the experimental data for the122

global continuous problem optimization. The reason for123

choosing an initial value of 10 for the standard deviation σ124

was explained in [7] that a large number of initial standard125

deviation could ensure the initial probability of the first126

generation to be uniformly distributed. A single particle127

named the elite is generated from the initial PV. Then128

the procedure proceeds to the mutation step, where 3129

new solutions are generated from PV. The difference of130

two solutions out of three are calculated and added to131

the third one to formulate a new candidate solution. A132

crossover step is then conducted where a random crossover133

rate ranging from 0 to 1 is used to determine whether the134

new solution is adopted or not in each dimension. The135

new solution is subsequently competed with its predecessor136

and the winner will be used to update the probability137

density vector (i.e. PV) by modifying the mean value µ138

and standard deviation σ as in [7]. The whole process is139

inspired from the evolutionary rule of the original DE.140

Comparative studies between the compact real-valued141

methods and conventional state-of-the-art counterparts142

2



Figure 1: Pseudo code of the compact differential evolution

show that the new cDE and cPSO both outperform the143

original methods on the majority of the test benchmarks.144

Although cDE and cPSO perform reasonably well as long145

as the algorithm specific parameters (i.e. the mutation146

factor for DE, and the cognitive and social learning147

factors for PSO) are properly tuned, the tuning of these148

parameters are however often tedious and time consuming,149

and the tuned settings often can not be generalized to150

other optimization problems. Therefore, algorithms free151

from tuning specific parameters are most attractive in152

compact algorithm design.153

3. Teaching-learning based optimization154

Teaching-learning based optimization is a recently155

proposed meta-heuristic algorithm that mimics a teaching156

and learning process [13, 14]. In TLBO, there is no157

algorithm specific parameters that need to be tuned in158

the optimizing process. This new method and its variants159

have been well adopted in solving a range of mathematical160

and engineering optimization problems including multi-161

objective optimization applications [39], medical diagnoses162

[40], power systems [19, 20, 41, 42, 43, 44, 45], and chemical163

industry[46]. The method has also been hybridized with164

the harmony search [47] and the two phases in TLBO,165

namely teaching phase and learning phase, are performed166

along with the evolutionary process.167

3.1. Teaching Phase168

Teaching phase is similar to the PSO method in which
the best solution (named as the teacher) in the population
has the overall impact on the whole population of particles
(named as the students in the TLBO). A teacher is first
selected from the class by sorting the grades (fitness
function). Then, the mean values of subject knowledges
Meani (i.e. values in each dimension) for all the students
are calculated. The value difference between the teacher Ti

3



and the mean value is further calculated and (2) is adopted
as the teacher’s instruction introduced all students.

DMi = rand1 × (Ti − TFMeani) (2)

where DMi is the value difference in the ith iteration. TF

is a teaching factor defined as either 1 or 2 presented as:

TF = round(1 + rand2(0, 1)) (3)

Subsequently, the teacher’s instruction will be exerted on
the students by adding the difference value to all the
students:

Xnew
ij = Xold

ij +DMi (4)

Xij denotes the jth student in the class during the ith169

iteration. Xnew
ij and Xold

ij are the specific ones before and170

after the learning phase. The new learners will compete171

with their predecessors and replace them if a better fitness172

value is achieved. In the teaching phase, the mutation173

factor is denoted by two random numbers: rand1 and174

rand2 for determining the learning step length DMi.175

3.2. Learning Phase176

The main purpose of the teaching phase is to guide the
students moving towards proper directions, due to which
this phase is adopt in global exploration, and however lacks
exploitation ability. Learning phase is therefore proposed
to complement and enhance the exploitation ability. In the
learning phase, each student will learn from a classmate
to speed up the convergence of the whole population. The
process of learning phase is illustrated as follows [13, 14] :

Xnew
ij =

{

Xold
ij + rand3(Xik −Xij) if f(Xik) < f(Xij)

Xold
ij + rand3(Xij −Xik) if f(Xij) < f(Xik)

(5)

where Xik is the randomly selected kth student to share177

his/her knowledge with Xij . The learning direction178

would be determined by the better performed one. In179

another word, the better student among these two will180

be subtracted by the worse one. The deviation will be181

added to the original learning candidate. Similarly, the182

new solutions will compete with the original ones, and the183

better one will remain in the population. In this phase,184

another random number rand3 is used to determine the185

mutation step in learning step.186

It is evident that the both phases in TLBO only utilize187

random numbers in determining the mutating rate. All the188

algorithm specific parameters have been eliminated and189

the whole process is now free of tuning. This advantage has190

a significant implication on the compact algorithm design.191

4. Compact Teaching-learning Algorithm192

In order to take the advantages of both the compact193

algorithm in saving memory storage and TLBO in being194

free of parameter tuning, a new compact teaching-learning195

based optimization is proposed in this section. The196

cTLBO maintains a PV for generating new particle so-197

lutions in every single iteration. This PV is formulated by198

the mean and standard deviation values for each dimension199

of the solutions. It is updated in every evolutionary200

generation by new winner solutions in the competition201

of learning process and represents the whole population202

distribution. The evolutionary logic of TLBO is integrated203

with the compact algorithm structure as illustrated in Fig.204

2.205

4.1. Initialization206

In the initialization step, n denotes the dimension207

number and t refers to the iteration time. A two-column208

PV is initialized, with the first column µt[i] representing209

the mean value of each dimension and the second column210

σt[i] standing for the standard deviation in tth generation.211

Similar to the cDE and cPSO [8, 11], they are initialized212

as 0 and 10 for all dimensions respectively according to213

the empirical test. A global optimum solution is first214

generated as the teacher followed by PV assignment.215

4.2. Compact Teaching Phase216

A compact teaching phase is designed to share the same217

logic of the original TLBO. Only one new solution is gener-218

ated from the updated Gaussian distribution represented219

by PV and is denoted as Stt. The difference between the220

mean value µt and the teacher Trt is calculated and added221

to the student, thus generating a new student Stnewt . This222

new student will compete with the teacher by comparing223

the fitness value. The winner will update the probability224

distribution density of the whole population by modifying225

the mean and standard deviation values in PV. It should226

be noted that in the equation of probability updating227

method, Np is the equivalent particle number which is228

a virtual parameter that represents the impact of each of229

the solutions on the whole population. This number could230

also be taken as the particle number in calculating the231

function evaluations.232

4.3. Compact Learning Phase233

After being updated through a learning process from234

the teacher, student interactive learning scheme is also235

introduced into the compact structure. One more new236

student is generated from PV represented as Stnew2
t . This237

second student competes with the Stnewt in the previous238

phase, sharing knowledges and generating a new student239

Stnew3
t similar as in the equation (5). The winner also240

updates the PV so as to further improve the whole241

population performance. The winner of the learning phase242

will be defined as the teacher for the next iteration. The243

global optimum will be the winner of the final iteration.244

It could be observed that the predominant distinction245

of the compact teaching phase and learning phase is246

that only two or three new solutions are used in the247

4



Figure 2: Pseudo code of the compact teaching-learning based optimization

evolutionary logic other than a population of Np students248

in each iteration, which aims to retain the compact249

structure. In the rest of the paper, the novel cTLBO250

method is tested in a number of popular benchmark251

functions and then applied to training feedforward neural252

network and RBF neural network. The corresponding253

problems and the results are also discussed and the254

proposed algorithm is well compared with other meta-255

heuristic algorithms from all respects.256

5. Benchmark Tests257

In this section, the proposed cTLBO is tested on 32258

well-known benchmark functions with 30 dimensions or259

100 dimensions [48, 49, 50]. All benchmark functions are260

shown in Table 1, where D denotes the dimension of the261

problems. In order to comprehensively compare the262

algorithm performance, several well-applied263

meta-heuristic methods including inertial weighted PSO264

(wPSO) [51], constriction factor PSO (cfPSO) [52],265

DE/rand/1 algorithm [53] and a new algorithm moth266

flame optimization [54], some state-of-the-art TLBO267

variants including the original TLBO, an elite TLBO268

(ETLBO) [55], a modified TLBO [18] (mTLBO) and a269

self-learning TLBO (SL-TLBO) [42], as well as the270

compact algorithm counterparts rcGA [7], cDE [8] and271

cPSO [11] are implemented for comparative study. It272

should be noted that the function evaluations (FES) is273

significantly different between TLBO variants and other274

meta-heuristic algorithms. This issue has been discussed275

in [15, 16]. Therefore, 2 FES are counted in each276

iteration for original TLBO, ETLBO, mTLBO and277

cTLBO, while 3 FES are counted for SL-TLBO due to an278

additional self-learning phase.279

5



280

In the algorithm tests, the particle numbers Np of each281

method are set to 30 and FES are 30,000 for f1-f16 and282

60,000 for f17-f32. The weight of the wPSO inertially283

decreases from 0.9-0.4 while the two learning coefficients284

C1 and C2 are set as 2.05 respectively. Given the same285

learning coefficients, cfPSO adopts the constrict factor as286

0.729. In the DE algorithm, the mutation rate is 0.7 and287

the cross rate is 0.9. The parameters of MFO are employed288

the same as in the original paper [54]. In terms of the elite289

number in ETLBO, an inertial factor is designed such that290

the elite number increases with the evolution as Ne = 1+291

Iter/50 where Iter is the iteration number. The weighting292

factor in self-learning phase in SL-TLBO is set as w = 3293

based on [42]. In regards to the compact algorithms, the294

parameters are referred to those defined in the original295

papers of rcGA [7], cDE [8] and cPSO [11], except for that296

the learning coefficients C1 and C2 of cPSO are set as297

2.05.298

The totally 12 different algorithms are tested on the299

32 benchmarks f1-f32 respectively, all of which are300

continuous global optimization problems. In order to make301

fair comparisons, 30 independent runs are conducted to302

eliminate the randomness impact. The mean values and303

average standard deviation values of the algorithms are304

presented in Table 2, Table 3 and Table 4, in which the305

novel cTLBO are compared with typical heuristic meth-306

ods, TLBO variants and compact algorithms respectively.307

The first number in each grid is the average mean best308

value and the next number is the standard deviations.309

From the Table 2, it could be observed that the new310

cTLBO outperforms the other four typical meta-heuristic311

algorithms on 24 out of 32 benchmarks, particularly on312

high dimensional benchmarks. For some problems such as313

Schwelfel’s Problem 1.2 in f2, f18, and f28, it is however314

outperformed by other typical methods. It should be noted315

that the FES selected in this paper is fairly small, due316

to which some of popular methods have not converged317

yet, whereas the novel cTLBO has successfully achieved318

relatively well results. Such behaviors have demonstrated319

that the novel algorithm has competitive performance.320

The reason for such good performance could be majorly321

due to the efficient logic of TLBO, which could be found322

in Table 3. In the comparison among the TLBO variants,323

Table 3 shows that though cTLBO show reasonable well324

performance, it only achieves the best results on 15 out of325

32 benchmarks and roughly half of these show the equally326

results with all or some of counterparts. It is also worth to327

notice that the cTLBO method outperforms all the others328

in f1, f9 and f25, which demonstrates the strong search329

ability for the new approach in some unimodal problems.330

On the other hand, the majority of benchmark tests on331

other problems show that the cTLBO cannot achieve the332

original performance of TLBO methods.333

The aforementioned benchmark tests for typical meth-334

ods and TLBO variants have demonstrated the compet-335

itive performance of the proposed cTLBO. Moreover, it336

FES
0 3000 6000 9000 12000 15000 18000 21000 24000 27000 30000

0

100

200

300

400

500

600 wPSO
cfPSO
DE
TLBO
MFO
ETLBO
mTLBO
SLTLBO
cPSO
cDE
rcGA
cTLBO

Figure 3: Evolutionary process of algorithms on benchmark f9

is also indispensable to compare the novel algorithm with337

other compact algorithms and investigate the potential for338

future corresponding applications. According to Table 4,339

it is clear that the cTLBO shows dominated performance340

among 32 benchmark function tests, where only 5 of them341

are outperformed by the other counterparts. In all the342

beaten tests f2, f6, f12, f16 and f18, cTLBO ranks the343

second, while in the function tests f1, f4, f5, f9, f11, f17,344

f20, f25 and f27, cTLBO method has achieved global345

optimum with no standard deviations.346

The typical performance trends of the all 12 algorithms347

for benchmarks f9 and f19 are illustrated in Fig 3 and Fig348

4. It could be easily observed from the two figures that349

all the TLBO variants converge faster than the typical350

methods, generally being able to converge within 1000351

FES. This has confirmed the fact that cTLBO method352

has successfully maintained the remarkable performance353

of TLBO logic. Among all the five TLBO variants, they354

are fairly close in terms of the converging speed. Both355

wPSO and cfPSO methods converge faster than the latest356

MFO method, however, they both are trapped at local357

minimum and produce worse results in the final process.358

The original DE/rand/1/bin method is shown to have359

better in exploitation performance. It is found to be360

converge slowly within the first 15000 FES and then speed361

up afterwards. On the other hand, the compact algorithms362

show less competitive performance, where both rcGA and363

cPSO converge fairly slowly. It should also be noted that364

the method cDE converges faster than other two methods365

and is only outperformed by cTLBO. In a result, the366

converging speed comparison of all methods has confirmed367

that the proposed cTLBO method has better exploration368

and exploitation capability.369

In terms of the memory size reduction, the memory370

storage of all the employed 12 algorithms are showed371

in Table 5. It is clear that the original DE needs to372

maintain Np slots for the optimization process while the373

memory necessity has to be doubled as 2Np for both374

6



Table 1: Test problems adopted in the paper

f1 Sphere function from [48] with boundary [−100, 100]D, D = 30;

f2 Schwefel’s problem 1.2 from [48] with boundary [−100, 100]D, D = 30;

f3 Rosenbrock function from [48] with boundary [−30, 30]D, D = 30;

f4 Ackley’s function from [48] with boundary [−32, 32]D, D = 30;

f5 Griewank function from [48] with boundary [−600, 600]D, D = 30;

f6 Rastrigin function from [48] with boundary [−5.12, 5.12]D, D = 30;

f7 Step function [48] with boundary [−100, 100]D, D = 30;

f8 Schwefel’s problem 2.21 from [48] with boundary [−100, 100]D, D = 30;

f9 Schwefel’s problem 2.22 from [48] with boundary [−10, 10]D, D = 30;

f10 Quartic function from [48] with boundary [−1.28, 1.28]D, D = 30;

f11 Shifted Sphere function from [49] with boundary [−100, 100]D, D = 30, fbias = −450;

f12 Shifted Schwelfel’s problem 1.2 from [49] with boundary [−100, 100]D, D = 30, fbias = −450;

f13 Shifted Rosenbrock function from [49] with boundary [−30, 30]D, D = 30, fbias = 390;

f14 Shifted Ackley’s function from [50] with boundary [−32, 32]D, D = 30, fbias = −450;

f15 Shifted Griewank function from [50] with with boundary [−600, 600]D, D = 30, fbias = −180;

f16 Shifted Rastrigin function from [49] with with boundary [−5, 5]D, D = 30, fbias = −330;

f17 Sphere function from [48] with boundary [−100, 100]D, D = 100;

f18 Schwefel’s problem 1.2 from [48] with boundary [−100, 100]D, D = 100;

f19 Rosenbrock function from [48] with boundary [−30, 30]D, D = 100;

f20 Ackley’s function from [48] with boundary [−32, 32]D, D = 100;

f21 Griewank function from [48] with boundary [−600, 600]D, D = 100;

f22 Rastrigin function from [48] with boundary [−5.12, 5.12]D, D = 100;

f23 Step function [48] with boundary [−100, 100]D, D = 100;

f24 Schwefel’s problem 2.21 from [48] with boundary [−100, 100]D, D = 100;

f25 Schwefel’s problem 2.22 from [48] with boundary [−10, 10]D, D = 100;

f26 Quartic function from [48] with boundary [−1.28, 1.28]D, D = 100;

f27 Shifted Sphere function from [49] with boundary [−100, 100]D, D = 100, fbias = −450;

f28 Shifted Schwelfel’s problem 1.2 from [49] with boundary [−100, 100]D, D = 100, fbias = −450;

f29 Shifted Rosenbrock function from [49] with boundary [−30, 30]D, D = 100, fbias = 390;

f30 Shifted Ackley’s function from [50] with boundary [−32, 32]D, D = 100, fbias = −450;

f31 Shifted Griewank function from [50] with with boundary [−600, 600]D, D = 100, fbias = −180;

f32 Shifted Rastrigin function from [49] with with boundary [−5, 5]D, D = 100, fbias = −330;

PSO and TLBO variants as well as the MFO method.375

The compact algorithms including rcGA, cPSO, cDE and376

cTLBO needs only 4 or 5 memory slots, where cTLBO377

only requires the memory storage for 3 new student378

particles, 1 teacher particle and 1 buffer particle slot in the379

algorithm process. Therefore, cTLBO has reduced over380

90% memory requirement from the original TLBO method381

if the particle number Np is 30. This is a significant382

improvement for implementing the optimization methods383

on memory limited embedded systems. In regards to the384

computational cost, we have normalized 30 dimension and385

100 dimension tests within a single index and utilized386

DE method as the benchmark time. It could be found387

that PSO variants and MFO both require over 1.7 folds388

executive time more than DE, while TLBO variants need389

roughly half executive time more than DE. Due to that390

all the particles are generated from the sampling scheme,391

compact algorithms inevitably require more executive time392

than typical meta-heuristic algorithms. The proposed393

cTLBO method ranks in a medium position, requiring394

over 3.5 fold exective time more than DE, which is slightly395

longer than rcGA and cPSO and shorter than cDE. Note396

7



Table 2: The comparison of cTLBO against typical optimization methods

TP wPSO cfPSO DE MFO cTLBO Rank

f1 2.337e02 ± 5.562e02 1.889e03 ± 4.361e03 8.701e-03 ± 04.611e-02 1.458e-04 ± 1.601e-03 0 ± 0 1

f2 5.854e-04 ± 8.901e-03 7.711e-03 ± 1.687e-01 7.743e-02 ± 7.420e-01 6.799e-27 ± 7.136e-26 2.623e-02 ± 2.212e-01 4

f3 1.212e04 ± 5.307e04 3.690e05 ± 1.371e06 5.058e01 ± 1.828e02 1.637e02 ± 9.099e02 4.182 e02 ± 1.396e00 1

f4 6.914e00 ± 6.644e00 1.001e01 ± 8.077e00 3.372e-02 ± 8.312e-02 1.085 e00 ± 6.389e00 8.882e-16 ± 0 1

f5 3.063e00 ± 6.781e00 1.845e01 ± 4.029e01 3.051e-02 ± 2.220e-01 1.642e-02 ± 1.065e-01 0 ± 0 1

f6 7.029e01 ± 8.891e01 1.097e02 ± 1.071e02 1.673e02 ± 2.184e02 6.600e02 ± 7.743e02 1.097e02 ± 6.244e01 2

f7 2.152e02 ± 5.061e02 1.690e03 ± 3.739e03 7.753e-02 ± 2.871e-02 1.357e-04 ± 1.121e-03 3.146e00 ± 1.489e00 3

f8 1.953e01 ± 2.155e01 2.331e01 ± 2.843e01 8.4775e00 ± 1.776e01 4.226e01 ± 4.065e01 1.467e-15 ± 6.560e-15 1

f9 7.502e00 ± 1.462e01 1.551e01 ± 2.856e01 6.795e-11 ± 2.240e-01 2.314e-04 ± 2.308e-03 0 ± 0 1

f10 1.548e01 ± 8.918e00 1.595e01 ± 7.993e00 1.336e01 ± 6.350e00 1.798e00 ± 5.459e00 8.822e00 ± 9.628e-01 2

f11 -2.348e02 ± 4.900e02 1.189e03 ± 4.112e03 -4.499e02 ± 3.312e-02 -4.499e02 ±5.484e-04 -4.500e02 ± 0 1

f12 -4.499e02 ± 9.640e-02 -4.499e02 ± 4.127e-01 -4.499e02 ± 6.871e-01 -4.500e02 ± 0 -4.499e02 ± 2.868e-02 5

f13 1.752e04 ± 5.308e04 3.723e05 ± 1.371e06 4.303e02 ± 1.828e02 5.625e02 ± 9.099e02 2.846e01 ± 1.450e00 1

f14 -4.427e02 ± 7.148e00 -4.397e02 ± 6.967e00 -4.499e02 ± 1.107e-01 -4.481e02 ± 1.025e01 -4.500e02 ± 1.271e-13 1

f15 -1.770e02 ± 5.454e01 -1.654e02 ± 3.360e01 -1.799e02 ± 4.676e-01 -1.799e02 ± 8.674e-02 -1.799e02 ± 1.233e-02 1

f16 -2.599e02 ± 9.519e01 -2.162e02 ± 1.274e02 -1.518e02 ± 1.620e02 -2.688e02 ± 9.165e02 -2.304e-02 ± 4.707e01 3

f17 8.389e03 ± 2.999e03 2.344e04 ± 3.891e03 6.573e01 ± 1.401e02 4.364e02 ± 1.092e03 0 ± 0 1

f18 5.921e-02 ± 1.468e-01 1.059e-02 ± 4.652e-02 1.890e-01 ± 3.726e-01 1.959 e-25 ± 4.589e-25 1.937e-01 ± 5.676e-01 5

f19 3.972e06 ± 2.675e06 1.146e07 ± 4.446e06 1.300e04 ± 2.307e04 6.340e05 ± 1.453e06 9.822e01 ± 1.394e00 1

f20 1.335e01 ± 2.011e00 1.443e01 ± 1.376e00 3.019e00 ± 1.022e00 9.320e00 ± 4328e00 8.882e-16 ± 0 1

f21 -1.079e02 ± 8.586e01 3.344e01 ± 1.728e02 -1.783e02 ± 3.935e00 -1.740e02 ± 3.008e01 -1.799e02 ± 3.231e-02 1

f22 1.763e02 ± 2.685e02 3.285e02 ± 4.761e02 1.989e02±5.534 e02 -4.172e01 ± 1.860e02 -1.277e02 ± 1.373e03 1

f23 9.053e03 ± 5.074e03 2.126e04 ± 5.748e03 1.455e02 ± 4.337e02 3.528e02 ± 1.060e03 1.524e01 ± 2.856e00 1

f24 3.977e01 ± 5.806e00 4.064e01 ± 6.631e00 3.829e01 ± 4.131e00 7.454e01 ± 7.855e00 8.677e-15 ± 2.378e-14 1

f25 1.430e03 ± 2.460e02 1.317e03 ± 2.826e02 8.673e01 ± 1.016e02 8.252e01 ± 5.827e01 0 ± 0 1

f26 5.690e01 ± 9.592e00 7.038e01 ± 1.264e01 4.996e01 ± 6.345e00 7.696e01 ± 2.028e01 3.770e01 ± 1.264e00 1

f27 8.173e03 ± 2.441e03 1.895e04 ± 1.228e04 -3.609e02 ± 1.607e02 4.474e01 ± 1.199e03 -4.500e02 ± 0 1

f28 -4.499e02± 7.472e-02 -4.499e02± 1.167e-01 -4.495e02± 1.103e00 -4.500e02± 0 -4.498e02 ± 9.287e-01 4

f29 3.075e06 ± 2.732e06 1.654e07 ± 9.318e06 1.028e04 ± 9.046e03 9.133e04 ± 1.580e05 4.884e02± 7.055e-01 1

f30 -4.371e02 ± 1.668e00 -4.367e02 ± 6.205e00 -4.470e02 ± 2.314e00 -4.402e02 ± 4.503e00 -4.500± 1.271e-13 1

f31 -1.079e02 ± 8.586e01 3.344e01 ± 1.728e02 -1.783e02 ± 3.935e00 -1.740e02 ± 3.008e01 -1.800e02 ± 3.231e-02 1

f32 1.763e02 ± 2.685e02 3.285e02 ± 4.761e02 1.989e02 ± 5.534e02 -4.173e01 ± 1.860e02 -1.277e02 ± 1.373e03 1

8



Table 3: The comparison of cTLBO against Other TLBO variants

TP TLBO ETLBO mTLBO SLTLBO cTLBO Rank

f1 1.247e-125 ± 3.095e-124 1.337e-170 ± 0 7.125-239 ± 0 1.376e-290 ± 0 0 ± 0 1

f2 0 ± 0 4.207e-31 ± 1.241e-29 3.717e-33 ± 1.091e-31 1.039e-208 ± 0 2.623e-02 ± 2.212e-01 5

f3 2.893e01 ± 1.986e-01 2.895e01 ± 1.562e-01 2.895e01 ± 1.436e-01 2891.e01 ± 1.636e-01 4.182 e02 ± 1.396e00 5

f4 4.086e-15 ± 5.838e-15 3.494e-15 ± 8.605e-15 3.494e-15 ± 8.605e-15 8.882 e-16 ± 0 8.882e-16 ± 0 1

f5 0 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1

f6 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1.097e02 ± 6.244e01 5

f7 5.460e00 ± 4.072e00 6.213e00 ± 3.111e00 5.931e00 ± 4.136e00 4.986e00 ± 4.303e00 3.146e00 ± 1.489e00 1

f8 4.572e-61 ± 6.343e-60 1.060e-83 ± 9.934e-83 2.209e-117 ± 4.566e-116 3.626e-147 ± 7.247e-146 1.467e-15 ± 6.560e-15 5

f9 1.593e-63 ± 1.109e-62 2.490e-85 ± 3.211e-84 2.688e-120 ± 4.562e-119 5.843e-148 ± 1.085e-146 0 ± 0 1

f10 8.981e00 ± 2.915e00 8.938e00 ± 2.490e00 9.010e00 ± 2.338e00 9.064e00 ± 2.612e00 8.822e00 ± 9.628e-01 1

f11 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 1

f12 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 -4.499e02 ± 2.868e-02 5

f13 4.189e02 ± 1.768e-01 4.189e02 ± 1.855e-01 4.189e02 ± 1.569e-01 4.189e02 ± 2.100e-01 2.846e01 ± 1.450e00 1

f14 -4.500e02 ± 2.127e-13 -4.500e02 ± 1.392e-13 -4.500e02 ± 1.504e-13 -4.500e02 ± 0 -4.500e02 ± 1.271e-13 2

f15 -1.80e02 ± 0 -1.80e02 ± 0 -1.80e02 ± 0 -1.80e02 ± 0 -1.799e02 ± 1.233e-02 5

f16 -3.300e02 ± 0 -3.300e02 ± 0 -3.300e02 ± 0 -3.300e02 ± 0 -2.304e-02 ± 4.707e01 5

f17 5.771e-258 ± 0 0 ± 0 0 ± 0 0 ± 0 0 ± 0 1

f18 9.861e-33 ± 4.401e-32 3.852e-35 ± 1.723e-34 8.875e-32 ± 3.969e-31 0 ± 0 1.937e-01 ± 5.676e-01 5

f19 9.893e01 ± 7.222e-02 9.891e01 ± 8.790e-02 9.895e01 ± 2.268e-02 9.890e01 ± 4.243e-02 9.822e01 ± 1.394e00 1

f20 3.730e-15 ± 3.178e-15 3.020e-15 ± 3.892e-15 3.730e-15 ± 3.178e-15 8.882e-16 ± 0 8.882e-16 ± 0 1

f21 -1.800e02 ± 0 -1.800e02 ± 0 -1.800e02 ± 0 -1.800e02 ± 0 -1.799e02 ± 3.231e-02 5

f22 -3.300e02 ± 0 -3.300e02 ± 0 -3.300e02 ± 0 -3.300e02 ± 0 -1.277e02 ± 1.373e03 5

f23 2.318e01 ± 1.142e00 2.371e01 ± 1.415e00 2.324e01 ± 1.670e00 2.258e01 ± 1.113e00 1.524e01 ± 2.856e00 1

f24 4.834e-126 ± 1376e-125 2.828e-171 ± 0 8.890e-240 ± 0 7.977e-299 ± 0 8.677e-15 ± 2.378e-14 5

f25 2.531e-128 ± 5.933e-128 5.523e-172 ± 0 1.149e-240 ± 0 2.884e-299 ± 0 0 ± 0 1

f26 3.837e01 ± 1.943e00 3.832e01 ± 1.406e00 3.868e01 ± 1.139e00 3.824e01 ± 1.239e01 3.770e01 ± 1.264e00 1

f27 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 1

f28 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 -4.500e02 ± 0 -4.498e02 ± 9.287e-01 5

f29 4.889e02 ± 1.098e-01 4.890e02 ± 5.026e-02 4.889e02 ± 5.132e-02 4.889e02 ± 6.301e-02 4.884e02± 7.055e-01 5

f30 -4.500e02 ± 9.846e-14 -4.500 e02 ± 8.039e-14 -4.500 e02 ± 0 -4.500 e02 ± 0 -4.500± 1.271e-13 5

f31 -1.800e02 ± 0 -1.800e02 ± 0 -1.800e02 ± 0 -1.800e02 ± 0 -1.800e02 ± 3.231e-02 5

f32 -3.300e02 ± 0 -3.300e02 ± 0 -3.300e02 ± 0 -3.300e02 ± 0 -1.277e02 ± 1.373e03 5

9



Table 4: The comparison of cTLBO against Other compact alrotighms

TP rcGA cDE cPSO cTLBO Rank

f1 2.423e04 ± 3.321e03 5.112e01 ± 2.604e02 2.013e04 ± 5.818e04 0 ± 0 1

f2 2.375e-01 ± 2.011e00 1.802e-02 ± 4.441e-01 5.400e06 ± 1.931e05 2.623e-02 ± 2.212e-01 2

f3 3.371e07 ± 3.961e07 9.408e04± 3.114e05 1.816e07 ± 3.961e07 4.182 e02 ± 1.396e00 1

f4 1.815e01 ± 7.816e-01 1.031e01 ± 4.060e00 1.626 e01 ± 5.332e00 8.882e-16 ± 0 1

f5 1.756e02 ± 6.088e01 1.448e00 ± 1.096e00 2.161e02 ±1.443 e02 0 ± 0 1

f6 2.887e02 ± 7.141e02 7.740e01± 1.861e01 1.937e02 ± 2.503e02 1.097e02 ± 6.244e01 2

f7 2.111e04 ± 8.915e03 3.412e01 ± 6.920e01 1.510e04 ± 2.918e04 3.146e00 ± 1.489e00 1

f8 6.831e01 ± 4.283e00 4.204e01± 8.772e00 5.636e01 ± 3.745e01 1.467e-15 ± 6.560e-15 1

f9 1.247e03 ± 3.037e02 3.593e00 ± 6.965e01 1.289e03 ± 5.511e03 0 ± 0 1

f10 3.299e01 ± 1.403e01 1.862e01 ± 4.037e00 2.885e01 ± 1.698e01 8.822e00 ± 9.628e-01 1

f11 2.364e03 ± 4.438e03 -2.646e02± 2.902 e02 1.821e04 ± 2.488e04 -4.500e02 ± 0 1

f12 -4.498e02 ± 5.071e-01 -4.500e02 ± 0 6.040e03 ± 2.903e04 -4.499e02 ± 2.868e-02 2

f13 3.621e07 ± 4.591e07 2.185e05± 5.383e05 2.446e07 ± 3.675e07 2.846e01 ± 1.450e00 1

f14 -4.314e02 ± 1.258e00 -4.403e02± 4.873e00 -4.330e02 ± 9.824e00 -4.500e02 ± 1.271e-13 1

f15 2.271e01 ± 6.438e01 -1.779e02± 3.724e00 6.419e01 ± 1.363e02 -1.799e02 ± 1.233e-02 1

f16 -3.271e01 ± 4.753e01 -2.667e02± 1.573e01 -9.349e01 ± 2.698e02 -2.304e-02 ± 4.707e01 2

f17 9.500e04 ± 2.654e04 3.225e04 ± 1.634e04 1.335e05 ± 1.865e05 0 ± 0 1

f18 1.854e-01 ± 3.580e-01 1.073e-01± 4.092e-01 4.578e-01 ± 1.794e00 1.937e-01 ± 5.676e-01 2

f19 2.330e08 ± 7.062e07 6.096e07± 6.977e07 1.232e08 ± 3.546e08 9.822e01 ± 1.394e00 1

f20 1.905e01 ± 5.951e-01 1.809e01 ± 9.075e-01 1.670 e01 ± 1.443e01 8.882e-16 ± 0 1

f21 7.079e02 ± 5.815e02 1.690e02± 3.370e02 6.134e02 ± 3.367e03 -1.799e02 ± 3.231e-02 1

f22 7.802e02 ± 2.637e02 2.982e02 ± 3.590e02 7.626e02 ± 1.593e03 -1.277e02 ± 1.373e03 1

f23 1.014e05 ± 1.064e04 4.300e04± 2.069e04 7.146e04 ± 1.578e05 1.524e01 ± 2.856e00 1

f24 8.443e01 ± 6.303e00 7.456e01± 9.660e00 6.129e01 ± 7.187e01 8.677e-15 ± 2.378e-14 1

f25 4.759e113 ± 2.128e114 1.587e03± 2.413e02 4.008e55 ± 1.793e56 0 ± 0 1

f26 3.741e02 ± 2.073e02 3.204e02± 5.659e01 5.697e02 ± 8.174e02 3.770e01 ± 1.264e00 1

f27 9.318e04 ± 2.164e04 4.342e04 ± 1.560e04 9.489e-04 ± 1.315e05 -4.500e02 ± 0 1

f28 -4.428e02 ± 2.273e01 -4.494e02± 1.322e00 -4.497e02 ± 7.466e-01 -4.498e02 ± 9.287e-01 1

f29 2.442e08 ± 6.148e07 4.350e07 ± 2.354e07 5.151e08 ± 6.268e08 4.884e02± 7.055e-01 1

f30 -4.307e02 ± 9.504e-01 -4.322e02± 8.504e-01 -4.307e02± 2.045e00 -4.500± 1.271e-13 1

f31 7.079e02 ± 5.815e02 1.690e02±3.370e02 6.134e02 ± 3.370e03 -1.800e02 ± 3.231e-02 1

f32 7.802e02 ± 2.637e02 2.982e02± 3.590e02 7.626e02 ± 1.593e03 -1.277e02 ± 1.373e03 1

10



FES
0 6000 12000 18000 24000 30000 36000 42000 48000 54000 60000

#108

0

1

2

3

4

5

6

7

8

wPSO
cfPSO
DE
TLBO
MFO
ETLBO
mTLBO
SLTLBO
cPSO
cDE
rcGA
cTLBO

Figure 4: Evolutionary process of algorithms on benchmark f19

that according to the previous study [11], the relative397

time scale is strongly determined by the dimension and398

problems. We therefore could conclude that the novel399

cTLBO method does not require more execution time or400

memory spaces than normal compact algorithms. It is401

worth to note that in typical practical implementations402

[7], the optimization task is successfully solved within403

micro second scale and faster than binary converted404

based algorithm. The computational time for compact405

algorithms are acceptable for on-line design of controller406

parameter training.407

Through comprehensive benchmark tests, the novel408

cTLBO method has demonstrated competitive perfor-409

mance. On one hand, compared with other compact410

algorithms, the new algorithm improves the overall explo-411

ration and exploitation ability without adding any storage412

burdens. On the other hand, compared with conventional413

non-compact algorithms, the new algorithm significantly414

reduces the memory storage resources and maintains the415

computational performance. It is therefore a promising416

tool for compact optimization tasks in particular for en-417

ergy and storage limited applications. On the other hand,418

neural networks are frequently adopted approaches in path419

planning and model prediction for compact independent420

systems, while the key task to train neural network is421

the determination of non-linear parameters in the basis422

functions. In the next section, we adopt the novel cTLBO423

methods to train feedforward and radial basis function424

neural networks and investigate the training and validation425

results.426

6. Neural Network Training Tests427

In this paper, we adopt two typical types of neural428

networks including FNN and RBF neural network to429

illustrate the performance of proposed cTLBO in training430

the non-linear NN models. Both of the models are431

feed forward neural networks with three layers, whereas432

...

...

x1

x2

x3

xn

s1

sH

y1

yo

Input Layer

Hidden Layer

Output Layer

...

Figure 5: Feedforward neural network structure

the model structures and non-linear transfer functions433

differentiate them.434

6.1. Feedforward Neural Network Training435

Feedforward neural network is one of most popular
neural network structures due to the simple typology and
strong approximation ability. The structure of FNN [56]
is shown in Fig.5, where a three layers FNN is adopted
including an input layer, a hidden layer and an output
layer. Equations (6)-(10) denote the relationship of input
and output variables. The well adopted sigmoid function
is employed as the activation function in hidden node as
shown in (6), where n, h and m denote the numbers of
input, hidden and output nodes respectively. The weights
between the inputs xi and hidden nodes are denoted as
wih, and θj is the threshold of hidden nodes. Note that
the output of the hidden layer, e.g. the input of output
layer sj , is calculated as sj =

∑n

i=1 wih · xi − θj .

f(sj) = 1/(1 + exp(−(

n
∑

i=1

wih · xi − θj))), j = 1, 2, ..., H,

(6)
where the activation function output from hidden nodes is
denoted as f(sj). Consequently, the output variables yk
are denoted as below,

yk =

H
∑

j=1

who · f(sj)− θk, k = 1, 2, ..., O, (7)

where H is the number of hidden nodes. Moreover, θk
denotes the threshold of output and who represents the
weights between the hidden nodes and output nodes. In
this regard, the error Errk between the actual output and
the desired output of the kth is presented as below,

Errk =

O
∑

i=1

(yki − Ck
i )

2 (8)

11



Table 5: The comparison memory slots and executive time for different algorithms

Algorithm Structure Particles in Memory Memory slots Executive time scale

DE DE based Np particles Np 1.00

wPSO PSO based Np particles, Np velocity 2Np 1.71

cfPSO PSO based Np particles, Np velocity 2Np 1.71

MFO MFO based Np moths, Np flames 2Np 1.74

TLBO TLBO based Np students, Np new students 2Np 1.53

ETLBO TLBO based Np students, Np new students, elites 2Np+elites 1.58

mTLBO TLBO based Np students, Np new students 2Np 1.57

SLTLBO TLBO based Np students, Np new students 2Np 1.54

rcGA GA based 1 sample, persistent elites 4 3.368

cDE DE based 3 samples, 1 crossover backup 4 4.125

cPSO PSO based 2 samples, 2 best particles 5 3.202

cTLBO TLBO based 3 students, 1 teacher, 1 deviation 5 3.596

where Ck
i is the desired output. To accumulate the

sectional error Errk, a final accounted error Err is shown
as in (9).

Err =

q
∑

k=1

Errk/(q ·O) (9)

Finally, the fitness function for the FNN training task is
denoted as in (10)

min fitness(Xi) = Err(Xi) (10)

In meta-heuristic optimization training process, the vari-
ables are encoded in a particle and updated in the
evolutionary process. The encoding scheme in this paper
employs the method in [56]. Assume an 1-5-1 structure
FNN, the variable coding details is shown in equation (11).

particle(i) = [w12, w13, w14, w15, w16,

w27, w37, w47, w57, w67, θ2, θ3, θ4, θ5, θ6, θ7]
(11)

It is worth to note that the input node is numbered as 1,436

followed by the hidden nodes numbered as node 2-6 and437

output node as number 7. The weights w12 to w16 belong438

to the wih while w27 to w67 represent the weights who.439

In order to test the performance of the proposed440

cTLBO method on FNN training, we adopt a non-441

linear function f = sin(4x) as the approximation tar-442

get and utilize regular structure wPSO, TLBO and as443

compact counterparts rcGA, cPSO and cDE to compare444

the performance. All the algorithm specific parameter445

configurations are the same with those in benchmark446

tests as in section 5. To fairly compare the algorithm447

performance, a consistent FES 10,000 is adopted in the448

training process, and the initial values of the weight449

variables are randomly generated within (0,1). The450

upper and lower boundaries are set as (-10,10), and the451

input section is selected as (-4π, 4π) with 0.05 intervals.452

We adopt 70% of the input data for training and 30%453

data for validation, and 30 different tests are conducted454

to eliminate the randomness. The mean and standard455

deviation values of training and validation results are456

shown in Table. 6.457

We employ 3 to 7 hidden nodes for the training458

comparisons. It could be observed from the Table. 6459

that the proposed cTLBO method achieves the best460

training and validation results in the majority of scenarios.461

Among the six competitors, wPSO and TLBO see similar462

performances, where TLBO outperforms wPSO in 4 and463

5 hidden nodes scenarios and is slightly outperformed in464

3 and 7 hidden nodes tests. Comparing with all the465

other compact based algorithms, the cTLBO significantly466

outperforms all the counterparts including rcGA, cPSO467

and cDE. It is worth to note that cDE sees relatively infe-468

rior performance probably due to the improper algorithm469

specific parameter settings such as less tuned crossover470

and mutation rates, which also shows the advantage of471

the freedom of parameter tuning for proposed cTLBO472

algorithm.473

6.2. Radial Basis Function Neural Network Training474

The sigmoid based FNN neural network may not be
sufficient to cover the strong non-linear behaviours of
specific datasets. To further investigate the training
performance of cTLBO, RBF neural network is also
employed in this section. Other than using basic sigmoid
function, the activation functions in RBF are equipped
with the Gaussian functions. The RBF neural network is
also a typical feed forward neural network including three
layers, namely input layer, hidden layer and output layer
respectively as shown in Fig.6. Consider a multi-input and
single-output (MISO) RBF network, the mathematical
output is formulated as

y(t) =

n
∑

i=1

wi · φi(X) (12)

where y(t) is the output at sample time t, and wi denotes
the linear output weight for the ith node in the hidden
layer. The radial basis function φi of input vector X is
chosen as Gaussian function defined below:

φi(X) = exp(− 1

2σ2
i

‖X − ci‖2), i = 1, 2, ..., n (13)

12



Table 6: Training and validation results of different algorithms for FNN in approximating f = sin(4x)

Hidden

Node

Algorithm Training Err Training STD Validation Err Validation STD

3

wPSO-FNN 3.707E-02 1.769E-04 5.318E-02 9.514E-04

TLBO-FNN 3.711E-02 1.659E-04 5.249E-02 1.329E-03

rcGA-FNN 3.377E-02 7.211E-04 5.533E-02 6.911E-03

cPSO-FNN 3.368E-02 1.871E-03 5.575E-02 5.667E-03

cDE-FNN 3.459E-01 4.149E-01 3.045E-01 4.846E-01

cTLBO-FNN 3.311E-02 1.641E-04 5.119E-02 7.855E-04

4

wPSO-FNN 3.310E-02 8.329E-04 5.269E-02 1.503E-03

TLBO-FNN 3.292E-02 6.099E-04 5.300E-02 2.162E-03

rcGA-FNN 3.299E-02 1.019E-03 5.332E-02 6.526E-03

cPSO-FNN 3.297E-02 1.989E-03 5.278E-02 6.235E-03

cDE-FNN 2.778E-01 4.064E-01 4.163E-01 6.579E-01

cTLBO-FNN 3.188E-02 5.622E-04 5.104E-02 1.063E-03

5

wPSO-FNN 3.015E-02 7.240E-05 5.226E-02 6.121E-04

TLBO-FNN 3.012E-02 1.482E-05 5.217E-02 9.231E-05

rcGA-FNN 3.251E-02 7.818E-04 5.758E-02 4.533E-02

cPSO-FNN 6.388E-02 2.973E-01 1.044E-01 4.438E-01

cDE-FNN 2.787E-01 4.237E-01 2.578E-01 6.922E-01

cTLBO-FNN 2.917E-02 1.966E-05 4.801E-02 1.201E-04

6

wPSO-FNN 2.980E-02 1.613E-05 5.362E-02 1.278E-02

TLBO-FNN 2.980E-02 1.359E-05 5.230E-02 2.905E-04

rcGA-FNN 3.182E-02 9.857E-04 6.041E-02 6.275E-02

cPSO-FNN 3.191E-02 1.113E-03 5.580E-02 4.741E-02

cDE-FNN 2.749E-01 4.195E-01 1.699E-01 2.943E-01

cTLBO-FNN 2.808E-02 1.239E-05 5.129E-02 3.670E-04

7

wPSO-FNN 2.713E-02 1.913E-05 5.292E-02 8.612E-03

TLBO-FNN 2.716E-02 5.774E-05 5.130E-02 1.512E-02

rcGA-FNN 3.154E-02 1.104E-03 6.124E-02 6.151E-02

cPSO-FNN 3.136E-02 1.602E-03 7.784E-02 2.409E-01

cDE-FNN 2.789E-01 4.224E-01 3.146E-01 7.430E-01

cTLBO-FNN 2.554E-02 3.473E-05 3.970E-02 1.156E-03

Figure 6: RBF network structure

where σi is the Gaussian distributed width and ci denotes475

the Gaussian center of the ith hidden node. n denotes the476

total number of hidden node.477

In order to properly train the RBF network, the root
mean squared error (RMSE) of the NN prediction is
employed to be the objective function in the training and
it is denoted as follows:

min f =

√

√

√

√

1

Nm

·
Nm
∑

i=1

(ŷ − ym)2 (14)

where ŷ is the prediction value and ym is the measured
data set. Note that the formulation and all the parameters
should be pre-set or determined before calculating the
model output ŷ, which is denoted in equation

ŷ(t) =

nh
∑

i=1

wi · exp(−
1

2σ2
i

‖X − ci‖2), i = 1, 2, ..., n. (15)

We utilize heuristic based optimization methods to deter-478

mine ci, σi and wi in the RBF-NN model to approximate479

a non-linear system. In regards to the encoding scheme for480

13



0 20 40 60 80 100 120

x

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

f(
x)

Figure 7: Data distribution of test system 1

RBF optimization variables, we assume an 2-5-1 structure481

with 2 input nodes, 5 hidden nodes and 1 output node482

for illustration. Each hidden node has a set of ci, σi483

and wi where the dimension of mean vector ci should be484

consistent with the input number. The encoding scheme485

is denoted as below equation (16). Again we assume that486

the input nodes are number 1 and 2, and hidden nodes are487

3-7 followed by that node 8 denotes the output node.488

particle(i) = [c13, c23, σ3, w38, c14, c24, σ4, w48,

c15, c25, σ5, w58, c16, c26, σ6, w68, c17, c27, σ7, w78]
(16)

In this case study, we select two typical non-linear489

systems for algorithm training: a smooth system and a490

highly non-linear system respectively. Training system 1491

is a smooth non-linear system f = sin(2x)e−x from [57],492

which is shown in Fig. 7. In the training process for test493

system 1, we adopt the dataset (0, π) with 0.03 interval494

as the model input. 60% dataset are employed as the495

training data while 40% data are adopted for validation.496

To compare the impact of the hidden nodes number on497

the model training performance, an 1-n-1 RBF model498

structure with n=3 to 9 nodes are tested respectively,499

where x(t) and f(x) are the input and output vectors.500

The FES are also set as 10,000, and 10 independent runs501

are conducted for all the six algorithms again including502

wPSO, TLBO, rcGA, cPSO, cDE and proposed cTLBO.503

All the initial values of the variables are among (0,1) and504

the particle updating is free of any boundary settings.505

The best obtained results among the 10 tests are listed506

in Fig. 8, where the 3-9 hidden nodes results are shown507

respectively.508

It could be observed from the Fig. 8 that the proposed509

cTLBO outperforms all the counterparts in the training510

scenarios from 3 to 9 hidden nodes. The best training511

results could be found at the 3 hidden node scenario, with512

the least RSME is less than 9.4×10−4 obtained by cTLBO.513

Moreover, the other algorithms results are not stable and514

cDE again performs the worst. It could be generally515

concluded that for test system 1, with the increase of516

hidden nodes, the training error increases. Therefore, it517

is sufficient for a small number hidden node RBF neural518

network structure to model the smooth non-linear system.519

In addition to the training system 1, a more challenging
task training system 2 is also employed for further case
study. It is a highly non-linear system original from [58, 59]
shown as below:

y(t) =0.5y(t− 1) + 0.8u(t− 2) + u(t− 1)2

− 0.05y(t− 2)2 + 0.5 + ξ(t),

ξ(·) ∼ N(0, 0.05),

(17)

where t, u and y denotes time series, system input and520

output. The adopted system is a non-linear autoregressive521

exogenous (NARX) model associated with a Gaussian522

system noise N(0, 0.05). By simulating the input u with523

uniform distributed range [-1,1], 500 data are sampled524

as shown in Fig. 9, where 350 of them are used for525

model training and 150 data samples are used as model526

validation. To compare the algorithm performance, 5527

algorithms including wPSO, TLBO, and the other three528

compact algorithms e.g. rcGA, cPSO and cDE are529

employed to compare with the proposed cTLBO. All the530

parameters settings of the algorithms are the same with531

aforementioned benchmark test. The number of particles532

is set as 30 and FES is adopted as 3,000, while 30533

independent runs are implemented for fair comparison.534

Consider the system non-linear behaviours, we conduct535

three experiments by selecting 10, 15 and 20 hidden nodes536

respectively. We select u(t− 1), u(t− 2), y(t− 1), y(t− 2)537

and 1 as the RBF neural model inputs. The training and538

validation results of all algorithms are shown in Table 7.539

It could be observed in Table 7 that the RBF neural540

network with 15 hidden nodes gives the best training and541

validation results, achieving the RMSE by 4.691e − 02542

and 1.585e − 02 within 3000 FES. Among all the algo-543

rithms, cTLBO outperforms the other competitors in both544

training and validation results. The RBF neural network545

training results again confirm the superior capacity of the546

proposed cTLBO in solving highly non-linear problems.547

In a result, the proposed cTLBO shows competitive548

performance in continuous optimization and neural net-549

works for hardware limited systems. The structure of550

both NN test systems are fairly simple and more deep551

neural networks are not considered. This is due to that552

deep neural networks often require significant computation553

resources and particular remarkable memory storages,554

which may not be suitable for the applications of compact555

algorithms. We therefore focus on simple and less layers556

neural network applications for embedded system rather557

than the deep ones. Due to the space of the paper and558

topic focus, system implementation for the algorithms is559

14



3 4 5 6 7 8 9

Number of hidden nodes

9

9.2

9.4

9.6

9.8

10

10.2

10.4

10.6

R
S

M
E

10-4

wPSO-RBF
TLBO-RBF
rcGA-RBF
cPSO-RBF
cDE-RBF
cTLBO-RBF

Figure 8: The comparison of the best results of RBF network training errors for test system 1

Table 7: RBF network training results of test system 2

Hidden

Node

Algorithm Training RMSE Training STD Validation

RMSE

Validation STD

10

wPSO-RBF 9.077e-02 1.436e-02 3.749e-02 4.690e-03

TLBO-RBF 8.873e-02 1.389e-02 3.548e-02 6.556e-03

rcGA-RBF 9.312e-02 1.559e-02 3.475e-02 4.712e-03

cPSO-RBF 1.611e-01 1.144e-01 6.261e-02 5.328e-02

cDE-RBF 8.080e-01 9.770e-01 1.844e-01 6.574e-02

cTLBO-RBF 8.579e-02 8.918e-03 3.307e-02 5.523e-03

15

wPSO-RBF 4.834e-02 1.763e-03 1.659e-02 5.526e-03

TLBO-RBF 4.915e-02 2.436e-03 1.919e-02 5.677e-03

rcGA-RBF 4.957e-02 1.190e-03 1.961e-02 4.366e-03

cPSO-RBF 5.137e-02 2.527e-03 1.785e-02 5.928e-03

cDE-RBF 1.404e-01 8.001e-02 7.694e-02 4.512e-02

cTLBO-RBF 4.691e-02 7.631e-04 1.585e-02 3.530e-03

20

wPSO-RBF 7.714e-02 2.335e-04 1.961e-02 5.264e-03

TLBO-RBF 7.677e-02 6.664e-04 2.013e-02 5.950-e03

rcGA-RBF 7.597e-02 1.298e-03 2.068e-02 2.588e-03

cPSO-RBF 7.583e-02 1.165e-03 2.237e-02 5.412e-03

cDE-RBF 8.898e-02 6.499e-03 3.286e-02 2.499e-02

cTLBO-RBF 7.495e-02 1.731e-03 1.877e-02 3.291e-03

not included and will be conducted in our future work.560

7. Conclusion and Future Work561

The stringent requirement on the limited computa-562

tional resource and memory size has long been a chal-563

lenging problem in implementing advanced intelligent564

optimization algorithms in real-time embedded applica-565

tions. In this paper, a new compact teaching-learning566

based optimization method has been proposed to reduce567

the algorithm memory size requirement. The teaching-568

learning based optimization is integrated within a compact569

algorithm structure, and the new cTLBO has been com-570

pared with some typical meta-heuristic algorithms and the571

latest variants of TLBO on 32 benchmark problems. In572

addition, the proposed method is also employed to train a573

RBF neural network and to investigate the potential use574

of the technique for embedded systems. The comparative575

study results show that the cTLBO outperforms the other576

15



0 50 100 150 200 250 300 350 400 450 500

t

0

0.5

1

1.5

2

2.5

3

3.5

y(
t)

Figure 9: Data distribution of test system 2

typical algorithms and compact variants on the majority of577

benchmarks, while maintain the competitive performance578

of TLBO variants. Similar results could also be found579

in its application to two typical neural network trainings.580

On the other hand, this new method is able to significantly581

reduce the memory size requirement, paving a way for its582

wide real-time embedded applications.583

In the new era of artificial intelligence, learning meth-584

ods such as neural network are expected to be adopted in585

various compact systems with limited energy and storage586

resources. The novel cTLBO provides a powerful tool for587

continuous optimization problems, in particular training588

the simple structure neural networks in intelligent systems.589

The implementation on embedded system for the proposed590

algorithm will be conducted in the future.591

Acknowledgments592

This research is financially supported by China NSFC593

under grants 51607177, 61433012, U1435215, China Post-594

doctoral Science Foundation (2018M631005), and UK595

EPSRC grant under the Optimising Energy Management596

in Industry - OPTEMIN project EP/P004636/1.597

[1] Miller III, W.T.: Real-time neural network control of a biped598

walking robot. Control Systems, IEEE 14(1) (1994) 41–48599

[2] Kulkarni, R.V., Venayagamoorthy, G.K.: Particle swarm600

optimization in wireless-sensor networks: A brief survey. IEEE601

Transactions on Systems, Man, and Cybernetics, Part C602

(Applications and Reviews) 41(2) (2011) 262–267603

[3] Intel: Mobile intel celeron processors product order codes604

for mobile intel celeron processors. ”http://www.intel.com/605

support/processors/mobile/celeron/sb/cs-007472.htm”606

(2003)607

[4] Harik, G.R., Lobo, F.G., Goldberg, D.E.: The compact genetic608

algorithm. Evolutionary Computation, IEEE Transactions on609

3(4) (1999) 287–297610

[5] Ahn, C.W., Ramakrishna, R.S.: Elitism-based compact genetic611

algorithms. Evolutionary Computation, IEEE Transactions on612

7(4) (2003) 367–385613

[6] Gallagher, J.C., Vigraham, S., Kramer, G.: A family of614

compact genetic algorithms for intrinsic evolvable hardware.615

Evolutionary Computation, IEEE Transactions on 8(2) (2004)616

111–126617

[7] Mininno, E., Cupertino, F., Naso, D.: Real-valued compact618

genetic algorithms for embedded microcontroller optimization.619

Evolutionary Computation, IEEE Transactions on 12(2) (2008)620

203–219621

[8] Neri, F., Mininno, E.: Memetic compact differential evolution622

for cartesian robot control. Computational Intelligence623

Magazine, IEEE 5(2) (2010) 54–65624

[9] Neri, F., Iacca, G., Mininno, E.: Disturbed exploitation625

compact differential evolution for limited memory optimization626

problems. Information Sciences 181(12) (2011) 2469–2487627

[10] Mininno, E., Neri, F., Cupertino, F., Naso, D.: Compact628

differential evolution. Evolutionary Computation, IEEE629

Transactions on 15(1) (2011) 32–54630

[11] Neri, F., Mininno, E., Iacca, G.: Compact particle swarm631

optimization. Information Sciences 239 (2013) 96–121632

[12] Banitalebi, A., Aziz, M.I.A., Bahar, A., Aziz, Z.A.: Enhanced633

compact artificial bee colony. Information Sciences 298 (2015)634

491–511635

[13] Rao, R., Savsani, V., Vakharia, D.: Teaching–learning-based636

optimization: A novel method for constrained mechanical637

design optimization problems. Computer-Aided Design 43(3)638

(2011) 303–315639

[14] Rao, R., Savsani, V., Vakharia, D.: Teaching–learning-based640

optimization: an optimization method for continuous non-linear641

large scale problems. Information Sciences 183(1) (2012) 1–15642

[15] Crepinsek, M., Liu, S.H., Mernik, L.: A note on teaching–643

learning-based optimization algorithm. Information Sciences644

212 (2012) 79–93645

[16] Waghmare, G.: Comments on a note on teaching–learning-646

based optimization algorithm. Information Sciences 229 (2013)647

159–169648

[17] Wang, Z., Lu, R., Chen, D., Zou, F.: An experience information649

teaching–learning-based optimization for global optimization.650

IEEE Transactions on Systems, Man, and Cybernetics: Systems651

46(9) (2016) 1202–1214652

[18] Satapathy, S.C., Naik, A.: Modified teaching–learning-based653

optimization algorithm for global numerical optimizationa654

comparative study. Swarm and Evolutionary Computation 16655

(2014) 28–37656

[19] Niknam, T., Azizipanah-Abarghooee, R., Aghaei, J.: A new657

modified teaching-learning algorithm for reserve constrained658

dynamic economic dispatch. Power Systems, IEEE Transactions659

on 28(2) (2013) 749–763660

[20] Niu, Q., Zhang, H., Li, K.: An improved tlbo with elite661

strategy for parameters identification of pem fuel cell and solar662

cell models. International Journal of Hydrogen Energy (2014)663

[21] Guo, Y., Li, K., Yang, Z., Deng, J., Laverty, D.M.: A664

novel radial basis function neural network principal component665

analysis scheme for pmu-based wide-area power system666

monitoring. Electric Power Systems Research 127 (2015) 197–667

205668

[22] Sleesongsom, S., Bureerat, S.: Four-bar linkage path generation669

through self-adaptive population size teaching-learning based670

optimization. Knowledge-Based Systems 135 (2017) 180–191671

[23] Shao, W., Pi, D., Shao, Z.: A hybrid discrete optimization672

algorithm based on teaching–probabilistic learning mechanism673

for no-wait flow shop scheduling. Knowledge-Based Systems674

107 (2016) 219–234675

[24] Amin, A.: A novel classification model for cotton yarn676

quality based on trained neural network using genetic algorithm.677

Knowledge-Based Systems 39 (2013) 124–132678

[25] Gudise, V.G., Venayagamoorthy, G.K.: Comparison of particle679

swarm optimization and backpropagation as training algorithms680

for neural networks. In: Swarm Intelligence Symposium, 2003.681

SIS’03. Proceedings of the 2003 IEEE, IEEE (2003) 110–117682

[26] Yu, J., Wang, S., Xi, L.: Evolving artificial neural networks683

using an improved pso and dpso. Neurocomputing 71(4) (2008)684

16

http://www.intel.com/support/processors/mobile/celeron/sb/cs-007472.htm
http://www.intel.com/support/processors/mobile/celeron/sb/cs-007472.htm
http://www.intel.com/support/processors/mobile/celeron/sb/cs-007472.htm


1054–1060685

[27] Mirjalili, S., Mirjalili, S.M., Lewis, A.: Let a biogeography-686

based optimizer train your multi-layer perceptron. Information687

Sciences 269 (2014) 188–209688

[28] Faris, H., Aljarah, I., Mirjalili, S.: Improved monarch butterfly689

optimization for unconstrained global search and neural network690

training. Applied Intelligence (2017) 1–20691

[29] Shen, W., Guo, X., Wu, C., Wu, D.: Forecasting stock692

indices using radial basis function neural networks optimized693

by artificial fish swarm algorithm. Knowledge-Based Systems694

24(3) (2011) 378–385695

[30] Cui, H., Feng, J., Guo, J., Wang, T.: A novel single696

multiplicative neuron model trained by an improved glowworm697

swarm optimization algorithm for time series prediction.698

Knowledge-Based Systems 88 (2015) 195–209699

[31] Yang, Z., Li, K., Guo, Y.: A new compact teaching-learning-700

based optimization method. In: International Conference on701

Intelligent Computing, Springer (2014) 717–726702

[32] Harik, G., Cantú-Paz, E., Goldberg, D.E., Miller, B.L.: The703

gambler’s ruin problem, genetic algorithms, and the sizing of704

populations. Evolutionary Computation 7(3) (1999) 231–253705

[33] Iacca, G., Mallipeddi, R., Mininno, E., Neri, F., Suganthan,706

P.N.: Super-fit and population size reduction in compact707

differential evolution. In: Memetic Computing (MC), 2011708

IEEE Workshop on, IEEE (2011) 1–8709

[34] Jewajinda, Y.: Covariance matrix compact differential710

evolution for embedded intelligence. In: Region 10 Symposium711

(TENSYMP), 2016 IEEE, IEEE (2016) 349–354712

[35] Pan, J.S., Dao, T.K., Pan, T.S., et al.: Compact particle swarm713

optimization for optimal location of base station in wireless714

sensor network. In: International Conference on Genetic and715

Evolutionary Computing, Springer (2016) 54–62716

[36] Dao, T.K., Chu, S.C., Shieh, C.S., Horng, M.F., et al.:717

Compact artificial bee colony. In: International Conference718

on Industrial, Engineering and Other Applications of Applied719

Intelligent Systems, Springer (2014) 96–105720

[37] Dao, T.K., Pan, J.S., Chu, S.C., Shieh, C.S., et al.:721

Compact bat algorithm. In: Intelligent Data analysis and its722

Applications, Volume II. Springer (2014) 57–68723

[38] Dao, T.K., Pan, T.S., Nguyen, T.T., Chu, S.C., Pan,724

J.S.: A compact flower pollination algorithm optimization.725

In: Computing Measurement Control and Sensor Network726

(CMCSN), 2016 Third International Conference on, IEEE727

(2016) 76–79728

[39] Patel, V.K., Savsani, V.J.: A multi-objective improved729

teaching–learning based optimization algorithm (mo-itlbo).730

Information Sciences 357 (2016) 182–200731

[40] Rajinikanth, V., Satapathy, S.C., Fernandes, S.L., Nachiappan,732

S.: Entropy based segmentation of tumor from brain mr733

images–a study with teaching learning based optimization.734

Pattern Recognition Letters (2017)735

[41] Shabanpour-Haghighi, A., Seifi, A.R., Niknam, T.: A736

modified teaching–learning based optimization for multi-737

objective optimal power flow problem. Energy Conversion and738

Management 77 (2014) 597–607739

[42] Yang, Z., Li, K., Niu, Q., Xue, Y., Foley, A.: A self-learning tlbo740

based dynamic economic/environmental dispatch considering741

multiple plug-in electric vehicle loads. Journal of Modern Power742

Systems and Clean Energy (2014) 1–10743

[43] Yu, K., Chen, X., Wang, X., Wang, Z.: Parame-744

ters identification of photovoltaic models using self-adaptive745

teaching-learning-based optimization. Energy Conversion and746

Management 145 (2017) 233–246747

[44] Sahu, R.K., Panda, S., Rout, U.K., Sahoo, D.K.: Teaching748

learning based optimization algorithm for automatic generation749

control of power system using 2-dof pid controller. International750

Journal of Electrical Power & Energy Systems 77 (2016) 287–751

301752

[45] Niknam, T., Zare, M., Aghaei, J.: Scenario-based multi-753

objective volt/var control in distribution networks including754

renewable energy sources. IEEE Transactions on Power Delivery755

27(4) (2012) 2004–2019756

[46] Yu, K., While, L., Reynolds, M., Wang, X., Wang, Z.:757

Cyclic scheduling for an ethylene cracking furnace system758

using diversity learning teaching-learning-based optimization.759

Computers & Chemical Engineering 99 (2017) 314–324760

[47] Tuo, S., Yong, L., Li, Y., Lin, Y., Lu, Q., et al.: Hstlbo:761

A hybrid algorithm based on harmony search and teaching-762

learning-based optimization for complex high-dimensional763

optimization problems. PloS one 12(4) (2017) e0175114764

[48] Yao, X., Liu, Y., Lin, G.: Evolutionary programming made765

faster. Evolutionary Computation, IEEE Transactions on 3(2)766

(1999) 82–102767

[49] Suganthan, P.N., Hansen, N., Liang, J.J., Deb, K., Chen, Y.P.,768

Auger, A., Tiwari, S.: Problem definitions and evaluation769

criteria for the cec 2005 special session on real-parameter770

optimization. KanGAL report 2005005 (2005) 2005771

[50] Qin, A., Huang, V., Suganthan, P.: Differential evolution772

algorithm with strategy adaptation for global numerical773

optimization. Evolutionary Computation, IEEE Transactions774

on 13(2) (2009) 398–417775

[51] Eberhart, R.C., Kennedy, J.: A new optimizer using particle776

swarm theory. In: Proceedings of the sixth international777

symposium on micro machine and human science. Volume 1.,778

New York, NY (1995) 39–43779

[52] Clerc, M., Kennedy, J.: The particle swarm-explosion, stability,780

and convergence in a multidimensional complex space. IEEE781

transactions on Evolutionary Computation 6(1) (2002) 58–73782

[53] Das, S., Suganthan, P.: Differential evolution: A survey of the783

state-of-the-art. Evolutionary Computation, IEEE Transactions784

on 15(1) (2011) 4–31785

[54] Mirjalili, S.: Moth-flame optimization algorithm: A novel786

nature-inspired heuristic paradigm. Knowledge-Based Systems787

89 (2015) 228–249788

[55] Liu, Y., Chen, Z., Yang, Z., Li, K., Tan, J.: An789

inline surface measurement method for membrane mirror790

fabrication using two-stage trained zernike polynomials and791

elitist teaching–learning-based optimization. Measurement792

Science and Technology 27(12) (2016) 124005793

[56] Zhang, J.R., Zhang, J., Lok, T.M., Lyu, M.R.: A hybrid794

particle swarm optimization–back-propagation algorithm for795

feedforward neural network training. Applied mathematics and796

computation 185(2) (2007) 1026–1037797

[57] Mirjalili, S., Hashim, S.Z.M., Sardroudi, H.M.: Training798

feedforward neural networks using hybrid particle swarm799

optimization and gravitational search algorithm. Applied800

Mathematics and Computation 218(22) (2012) 11125–11137801

[58] Piroddi, L., Spinelli, W.: An identification algorithm802

for polynomial narx models based on simulation error803

minimization. International Journal of Control 76(17) (2003)804

1767–1781805

[59] Li, K., Peng, J.X.: Neural input selectiona fast model-based806

approach. Neurocomputing 70(4) (2007) 762–769807

17


	Introduction
	Compact Optimization
	Compact Binary Optimization
	Compact Real-valued Optimization

	Teaching-learning based optimization
	Teaching Phase
	Learning Phase

	Compact Teaching-learning Algorithm
	Initialization
	Compact Teaching Phase
	Compact Learning Phase

	Benchmark Tests
	Neural Network Training Tests
	Feedforward Neural Network Training
	Radial Basis Function Neural Network Training

	Conclusion and Future Work

