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Introduction

Skin has a continuously renewing epidermis which acts as 

a protective surface barrier for the body. While there are 

several theories of how epidermal stem cells divide and 

renew to provide skin which lasts a lifetime,1 one of the 

key areas to be explored is the concept of the native skin 

stem cell niche.2,3 Native stem cell niches exist within 

both embryonic and somatic tissues in vertebrates and 

invertebrates. These protected and restricted anatomical 

spaces are thought to be a key feature for understanding 

how stem cells survive in a relatively quiescent state, 

physically protected and yet able to give rise to a supply 

of daughter cells which ensure epidermal renewal through-

out a lifetime.4

Stem cell niches in the skin are thought to be embedded 

within the rete ridge areas which play a critical role in 

maintaining the structure and mechanical properties of the 

tissue, as well as in directing its regenerative potential. 
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Abstract

The continual renewal of the epidermis is thought to be related to the presence of populations of epidermal stem cells 

residing in physically protected microenvironments (rete ridges) directly influenced by the presence of mesenchymal 

fibroblasts. Current skin in vitro models do acknowledge the influence of stromal fibroblasts in skin reorganisation but 

the study of the effect of the rete ridge-microenvironment on epidermal renewal still remains a rich topic for exploration. 

We suggest there is a need for the development of new in vitro models in which to study epithelial stem cell behaviour 

prior to translating these models into the design of new cell-free biomaterial devices for skin reconstruction. In this 

study, we aimed to develop new prototype epidermal-like layers containing pseudo-rete ridge structures for studying the 

effect of topographical cues on epithelial cell behaviour. The models were designed using a range of three-dimensional 

electrospun microfabricated scaffolds. This was achieved via the utilisation of polyethylene glycol diacrylate to produce 

a reusable template over which poly(3-hydrroxybutyrate-co-3-hydroxyvalerate) was electrospun. Initial investigations 

studied the behaviour of keratinocytes cultured on models using plain scaffolds (without the presence of intricate 

topography) versus keratinocytes cultured on scaffolds containing microfeatures.
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Rete ridges show dimensions ranging from 50 to 400 µm in 

width and from 50 to 200 µm in depth1,5,6 and they are 

believed to increase the surface area between the dermis 

and the epidermis, enhancing both the mechanical shear 

resistance of the skin and the paracrine diffusion between 

the layers. These micro-topographical structures create 

distinct cellular microenvironments that differentially 

direct keratinocyte phenotype and cellular function. 

Keratinocytes leave the basal layer and differentiate 

upwards to provide the cornified barrier layers. Some of 

the specific factors that sustain stemness and regulate 

keratinocyte differentiation have been thoroughly explored 

in recent years; it is known that differentiation can be trig-

gered by biophysical elements including shear stress and 

oxygen tension and it is influenced by paracrine and sig-

nalling from stromal fibroblasts.7 In order to investigate 

the role of enclosed three-dimensional (3D) microenviron-

ments on directing skin cell behaviour, several groups 

have recently developed in vitro models to characterise the 

effects of cell geometries and surface chemistries on 

keratinocyte function.8 Although these models have pro-

vided new evidence, understanding skin cell behaviour 

within instructive enclosed microenvironments still 

remains a big challenge.

There is a need for the development of more innovative 

in vitro models to study skin cell behaviour. The use of 

engineering methods to produce artificial microfeatures to 

mimic aspects of the endogenous niche is a useful tool 

that can provide us with a better understanding of the 

mechanisms underlying skin renewal. Artificial microen-

vironments can be produced by different methodologies 

including template assisted assembly of electrospun 

fibres,9–11 laser-based techniques,12–14 electrolysis15 or 

moulding.16

Our group has previously reported on methodologies 

for producing artificial microfeatures for the study of 

corneal epithelial regeneration10,17,18 via a versatile man-

ufacturing method (patented) combining additive manu-

facturing techniques and electrospinning. In this method, a 

micropatterned template is fabricated layer-by-layer (in 

this case with microstereolithography). This template is 

then used as an electrospinning collector which allows the 

creation of an electrospun microfabricated mat that repro-

duces the morphology dictated by the underlying pattern. 

In this study, we have expanded the use of this patented 

technology and we have adapted it to the development of 

3D microstructured electrospun scaffolds for the study of 

skin cell interactions. These 3D electrospun scaffolds have 

been particularly designed so that keratinocyte behaviour 

can, in the future, be studied in the presence and absence of 

the stromal fibroblasts (throughout the optimisation of a 

bilayer design, see Figure 2). Preliminary results present 

evidence that the presence of the microfeatures positively 

influences keratinocyte behaviour.

Materials and methods

Materials

Chemicals and reagents. Tissue culture plastic was purchased 

from NuncTM (Nalgene, UK). Tissue culture media was pur-

chased from GIBCO (UK). Foetal calf serum was purchased 

from Biowest Biosera (UK). MTT (3-(4,5-Dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide), polyethylene glycol 

diacrylate (PEGDA) (Mn 250) and camphorquinone were 

purchased from Sigma (UK). Syto9 and propidium iodide 

(PI) were purchased from Invitrogen (UK).

Skin was obtained from patients undergoing routine 

abdominoplasties and breast reductions who gave written 

informed consent for skin not required for their treatment to 

be used for research purposes on an anonymous basis. Skin 

was obtained under a Human Tissue Authority Research 

Tissue Bank Licence number 12179. This research was also 

covered by Ethics Committee Approval reference 15/

YH/0177. Skin was used to isolate keratinocytes.

Methods

Stereolithography for template production. Stereolithogra-

phy was used to produce the initial templates using a blue 

laser beam (blue laser MBL-III 473 nm; 150 mW) focussed 

into a DMD (digital multimirror device, ultraviolet (UV)-

enabled starter kit, Texas, Instruments). Computer-aided 

designs consisted of three layers including a plain base, a 

patterned micropocket-like layer and an edge layer (as 

shown in Figure 1(a)). The reflected 2D laser image of the 

desired pattern was collected by a 2.5 cm diameter, 10 cm 

focal length lens (Thorlabs) and reflected downwards by a 

mirror onto an acetate sheet in a six-well plate containing 

the photocurable pre-polymer PEGDA (Mn 250 g/mol) 

(Sigma-Aldrich, UK) with 1% camphorquinone used as 

photoinitiator. The PEGDA and camphorquinone solution 

were mixed for 30 min prior to use. Using the set-up 

described, it is possible to manufacture templates of 

approximately 1.5 cm2. A range of micropatterns with var-

ying morphologies and sizes were created for this study. 

For each case, a base of the template was projected onto an 

acetate sheet in a multiwell plate containing 700 µL of 

photocurable polymer mix and irradiated between 15 and 

60 s (depending on the chosen design). This created a firm 

base for the multipocket design to attach to (Figure 1). A 

defined amount of resin (400 μL) was added at each subse-

quent step in order to form the microfeatures on the base of 

the template. Once these templates had formed, the excess 

PEGDA in the well plate was discarded and washed with 

100% isopropanol (IPA). This step was repeated 2–3 

times. The templates were left to wash in IPA for 2–3 days 

in order to completely remove uncured PEGDA and excess 

photoinitiator. The templates were subsequently washed in 

PBS, dried and stored dry until use.
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Electrospinning. The PEGDA templates were fixed 

using scanning electron microscopy (SEM) carbon tabs 

on an electrospinning mandrel. Poly(3-hydrroxybu-

tyrate-co-3-hydroxyvalerate) (PHBV) (3 g) with 3 g 

methanol and 24 g dichloromethane (DCM) were dis-

solved to obtain a 3% (w/v) solution and magnetically 

stirred overnight to dissolve the bulk polymer. The 

polymer solutions were separately fed into 4 × 5 mL 

standard syringes attached to a 21G blunted stainless 

steel needle using a syringe pump (KDS 100; KD Sci-

entific, Holliston, MA) at a flow rate of 40 µL/min. A 

high voltage of 17 kV (Gamma High Voltage Research, 

Ormond Beach, FL) was applied and the polymer solu-

tion was spun into fibres and collected on an aluminium 

foil wrapped collector at a distance of 17 cm from the 

needle tip to the micropocket templates. The electro-

spun scaffolds were dried overnight under vacuum. The 

micropocket electrospun scaffolds were peeled from 

the aluminium foil and spun on the reverse side. These 

electrospun mats were then dried under vacuum for 

24 h and reversed and electrospun again (using the 

same solution and the same electrospinning conditions) 

to provide complete coverage over the back of the 

micropockets (Figure 2).

Isolation and culturing of keratinocytes. Human skin 

keratinocytes were isolated and harvested from split 

thickness skin grafts (STSGs) that were obtained from 

consenting patients undergoing routine breast reduction 

and abdominoplasties under the Human Tissue Authority 

(HTA) 12179.

The STSGs were cut into 0.5 cm2 pieces using a scalpel 

blade and incubated overnight with 10 mL of 0.1% w/v 

Difco trypsin at 4°C. Green’s media consisting of 

Dulbecco’s Modified Eagle’s Medium (DMEM) and 

Ham’s F12 medium, supplemented with 10% w/v foetal 

Figure 1. Schematic of the manufacturing of the constructs. Panel (a) shows a schematic of the in-house developed 
microstereolithography set-up in which a blue laser is focussed into a digital multimirror device via the use of a telescopic lens set; 
the beam is later directed to a focussing lens followed by a mirror; a bath containing a photocurable polymer (PEGDA) is placed 
on a xyz stage. Panel (a) also shows a schematic of the individual projected layers for two types of microfeature. Panel (b) shows a 
schematic of the electrospinning process performed using the PEGDA templates; these templates are attached to a metallic base in 
order to create electrospinning collectors in which to spin a PHBV solution. Panel (c) shows a histology image of the native Rete 
Ridges in the skin; this specific image corresponds to a sample of tissue engineered skin produced in our laboratory and exemplifies 
the type of native topography we aim to emulate in this work.
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calf serum (FCS), 100 IU/mL penicillin, 100 µg/mL strep-

tomycin, 0.625 µg/mL amphotericin B, 6.25 µg/mL ade-

nine, 10 ng/mg transferring, 5 µg/mL bovine insulin, 

0.4 µg/mL hydrocortisone and 8.5 ng/mL cholera toxin 

containing FCS were then added to neutralise the trypsin.

Epidermal and dermal layers were carefully separated 

using forceps and the under-surface of the epidermis and 

papillary surface of the dermis were gently scraped to 

remove the keratinocytes. The freshly isolated keratino-

cytes were collected in Green’s media into a sterile uni-

versal tube and centrifuged at 200 g for 5 min. The 

supernatant was discarded and the keratinocytes were re-

suspended in Green’s media for 10–15 times to ensure 

single cell re-suspension. Keratinocytes were placed into 

a sterile tissue culture flask (T75) with a feeder layer of 

lethally irradiated 3T3 (i3T3) cells and cultured at 37°C in 

8–10 mL of Green’s media. An irradiated layer of muri-

ne3T3 fibroblasts was used to improve the cell culture 

life-span and allow effective proliferation and differentia-

tion of keratinocytes in vitro.

Isolated keratinocytes were cultured at 37°C in a 5% 

CO2/95% air humidified incubator and re-fed every 2 days 

with fresh complete media. Keratinocytes were split 1:3 

when they reached 80% confluence and sub-cultured. 

Keratinocytes were used from passage 0. Skin cells were 

seeded on plain and microfabricated scaffolds at a density 

of 3 × 105 cells/mL (30,000 per scaffold), then cell perfor-

mance was analysed using MTT, SEM and live-dead stain-

ing (see details below).

Assessment of cell viability using an MTT assay. Plain and 

microfabricated scaffolds (n = 3) were seeded with 

Figure 2. Panel (a) shows examples of optimised PEGDA templates. Images A and B show a rectangular shaped pattern with 
features with a depth of 500 µm; images C and D show square-shaped morphologies with a depth of 200 µm. Panel (b) shows an 
example of the electrospun membrane replicas for both square and rectangular patterns (images E–H). Panel (c) shows an image (I) 
of a microfabricated construct (1.5 cm × 1.5 cm size) containing two layers of electrospun scaffold; layer 1 contains the micropocket 
pattern and layer 2 is a plain electrospun scaffold covering the lower surface of the microfabricated template (back layer).
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30,000 cells per scaffold and studied at 1, 3 and 7 days 

using MTT assay. For total cellular viability, the media 

were removed from the wells containing the scaffolds and 

scaffolds were washed three times with PBS. MTT solu-

tion (0.5 mg/mL in PBS) was then added to the scaffolds 

and placed in an incubator at 37°C for 40 min.

MTT solution was removed and scaffolds imaged. 

2-Ethoxyethanol was then added to elute the formazan 

from the samples. The optical density of the eluted formazan 

was measured at 540 nm and referenced at 630 nm.

Live dead staining. Live dead staining was performed on 

plain and microfabricated scaffolds using 30,000 cells per 

scaffold (n = 3). For identification of live and dead cells 

SYTO9 and PI, solutions were made up as per manufac-

turer’s guidelines in cell culture medium. The media were 

removed from the samples and gently washed with PBS. 

The mixture of SYTO9 (5 µM) and PI (5 µM) in PBS was 

added to the samples and incubated at 37°C for 15 min. 

The solution was removed and samples washed with PBS. 

Samples were visualised using a confocal microscope. The 

excitation wavelength was 480 nm and emission at 500–

550 nm for SYTO9 while for PI the excitation wavelength 

was 535 nm and emission at 565–617 nm. The sample was 

visualised using a Zeiss 510 meta confocal upright micro-

scope using Achroplan (water dipping); 10× objective 

(NA 0.3 WD 2.6 mm) (pin hole adjusted to 1 airy unit, scan 

speed of 6 with scan average of 4 at 512 × 512 pixel) 

z-stack images were taken from three independent areas 

and the number of total cells and dead cells were counted 

using ImageJ.

SEM

PEGDA templates. The PEGDA templates were exten-

sively washed in 100% IPA to wash away excess uncured 

PEGDA. The templates were left in 70% Industrial Meth-

ylated Spirit (IMS) for 24 h and stored under dry condi-

tions. The templates were gold coated and imaged using a 

Philips X-L 20 microscope.

Electrospun scaffolds. Plain and microfabricated elec-

trospun scaffolds were fixed at 1, 3 and 7 days and pro-

cessed for SEM imaging (n = 3). The scaffolds were 

washed in PBS and fixed in 10% buffered formaldehyde 

solution for 10–15 min; 0.1 M cacodylate buffer was 

added and incubated for 20 min. After 20 min, cacodylate 

buffer was aspirated and 2.5% glutaraldehyde in buffer 

was added to the samples for 30 min. Post 30 min, glutar-

aldehyde was aspirated and 1 mL 0.1 M cacodylate buffer 

was added to rinse off the glutaraldehyde from the surface 

of the sample, twice for 15 min each. After washing, 1% 

osmium tetraoxide was added and samples incubated for 

2 h. After 2 h, osmium tetraoxide was aspirated and 0.1 M 

cacodylate buffer was added to the samples and left for 

15 min. Cacodylate buffer was aspirated and replaced 

by 75% ethanol and incubated for 30 min, aspirated and 

replaced by 95% ethanol for another 30 min. 95% ethanol 

was aspirated and replaced with 100% ethanol and incu-

bated for another 30 min and subsequently aspirated and 

replaced with 100% ethanol dried over anhydrous copper 

sulphate for 30 min. The ethanol was aspirated and hex-

amethyldisilazane was added to the samples for 30 min 

and aspirated. The samples were left to dry overnight and 

sputter-coated with gold for under a vacuum pressure of 

0.05 atm, with a current of 15 mA for 2 min in an Emscope 

SC 500 Coater; the samples were then analysed using a 

Philips X-L 20 microscope.

Statistics. Statistical analyses were performed on Graph-

Pad Prism software using two-tailed Student t-test. In all 

cases, p values < 0.05 were considered as statistically sig-

nificant. Please note that the number of scaffolds per each 

of the reported experiments was 3 (n = 3) and each experi-

ment was repeated three times (N = 3).

Results

Fabrication of PEGDA templates

The microstereolithography set-up described above 

allows the design of ~1.5 cm diameter objects with a mini-

mum resolution of ~50 µm, enabling the construction of a 

square of micropockets on a base of PEGDA. The manu-

facture of these microstructured constructs was optimised 

and square and rectangular shaped PEGDA templates 

were produced with edge sizes ranging from 200 to 

1000 µm and depths varying from 200 to 500 µm (see 

Figure 2(a)).

PHBV (containing 10% w:w of methanol) was electro-

spun on the optimised PEGDA templates; SEM imaging 

showed how the fibres followed the shape of the underly-

ing pattern. A second layer was spun on the back of the 

microfabricated electrospun scaffold to produce a bilayer 

structure (see schematic in Figure 2(c)). SEM images and 

Image J software were used to calculate fibre diameters 

which were under 1 µm (0.75 ± 0.05 µm) for both layers of 

the construct.

Ability of the scaffolds to support cell 

attachment and cell proliferation

Keratinocytes were seeded onto electrospun plain and 

micropocket containing scaffolds. Cells were fixed at dif-

ferent time points and analysed by SEM. Figure 3 shows 

cells attached to the scaffolds (plain and microfeatured) 

after 24 h of culture.

Keratinocytes were seeded on both the plain and 

microfeatured scaffolds and metabolic activity was 

assessed using MTT. A clear purple colouration of the 

scaffold was seen, denoting areas in where cells were 
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seeded (Figure 3). Elution of the colour showed that the 

viability of cells seeded on the patterned scaffolds was 

significantly greater than on the plain scaffolds (Figure 

3(c)).

To examine cell viability further, live–dead studies 

were undertaken using SYTO9 and PI. Keratinocytes 

were seeded on the scaffolds (30,000 cells per scaffold) 

and samples were studied at 1, 3 and 7 days of culture. 

Figure 4 shows confocal and Z-stack images of live cells 

(SYTO9, green) on both plain and microfabricated scaf-

folds (the percentage of dead cells was lower than 1% at 

7 days). Keratinocytes formed randomly distributed colo-

nies throughout the plain scaffolds whereas there appeared 

to be more colonies retained within the microfeatures for 

the microfabricated scaffolds.

Discussion

Electrospinning has been used extensively by tissue engi-

neers to produce scaffolds for biomedical applications; it is 

a highly versatile technique in which one can spin fibres of 

different diameters, different orientations and intermingle 

fibres so that one can produce bilayer and trilayer, micro- 

and nano-fabricated scaffolds19,20 and even be used to pro-

duce electrospun scaffolds with features within them by 

spinning over a patterned collector.17

The desire to produce microfeatures in scaffolds is really 

stimulated by our increasing understanding of how stem 

cell niches contribute to the repair and regeneration of dam-

aged tissues throughout our life. Research in this area has 

focussed on both the study of metabolic and biological cues 

Figure 3. Human keratinocytes growing on microfabricated and plain scaffolds. Panel (a) shows SEM images of keratinocytes 
attached to both plain and microfabricated scaffolds after 24 h of culture. Panel (b) shows representative MTT assay images 
highlighting the position of skin cells in both plain and microfabricated scaffolds. Panel (c) shows MTT quantitative data at different 
time points (1–7 days) comparing plain scaffolds and scaffolds with microfeatures and highlighting significant differences between 
plain and microfabricated scaffolds for both 3 and 7 days (t student, p < 0.05, N = 3, n = 3).
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of the niches environments21,22 and the design and manu-

facture of physical spaces for the control of stem cell 

fate.18,23,24

In our development of patterned scaffolds, these were 

initially developed to study the impact of microfabricated 

pockets on the performance of limbal epithelial stem 

cells for corneal regeneration.10,17,18 In these papers, we 

produced the 3D architecture by microstereolithography 

and then spun fibres over the resulting template showing 

that the fibres picked up the gross morphology of the 

underlying topography. We were able to show that the 

micropockets enhanced the migration of cells from lim-

bal explants and indeed, these cells transferred readily 

from the membranes to an ex vivo cornea model.18 In 

some studies we pre-treated the microfabricated struc-

tures with biotinylated fibronectin and were able to show 

that cell outgrowth from fibronectin-coated microfabri-

cated structures was 50% greater than from scaffolds 

without structures (or from simple fibronectin coating 

alone).12

In this article, we have extended the use of the above 

technique, applying it to the design of a future cell-free 

microfabricated and multilayered fibrous membrane for 

skin regeneration. Specifically, we have demonstrated the 

ability to design and produce optimised microfeatured 

electrospun membranes with dimensions in the range of 

the rete ridges found in the native skin. Including the rete 

ridge concept within the design of new skin in vitro mod-

els is an innovative approach that can provide us with key 

understanding about skin regeneration mechanisms; for 

example, skin vulnerability to injury has been related to 

the lack of structural stability which is ultimately associ-

ated with a flattened dermal epithelial junction which gen-

erally involves the lack of rete ridge structures.25

Our rete ridge-like electrospun membranes have been 

tested in vitro using human primary keratinocytes and we 

demonstrate that these cells attach and proliferate on the 

scaffolds, migrating within the niche-like structures and 

showing their typical keratinocyte morphology (Figures 3 

and 4). Interestingly, when measuring metabolic activity at 

different time points, it was observed that metabolic activ-

ity was higher overtime for cells located on the microfab-

ricated scaffolds than for cells placed on the plain scaffolds. 

We hypothesise that the increase of surface area provided 

by the pockets allows cells a bigger area in which to prolif-

erate (Figures 3(b) and (c)); this observation is consistent 

with previously reported data in which the rete ridges were 

shown to play a role in increasing the surface area between 

the dermis and the epidermis, therefore influencing 

mechanical stability.2,5,6

In our current design, we have added a second electro-

spun layer (back layer) which allows the creation of a 

more complex model in which we can, in the future, 

include fibroblasts and study their effect on keratinocyte 

distribution and fate. Specifically, in our future work, we 

aim to seed keratinocytes on the microfabricated part of 

the bilayer and fibroblasts on the back membrane and 

study cell re-distribution and cell differentiation on the 

constructs. Our group is currently working on an 

improved manufacturing route which allows the creation 

of fine-tuned rete ridge-like structures with very accurate 

features that can be reproduced via electrospinning; in 

this sense, future work will also include the study of size 

effects on the rete ridges performance. Although this pre-

liminary model was designed with a non-biodegradable 

polymer, we are now working towards the use of polylac-

tide-co-glycolide (PLGA), which degrades within weeks/

months (depending on the content of glycolic acid). This 

article sets the basis for the development of more com-

plex models in which to study skin cell behaviour as well 

as for the design of next generation fibrous cell-free 

membranes for future clinical use in skin regeneration.

Figure 4. Confocal images and z-stack representations showing live keratinocytes (SYTO9 staining, green) at different time points 
(1, 3 and 7 days) on both microfabricated (a–f) and plain scaffolds (g–l).
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Conclusion

We describe the development of an innovative bilayered 

microfabricated electrospun membrane which can be used 

in the study of skin cell regeneration. This membrane seeks 

to mimic the epidermal/dermal morphology found in native 

skin tissue by incorporating well-defined invaginations or 

micropockets to simulate the rete ridges. Human keratino-

cytes were cultured in these models and they successfully 

attached and proliferated on the electrospun membranes. 

Cells seemed to preferably locate on the niche-like areas 

and an increase in metabolic activity was observed when 

keratinocytes were seeded on the microfabricated scaffolds 

(in comparison with plain (non-structured) counterparts). 

These membranes are a new tool for studying skin cell 

interactions and will hopefully provide key data for the 

creation of cell-free new skin regenerative membranes.
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