
This is a repository copy of TwigStackPrime: A Novel Twig Join Algorithm Based on Prime 
Numbers.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/135578/

Version: Accepted Version

Proceedings Paper:
Alsubai, S. and North, S.D. orcid.org/0000-0002-8478-8960 (2018) TwigStackPrime: A 
Novel Twig Join Algorithm Based on Prime Numbers. In: Web Information Systems and 
Technologies. 13th International Conference on Web Information Systems and 
Technologies, 25-27 Apr 2017, Porto, Portugal. Lecture Notes in Business Information 
Processing, 322 . Springer Verlag . ISBN 978-3-319-93526-3 

https://doi.org/10.1007/978-3-319-93527-0_1

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


TwigStackPrime: A Novel Twig Join Algorithm

Based on Prime Numbers

Shtwai Alsubai and Siobhán North

Department of Computer Science,
the University of Sheffield, Sheffield, UK

{safalsubai1,s.north}@sheffield.ac.uk

Abstract. The growing number of XML documents leads to the need
for appropriate XML querying algorithms which are able to utilize the
specific characteristics of XML documents. A labelling scheme is funda-
mental to processing XML queries efficiently. They are used to deter-
mine structural relationships between elements corresponding to query
nodes in twig pattern queries (TPQs). This article presents a design and
implementation of a new indexing technique which exploits the prop-
erty of prime numbers to identify Parent-Child (P-C) relationships in
TPQs during query evaluation. The Child Prime Label (CPL, for short)
approach can be efficiently incorporated within the existing labelling
schemes. Here, we propose a novel twig matching algorithm based on
the well known TwigStack algorithm [3], which applies the CPL ap-
proach and focuses on reducing the overhead of storing useless elements
and performing unnecessary join operations. Our performance evalua-
tion demonstrates that the new algorithm significantly outperforms the
previous approaches.

Key words: XML Databases, Holistic Twig Join Algorithm, Node La-
belling, Twig Pattern Query

1 Introduction

As enterprises and businesses produce and exchange XML-formatted informa-
tion more frequently, consequently, there is an growing requirement for effective
handling of queries on data which conforms to an XML format [17, 15, 16]. Re-
cently, several approaches have been proposed in the literature to process XML
queries [14, 3, 10, 20, 9, 17, 7, 12, 8, 11]. Due to the definition of relationships
in XML as nested tags, data in XML documents are self-describing and flexibly
organized [16, 8]. Therefore, the basic XML data model is a labelled and ordered
tree.

In most XML query languages, such as XPath and XQuery, a twig (small
tree) pattern can be represented as a node-labelled tree whose edges specify
the relationship constraints among its nodes and they are either Parent-Child
or Ancestor-Descendant. As a result, an XML query is defined as a complex
selection on elements of an XML document specified by structural information
of the selected elements. Improving the efficiency of tree patterns matching is a



2 S. Alsubai & S. North.

(a)

e

a

a

x y

x

y

y

(b)

Fig. 1. (a) Range-based labelling scheme and (b) its DataGuide

core operation in processing of an XML query [2, 10, 9, 17, 4] since tree patterns
are the basis for querying structured tree-based data model such as XML.

Generally, the purpose of XML indexing is to improve the efficiency and
scalability of query processing by reducing the search space. Without an index,
XML retrieval algorithms have to scan all the data. Most existing XML query
processing algorithms [20, 22, 12, 9, 8, 21] rely on XML indexing techniques
to scan only the XML data relevant to XML queries, therefore, XML query
performance is improved.

In XML, there are two basic type of indices. The first one is to index each
node in an XML document by recording its positional information [13, 15]. This
group is well-known as node label or labelling schemes. In this group of in-
dices, every node in an XML document is assigned an unique label to record
its position within the original XML document. The labelling scheme should
enable determination of the structural information, i.e., Parent-Child (P-C) and
Ancestor-Descendant (A-D) relationships. As a result, for any given two ele-
ments in an XML document, the relationship between them (if it exists) can
be computed in constant time. A well-known example of node labelling is the
containment labelling scheme proposed in [13]. In this approach, each node is
assigned with a tuple of three values as < start, end, level >. Start and end con-
tain values of positions corresponding to the opening tag < tag − name > and
the closing tag < /tag− name >. Level represents the depth of the node within
its XML tree. The two basic relationships Ancestor-Descendant and Parent-
Child can be determined efficiently. Given two nodes u and v, u is an ances-
tor of v if and only if u.start < v.star < v.end < u.end. A Parent-
Child relationship is defined as node u is the parent of node v if and only if
u.start < v.star < v.end < u.end, v.level = u.level + 1.. by way of
explanation, the u node is in the range of node v.

The alternative to node labelling uses root-to-node paths in the XML docu-
ment and is well-known as graph indexing (also referred to as structural summary



TwigStackPrime 3

or path indexing). Because an XML document can be modelled as rooted, or-
dered, labelled tree, a labelled path is defined as a sequence of tag names in the
form of tag1/tag2/ . . . /tagn from the root represented by tag1 to node n tagged
by tagn. For illustration, consider the XML tree in Figure 1, elements tagged by
a can be stored in different storage structures according to their unique labelled
paths. Consequently, elements corresponding to the path e/a are {a1, a3, a4},
while a2 is stored alone in its distinct labelled path e/a/a. A classic example of
a path index is DataGuide [18]. The main drawback of this approach is that it
only supports a simple path queries. There exist some graph indices that cover
twig path queries as [19] but one of the limitations with these indices is that
they are very large [20].

Both node and graph indexing are essential to XML query processing algo-
rithms, they play important role in providing efficient evaluation of queries with
respect to CPU complexity and memory consumption overhead [22, 2]. Accord-
ing to [23], a labelling scheme has to guarantee uniqueness and order preservation
of node labels, thus the hierarchical relationships between a pair of nodes can be
determined efficiently. The labelling scheme should enable checking all XPath re-
lationships by computations only. To better understand the mechanisms of node
indexing methods and their properties, [15] classified node indexing into four
distinct types; range-based, prefix-based, multiplicative and hybrid labelling. A
range-based labelling scheme will be adopted in this article to explore the effect
of the new indexing mechanism. For sake of simplicity the following example 1
aims to explain the use of labels in the determination of hierarchical relationships
in XML trees.

Example 1. Consider Figure 1, the structural relationships between the ele-
ments can be determined according to the properties for ancestor-descendant
and parent-child relationships, respectively. Consider the relationship between
node a1 and y1, as the elements are labelled based on containment labelling
scheme proposed in [13]. a1 is an ancestor of y1 because 2 < 6 < 8. Also,
a1 is a parent node of a2 because the parent-child conditions are satisfied as
2 < 4 < 8 and 2 + 1 = 3.

Organization. The rest of this article is organised as follows. Section 2 shows
the related work. The new indexing technique will be introduced in Section 3. In
Section 4, we present a holistic twig join matching algorithm TwigStackPrime.
Section 5 presents thorough experimental studies about the performance be-
tween the new algorithm and the previous approaches. We conclude the paper
in Section 6

2 Related Work

Every XML query processing algorithm which performs structural join opera-
tions to match a given query against an XML document relies on either range-
based labelling schemes or prefix-based labelling schemes [3, 10, 17, 14]. This



4 S. Alsubai & S. North.

is due to the fact that labelling schemes where nodes are considered as the ba-
sic unit of a query provides great flexibility in performing any structural query
matching efficiently. The information gained from labels varies according to the
chosen labelling scheme. To determine the effects of the range-based labelling
scheme, [13] proposed multi-predict merge-join algorithm based on the positional
information of the XML tree. An alternative representation, a prefix scheme, of
labels of an XML tree can be seen in [10]. In this sort of labelling scheme, each
node is associated with a sequence of integers that represents the node-ID path
from the root to the node. This approach can be exemplified by the Dewey
system used by librarians, the sequence of components in a Dewey label is sep-
arated by ”.” where the last component is called the self label (i.e., the local
order of the node) and the rest of the components are called the parent label.
For instance, {1.2.3} is the parent of {1.2.3.1}. Another approach, [1] addressed
the limitations of information encoded within labels produced by existing la-
belling schemes. It focus on performing join operations earlier, at leaf levels,
where the selectivity of query nodes is at its peak for data-centric XML docu-
ments. The significance of the proposed approach stems from a comprehensive
labelling scheme that encodes additional structural information, called Nearest
Common Ancestor, NCA for short rather than the basic relationships among
elements of XML documents. None of the previous approaches have taken the
breadth of every node into account. In this paper, we propose a novel approach
to overcome the previous limitations.

One of the most important problems in XML query processing is tree pattern
matching. Generally, tree pattern matching is defined as mapping function M
between a given tree pattern query Q and an XML document D, M : Q →
D that maps nodes of Q into nodes of D where structural relationships are
preserved and the predicates of Q are satisfied. Formally, tree pattern matching
must find all matches of a given tree pattern query Q on an XML document D.

Early work on processing twig pattern matching decomposed twigs into a
set of binary structures, then performed structural joins to obtain individual
binary matchings. The final solution of the twig query is computed by stitching
together the binary matches. In [3], the authors introduced the first holistic twig
join algorithm for matching an XML twig pattern, called TwigStack. It works in
two phases. Firstly, twig patterns are decomposed into a set of root-to-leaf paths
queries and the solutions to these individual paths are computed from the data
tree. Then, the intermediate paths are merge joined to form the final result. The
authors of [3] proposed a novel prefix filtering technique to reduce the number
of irrelevant elements in the intermediate paths.

The classical holistic twig join algorithm TwigStack only considers the
ancestor-descendant relationship between query nodes to process a twig query
efficiently without storing irrelevant paths in intermediate storage. It has been
reported [3] that it has the worst-case I/O and CPU complexity when all edges
in twigs are “//” (AD relationship) linear in the sum of the size of the input
and output lists. However, TwigStack ’s performance suffers from generating use-
less intermediate results when twig queries encounter Parent-Child relationships.



TwigStackPrime 5

The authors of [9] proposed the first refined version of TwigStack. They intro-
duced a new buffering technique to process twig queries with P-C relationships
more efficiently by looking ahead some elements with P-C relationships in lists
to eliminate redundant path solutions. TwigStackList guarantees every single
path generated is a part of the final result if twig queries do not have P-C un-
der branching query nodes. Subsequently, TwigStackList ensures optimal CPU
and I/O cost when twig queries contain only Ancestor-Descendant edges below
branching nodes and allows the occurrence of Parent-Child elsewhere [9]. The
authors of [6] have proven that the TwigStack algorithm and its variants which
depend on a single sequential scan of the input lists can not be optimal for evalua-
tion of tree pattern query with any arbitrary combination of ancestor-descendant
and parent-child relationships.

The approach to examine XML queries against document elements in post-
order was first introduced by [4], Twig2Stack. The decomposition of twigs into
a set of single paths and enumeration of these paths is not necessary to process
twig pattern queries. The key idea of their approach is based on the proposition
that when visiting document elements in post-order, it can then be determined
whether or not they contribute to the final result before storing them in inter-
mediate storage which is trees of stacks to ensure linear processing. TwigList
[11] replaced the complex intermediate storage proposed in Twig2Stack with
lists (one for every query node) and pointers with simple intervals to capture
structural relationships. The authors in [7] proposed a new storage scheme, level
vector split which splits the list connected to its parent list with P-C edge to
a number of levels bounded by the maximum depth of the XML tree. A combi-
nation of pre-order and post-order filtering methods is adopted to develop two
algorithms, namely: TJStrictPre and TJStrictPost. Although, they can prune
irrelevant elements when P-C edges exist, they still perform unnecessary com-
putations and store useless elements corresponding to leaf query nodes.

3 Child Prime Label

We present a new indexing technique which can be applied to the existing la-
belling schemes to skip scanning useless elements in the streams during the
processing of twig pattern queries with Parent-Child edges. The key idea of our
work is to find an appropriate, refined labelling scheme such that, for any given
query node in the TPQ, the set of its child query nodes in the XML document,
this forms the major bottleneck in determining structural relationship because
Parent-Child can be resolved efficiently. This novel approach results in consid-
erably fewer single paths stored than existing algorithm. It also increases the
overall performance and reduces the memory overhead, and the result is shown
clearly in our experiments.

The idea is to identify all the distinct tags in the XML tree and assign them
with unique prime numbers. Then, the intuition of the CPL is to use the modulo
function to create a mapping from an integer to a set of element names. The
leaf elements will not be annotated with CPLs, whereas the inner elements (i.e.,



6 S. Alsubai & S. North.

parent elements) are assigned CPLs. During depth-first scanning, an element
is assigned the next available prime number if its tag has not been examined.
After that, we check the CPL parameter of its parent element to see whether
it is divisible by the assigned prime number or not. If it is, we process the next
element, otherwise the product of parent element’s CPL is multiplied by the
new prime number. We index tags for each XML tree in tag indexing to create
a mapping from an element tag to a prime number as in Equation 1. The tag
indexing is implemented by a mean of hash table. For illustration, consider an
element e, with all distinct names of children, C = {c1, c2, . . . , cm} and a list of
prime numbers P = {p1, p2, . . . , pn}. The bijective mapping function f : C → P
for all element p ∈ P , there is a unique element c ∈ C such that f(c) = p. Then,
the CPL for element e can be computed as follows:

CPL(e) =







m
∏

i=1

f(ci), if m ≥ 1

∅, otherwise
(1)

Proposition 1 (Uniqueness). There is only one unique set of prime factors
for any number.

To explore the effect of CPL approach, we extend the original range-based la-
belling scheme to incorporate the CPL information. Each range-based label with
CPL is presented as quadruple =(start,end,level,CPL). The first three attributes
remain the same as in the original labelling scheme see Section 1. According to
Proposition 1, all distinct names of immediate child elements for a particular
element in the XML tree can be obtained from having the corresponding prime
numbers associated with tag names of its children.

Definition 1. (Child Prime Label) A child prime label is assigned to each
element in an XML document as an extra parameter into the range-based label.
A child prime label indicates the multiplication of distinct prime numbers for
every internal elements within the document. For example, node u is encoded
quadruple =(startu, endu, levelu, CPLu).

Property 1. In any XML labelling scheme that is augmented with Child Prime
Label, for any nodes x,y and z in an XML document, x has at least one or
more child nodes of tag(y) and tag(z) if CPLx mod keytag(y) × keytag(z) =
0 where keytag(y) and keytag(z) are unique prime numbers.

To demonstrate the effect of child prime label, consider the XML tree in Fig. 2
and the tag indexing table on the top right, queries in XML are expressed as twigs
since data is represented as tree. The answer to an XML query is all occurrences
of it in an XML document under investigation. So, if we issue the simple twig
query Q = a[x]/y, only two elements will be considered for further processing,
namely a2 and a4. This is because of CPLa2

mod keytag(x) × keytag(y) =
77 mod 7× 11 equals 0.



TwigStackPrime 7

(a)

Tagname Key

e 3

a 5

x 7

y 11

(b)

Fig. 2. (a) a sample of an XML tree labelled with the original range-based augmented
with CPL parameters and (b) its corresponding tag indexing.

4 Twig Join Algorithm

4.1 Notation

There is abstract data type called a stream, which is a set of elements with
the same tag name, where the elements are sorted in ascending document order.
Each query node q in a twig pattern is associated with an element stream, named
Tq which has a cursor Cq which initially points to the first element in Tq at the
beginning of a query processing. To ensure the linear processing in the filtering
phase of holistic algorithms, only the first element is accessible and the rest of
the elements are unseen by the algorithms. There are also some auxiliary opera-
tions on streams and TPQ and its nodes to facilitate the twig matching process.
Supported operations are as follows: getStart(Cq) returns the start attribute of
the first element of q. getEnd(Cq) returns the end attribute of the first element of
q. getLevel(Cq) returns the level attribute of the first element of q. getCPL(Cq)
returns the CPL attribute of the head element corresponding to query node q.
tagPrime(q) returns the unique prime number associated with q from tag index-
ing. advance(Cq) forward the cursor of q to the next element. eof(Tq) to judge
whether Cq points to the end of stream of Tq. children(q) returns all child nodes
of q. subtree(q) returns all child nodes which are in the subtree rooted at q.
childrenAD(q) returns all child nodes which have A-D relationship with q. chil-
drenPC(q) returns all child nodes which have P-C relationship with q. isRoot(q)
returns boolean values to see whether q is the root or not. getRoot(TPQ) returns
the query root of the input TPQ. parent(q) returns the parent query node of q.
isLeaf(q) returns boolean values to see whether q is a leaf node or not.



8 S. Alsubai & S. North.

4.2 TwigStackPrime

In this section, we present a new holistic twig join algorithm, called TwigStack-
Prime. It can be seen as an alternative to TwigStack algorithm. The structure
of the main algorithm, TwigStackPrime presented in Algorithm 2 is not much
different from the original holistic twig join algorithm TwigStack [3] which uses
two phases to compute answers to a TPQ. In the first phase, solutions to root-
to-leaf paths in a TPQ are found and stored in output arrays (Lines 1-11). It
repeatedly calls the getNext algorithm (see Algorithm 1) with the query root
as the parameter to return the next query node for processing. In the second
phase (Line 12), solutions in the output arrays are merge-joined based on their
common branching query nodes and query matches are returned as the query
result. The number of output arrays is equal to the number of leaf query nodes
(i.e., the number of individual root-to-leaf paths in a TPQ).

getNext is a fundamental function which is called by the main algorithm to
decide the next query node to be processed. It is used to guarantee that the
current element associated with the query node returned is part of the final
output since all the basic structural relationships are thoroughly checked by
getNext or its supporting subroutine getElement. getNext(q) returns an element
eq of a query node q ∈ TPQ with three properties:

i eq has a descendant element eqi in each of the streams corresponding to its
child elements where eqi is the first element of a query node qi = children(q)
(this property is checked in Lines 9-11).

ii each of its child elements satisfies recursively the first property (this property
is checked in Lines 4-5).

iii if q has Parent-Child edge(s) with its child query nodes, then eq has a child
eqi in Tqi for each query node qqi = childrenPC(q) (this property is checked
in Lines 21-23 of getElement function).

In the function getElement(q), if q does not have P-C edges, the first ele-
ment of q is returned. Otherwise, Line 22 checks CPL relationship for all child
query nodes with P-C relationships. If the first element does not satisfy the CPL
relationship (the third property), the function skips all elements which do not
satisfy the CPL relationship. Otherwise, the first element is found to satisfy the
CPL relationship, then it is returned in Line 26 if the stream is unfinished. In
case the stream reaches the end, Line 24 returns virtual end element labelled
with infinity values as (∞,∞,∞) to complete the query processing.

Compared to the original TwigStack which does not apply CPL relationships,
the effect of TwigStackPrime can be illustrated in the following example.

Example 2. Consider the XML tree of Fig. 3 and Q1 = a[//x]/y. Assume the
tree is labelled with range-based labelling and CPL approach as in Fig. 2. Ini-
tially, the cursors point at the first elements in streams. getNext(a) is called
since a is the root query node. The first call of getNext(a) in TwigStack returns
a1 because it satisfies the descendant extension condition, but TwigStackPrime
skips a1 since it does not satisfy the CPL relationship that is CPL of a1 is not



TwigStackPrime 9

Algorithm 1: getNext(q) [2]

Input: q is a query node
Result: a query node in TPQ which may or may not be q

1 if isLeaf(q) then
return: q

2 foreach node ni in children(q) do

3 gi = getNext(ni) if gi 6= ni then
return: gi

4 nmax = a query node with the maximum start value ∈ children(q)
5 nmin = a query node with the minimum start value ∈ children(q)
6 while getEnd(getElement(q)) < getStart(getElement(nmax)) do

7 advance(q)
8 if getStart(getElement(q)) < getStart(getElement(nmin)) then

return: q
9 else

return: nmin

10 Function getQCPL(Query node q):
11 // the prime number assigned to the query node which is the product of its

child query node prime numbers
12 qCPL = 1
13 foreach node ni in childrenPC(q) do

14 qCPL = qCPL × tagPrime(ni)
return: qCPL

15 Function getElement(Query node q):
16 if childrenPC(q) > 0 then

17 while ¬ eof(Cq) ∧ getCPL(Cq) % getQCPL(q) 6= 0 do

18 advance(q)

19 if eof(Cq) then
return: ∞,∞,∞, 1 // out of range label

20

21 else
return: Cq // the current head element in the stream of q

22

divisible by the prime number associated with the tag name y. The algorithm
has to skip n elements with tag x since they are useless to the first element a2.

e

a1

x1 xn a2

xn+1 y1

Fig. 3. Illustration to the suboptimal processing of TwigStack.



10 S. Alsubai & S. North.

Algorithm 2: TwigStackPrime [2]

Input: TPQ Q
1 while ¬end(getRoot(Q)) do

2 qact = getNext(getRoot(Q)) // see Algorithm
3 if ¬ isRoot(q) then

4 cleanStack(getElement(qact), parent(qact))
5 if isRoot(q) ∨ ¬ empty(Sparent(qact)) then

6 cleanStack(getElement(qact),qact)
7 moveToStack(qact)
8 if isLeaf(qact) then

9 outPathSolution(qact) // Blocked solutions

10 else

11 advance(qact)

12 MergeAllPathSolutions() // Phase 2
13 Function cleanStack(Query node qact,Query node q):
14 // pop any element in Sq which is not the ancestor of getElement(qact)
15 while ¬empty(Sq) ∧ getEnd(top(Sq)) < getStart(getElement(qact)) do
16 pop(Sq)

17 Function moveToStack(Query node q):
18 // p is a pointer to the top parent stack if q is the root p is null
19 // p = top(Sparent(q))
20 push(Cq, p) to Sq

21 Function end(Query node q):
return: ∀ni ∈ subtree(q) : isLeaf(ni) ∧ eof(Cni

)

After this, TwigStackPrime can ensure that a2 satisfies the three properties and
thus is pushed into the stack for query node a. For instance, CPL(a1) → 35
mod tagPrime(y) → 11 is not equal to zero. The algorithm terminates after
performing one recursive calls of getNext(a). On the other hand, TwigStack has
to iterate n+1 times to answer match to Q1. TwigStack also generates n useless
paths for Q1 over the given XML tree.

4.3 Analysis of TwigStackPrime

In this section, we show the correctness of our algorithms. The correctness of
TwigStackPrime algorithm can be shown analogously to TwigStack due to the
fact that they both use the same stack mechanism. In other words, the correct-
ness of Algorithm 2 follows from the correctness of TwigStack [3].

Definition 2 (Head element). For each query node q in a TPQ Q, the element
indicated by the cursor Cq is the head element of q.

Definition 3 (Child and Descendant Extension). A query node q has the
child and descendant extension if the following properties hold:

– ∀ ni ∈ childrenAD(q), there is an element ei which is the head of Tni
and

a descendant of eq which is the head of Tq.



TwigStackPrime 11

– ∀ ni ∈ childrenPC(q), there is an element eq which is the head of Tq and
its CPL parameter is divisible by tagPrime(ni).

– ∀ ni ∈ children(q), ni must have the child and descendant extension.

The above definition is a key for establishing the correctness of the following
lemmas:

Lemma 1. For any arbitrary query node q′ which is returned by getNext(q), the
following properties hold:

1. q′ has the child and descendant extension.
2. Either q == q′ or q′ violates the child and descendant extension of the head

element eq of its parent(q′).

Proof. (Induction on the number of child and descendants of q). If q is a leaf
query node, it is returned in Line 2 because it verifies all the properties 1 and
2a in Lemma 1. Otherwise, the algorithm recursively gets gi = getNext(ni) for
each child of q in Line 4. If for some i, there is gi 6= ni, and it is known by
inductive hypothesis that gi verifies the properties 1 and 2b with respect to q, so
the algorithm returns gi in Line 6. Otherwise, by inductive hypothesis that all
q ’s child nodes satisfy properties 1 and 2a with their corresponding sub-queries.
At getElement(q) (Lines 21-25), getNext advances from Tq all segments that do
not satisfy the divisibility by the product of prime numbers in childrenPC(q)
returned from getQCPL. After that, the algorithm advances from Tq (Lines 9-
10) all segments that are beyond the maximum start value of ni ∈ children(q).
Then, if q satisfies properties 1 and 2a, it is returned at Line 12. Otherwise,
Line 13 guarantees that ni ∈ children(q) with the smallest start value satisfies
properties 1 and 2b with respect to start value of q ’s head element eq is returned.

Lemma 2. Suppose getNext(q) returns a query node q′ and q 6= q′ at either
Line 4 or 13 of getNext. Then there is no new solution involving top element of
the parent stack of q′ denoted as p which has end value less than the start value
of the head element of q′ or some elements which are in children(p).

Proof. Suppose that on contrary, there is a new solution using some elements of
p = parent(q′) in Sp denoted as eSp

for which getEnd(eSp
) ¡ getStart(q′). Using

range-based property, it will be known that all elements from children(p) in some
solutions must have end values less than the end value of eSp

, therefore less than
the start value of the head element of q′. Since getNext(q) = q′ and from Line 3
of getNext for each child node ni of p (including q′), it is getNext(ni) = ni and
getStart(q′) ≤ getStart(ni). Using Lemma 1, it will be known that each ni has a
child and descendant extension, and thus all elements of children(ni) have start
values greater than getStart(ni), therefore greater than getStart(q′), which is a
contradiction.

Theorem 1. Given a twig pattern query Q and an XML document D, Algorithm
TwigStackPrime correctly returns answer to Q on D.



12 S. Alsubai & S. North.

Proof. In Algorithm TwigStackPrime, getNext(root) is repeatedly invoked to de-
termine the next query node to be processed. Using lemma 1, it is known that
all elements returned by qact = getNext(root) have the child and descendant ex-
tension. If qact 6= root, Line 4, the algorithm pops from Sparent(qact) all elements
that are not ancestors of the head element of qact by Lemma 2. After that, it is
already known qact has a child and descendant extension so that Line 5 checks
whether Sparent(qact) is empty or not. If so, it indicates that it does not have
the ancestor extension, and it can be discarded safely to continue with the next
iteration. Otherwise, the current head element of qact has both the ancestor and
child and descendant extensions which guarantee its participation in at least
one root-to-leaf path. Then, Sqact

is cleaned by popping elements which do not
contain the head of qact. Then, the item in the stack is used to maintain point-
ers from itself to the query root. Finally, if qact is a leaf node, we compute all
possible combinations of single paths with respect to qact, line 8-9.

The correctness holds for TPQs with both A-D and P-C relationships, it
can be shown that TwigStackPrime algorithm is optimal when P-C axes exist
only in the deepest level of a twig query. The intuition is simple since the CPL
relationship can detect hidden immediate child elements only in two streams
related by P-C relationships. Henceforth, we can conclude the following result.

Theorem 2. Consider a twig pattern query Q with n query nodes, and only
Ancestor-Descendant edges or there are Parent-Child edges to connect leaf query
nodes, and an XML document D. TwigStackPrime has worst-case I/O and CPU
time complexities linear in the sum of the size of the n input lists and the output
list.

e

a1

x1 a2

x2 y1

f1

y2

a4

x4 y3

(a) an XML tree.

Tagname Key

e 3

a 5

x 7

y 11

f 13

(b) tag indexing.

Fig. 4. Sub-optimal evaluation of TwigStackPrime where redundant paths might be
generated.



TwigStackPrime 13

Example 3. Consider the XML tree of Fig. 4 and Q2 = a[/x]/y/f, the head el-
ements in their streams are a → a1, x → x1, y → y1 and f → f1. The first
call of getNext(root) inside the main algorithm will return a → a1 because it has
A-D relationship with all head elements and satisfies CPL with x and y, and its
descendant y → y1 also satisfies the child and descendant extension with respect
to f. However, TwigStackPrime produces the useless path (a1, x1) because y2
does not have child of f-node [2].

5 Experimental Evaluation

In this section we present the performance comparison of twig join algorithms,
namely: TwigStackPrime the new algorithm based on Child Prime Label ap-
proach, along with TwigStack [3]. The original twig join algorithm that was re-
ported to have optimal worst-case processing with A-D relationship in all edges,
and TwigStackList is the first refined version of TwigStack to process P-C ef-
ficiently [9]. TwigStackList was chosen in this experiment because it utilizes a
simple buffering technique to prune irrelevant elements from streams. We eval-
uated the performance of these algorithms against both real-world and artificial
datasets. The performance comparison of these algorithms was based on the
following metrics:

1. Number of intermediate solutions: the individual root-to-leaf paths generated
by each algorithm.

2. Processing time: the main-memory running time without counting I/O costs.
All twig pattern queries were executed 103 times and the first three runs were
excluded for cold cache issues. We did not count the I/O cost for tag indexing
files for TwigStackPrime algorithm because it is negligible, and the cost to
read the tag indexing is constant over a series of twig pattern queries.

5.1 Experimental Settings

All the algorithms were implemented in Java JDK 1.8. The experiments were per-
formed on 2.9 GHz Intel Core i5 with 8GB RAM running in Mac OS X El Capi-
tan. The benchmarked data sets used in the experiments and their characteristics
are shown in Table 1. The selected datasets and benchmark are significantly more
frequent in the literature of XML query processing [3, 9, 7, 12, 8, 11]. DBLP is
a highly structured document and is very wide and shallow, while TreeBank is
a deep-recursive dataset with a large number of distinct tags and has irregular
structure. Both are real-world and obtained from the University of Washing-
ton XML repository [25]. The XMark dataset is well-known benchmarked XML
dataset [24]. To ensure fair comparison, DBLP and XMark datasets were selected
because they are both considered as data-oriented and have very strong struc-
tures. We also generated Random dataset similar to that in [9] but we have the
two parameters: depth and fan-out. The depth of randomly generated tree has
maximum value sets to 13 and fan-out has range from 0 to 6, respectively. This



14 S. Alsubai & S. North.

dataset was created to test the performance where the XML document combines
features of DBLP and TreeBank, being structured and deeply-recursive at the
same time.

Table 1. Characteristics of XML datasets used in the experiments.

DBLP TreeBank XMark Random

Rangae-based MB 65.3 43 35.3 69.4
CPL MB 70.3 47.9 40.1 74.1
△ size MB 5 4.9 4.8 4.7
Tag Indexing Size KB 0.48 3 1 0.049
Nodes (Millions) 3.73 2.43 2.04 3.94
Max/Avg depth 6/2.9 36/7.8 12/5.5 13/7
Distinct Tags 40 251 83 6
Largest Prime Numbers 151 1597 379 19

The XML structured queries for evaluation over these dataset were chosen
specifically because it is not common for queries, which contain both ’//’ and ’/’,
to have a significant difference in performance for tightly-structured document
such as DBLP and XMark. TreeBank twig queries were obtained from [9] and
[7]. Twig patten queries over the random data set were also randomly generated.
Table 2 shows the XPath expressions for the chosen twig patterns. The code
indicates the data set and its twig query, for instance, TQ2 refers to the second
query issued over TreeBank dataset.

5.2 Experimental Result

We compared TwigStackPrime algorithm with TwigStack and TwigStackList
over the above mentioned twig pattern queries against the data sets selected.
The Kruskal-Wallis test is a non-parametric statistical procedure was carried
out on processing time, the p-value turns out to be nearly zero (p-value less
than 2.2−16), it strongly suggests that there is a difference in processing time
between two algorithms at least as shown in Fig. 5.

TwigStackPrime vs. TwigStack We compare the performance between
TwigStackPrime and TwigStack. Table 3 shows that TwigStackPrime always
generates fewer root-to-leaf paths than TwigStack. This is because TwigStack-
Prime uses CPL relationships to prune irrelevant elements. For instance, in
TQ6, TwigStackPrime produced only 22 565 useful paths, whereas the number
of intermediate paths in TwigStack was 702 391. Although DBLP and XMark
have relatively regular structures, TwigStack still produced irrelevant paths. For
this type of datasets, TwigStackPrime shows optimal performance by generating
only paths contributing in the final results. Since there is a difference in perfor-
mance suggested by the Kruskal-Wallis test, we ran pairwise comparison based



TwigStackPrime 15

(a) DBLP (b) XMark

(c) Random (d) TreeBank

Fig. 5. Processing time for twig pattern queries against DBLP in 5a and XMark in
5b. 5c and 5d shows processing time for TPQs on Random and TreeBank datasets,
respectively [2].

Fig. 6. The processing time taken by each algorithm to run the two most expensive
queries in the experiments, normalizing query times to 1 for the fastest algorithm for
each query [2].



16 S. Alsubai & S. North.

Table 2. Experimental TPQs.

Code XPath expression Result

DQ1 /dblp/inproceedings[//title]//author 88
DQ2 //www[editor]/url 21
DQ3 //article[//sup]//title//sub 278
DQ4 //article[/sup]//title/sub 0

XQ1 /site/closed auctions/closed auction[annotation/description/text/keyword]/date 4042
XQ2 /site/closed auctions/closed auction//keyword 12527
XQ3 /site/closed auctions/closed auction[//keyword]/date 12527
XQ4 /site/people/person[profile[gender][age]]/name 3243
XQ5 //item[location][//mailbox//mail//emph]/description//keyword 16956
XQ6 //people/person[//address/zipcode]/profile/education 3241

TQ1 //S[//MD]//ADJ 19
TQ2 //S/VP/PP[/NP/VBN]/IN 152
TQ3 //VP[/DT]//PRP DOLLAR 3
TQ4 //S[/JJ]/NP 5
TQ5 //S[VP[DT]//NN]/NP 32
TQ6 //S[//VP/IN]//NP 20311
TQ7 //S/VP/PP[//NP/VBN]/IN 320
TQ8 //EMPTY/S//NP[/SBAR/WHNP/PP//NN]/ COMMA 17
TQ9 //SINV//NP[/PP//JJR][//S]/NN 4

RQ1 //b//e//a[//f][d] 1331
RQ2 //a//b[//e][c] 18033
RQ3 //e//a[/b][c] 11216
RQ4 //a[//b/d]//c 59568
RQ5 //b[d/f]/c[e]/a 377
RQ6 //c[//b][a]/f 47159
RQ7 //a[c//e]/f[d] 1906
RQ8 //d[a//e/f]/c[b] 204
RQ9 //a[d][c][b][e]//f 3757

on Manny-Whitney test which showed that in most test twig queries TwigStack-
Prime outperformed TwigStack as depicted in Fig. 5. In our experiments, we
used TQ6 and RQ6 because they touch very large portions of their datasets and
produce quite huge results. For TQ6 and RQ6, TwigStackPrime were more than
40 and 5 time faster than TwigStack, respectively.

TwigStackPrime vs. TwigStackList We now compare the performance be-
tween TwigStackPrime and TwigStackList. For highly structured datasets, both
TwigStackPrime and TwigStackList are optimal as presented in Table 3. How-
ever, none of the algorithms are optimal in the other datasets because they
have redundant paths and many tags are deeply recursive. In most queries,
TwigStackPrime generated relatively fewer paths than TwigStackList. This is
because TwigStackPrime uses CPL relationships to prune useless elements while
TwigStackList utilises a simple buffering technique bounded by the number of
elements in the longest path of the queried XML dataset. For example, RQ9

where some of branching edges are P-C, TwigStackPrime can guarantee optimal
evaluation because RQ9 is its optimal class of query as mentioned in Theorem 2.
TwigStackPrime produced 8786 useful paths whereas TwigStackList generated



TwigStackPrime 17

17 328 useless paths. Even though RQ4 is optimal for TwigStackList because it
does not have P-C in branching axes, TwigStackPrime evaluated RQ4 efficiently
see Fig. 5 and Table 3.

Since there was a difference in performance, we ran pairwise comparison
based on Manny-Whitney test which showed that in most twig queries tested
TwigStackPrime outperformed TwigStackList, however, they showed same per-
formance in XQ2 , XQ3 and XQ6 see Fig. 5. For expensive queries, pair-
wise comparison based on Manny-Whitney test between TwigStackPrime and
TwigStackList resulted in p− value < 0.001 which suggests a significant differ-
ence and TwigStackPrime has the best performance. When evaluating RQ6,
TwigStackPrime has the best performance, it is roughly twice as fast than
TwigStackList.

Summary It can be seen in Fig. 5 the only twig queries where TwigStackPrime
has slower performance comparing to the others is TQ3 and TQ9 because they
touch very little of the dataset. According to the experimental results, we can
draw the following two conclusions:

1. The CPL approach is a new source of improvement for holistic twig matching
algorithms since it can reduce the number of elements processed and the size
of intermediate result when TPQs contain Parent-Child edges.

2. TwigStackPrime significantly outperformed TwigStack and TwigStackList
for different types of XML documents in terms of their structures including
shallow and deep datasets. TwigStackPrime showed a superior performance
in avoiding the storage of unnecessary paths while processing time is im-
proved.

Table 3. Single paths produced by each algorithm [2].

Code TwigStack TwigStackList TwigStackPrime

DQ1 147 139 139
DQ4 98 0 0

XQ1 9414 6701 6701

TQ2 2236 388 441
TQ3 10663 11 5
TQ4 70988 30 10
TQ6 702391 22565 22565
TQ8 58 27 26
TQ9 29 17 8

RQ1 2076 1843 1795
RQ2 29914 24235 23057
RQ3 20558 16102 15505
RQ4 67005 57753 57753
RQ5 3765 901 1093
RQ6 201835 98600 72084
RQ7 6880 2791 3219
RQ8 746 322 406
RQ9 179546 26114 8786



18 S. Alsubai & S. North.

6 Conclusion and Future Work

In this paper, we proposed the CPL approach to improve the pre-filtering strat-
egy in twig join algorithms when P-C edges are involved in TPQs. The key to
the TwigStackPrime is the use of the CPL approach as the labelling scheme
and of the advanced preorder filtering function getNext, which both enable fast
determination of P-C relationships between elements of XML documents while
scanning them in preorder traversal. This property is exploited to reduce stor-
age space by skipping irrelevant elements from the streams and to improve the
overall performance.

Compared to the previous labelling schemes, the CPL approach can be used
to derive a set of the tag names of child elements associated with their inner
elements. P-C edges, hence, can be solved in very efficient way. TwigStackPrime
algorithm shows the general framework we use for introducing the CPL approach
into existing twig matching algorithms, extending algorithm like TwigStack.

Existing research revolves around improving the efficiency of twig matching
algorithms and extending querying algorithms to make them more able to handle
positional predicates and order axes in XPath expressions. A promising approach
for speeding up the query processing would be to combine our approach with
the previous orthogonal algorithms to propose a new one-phase twig matching
algorithm that we hope will be superior to the previous approaches. The current
preliminary idea is to examine processing ordered twig patterns and positional
predicate in a way that would consume less time and memory than the existing
approaches. We will consider one-phase and ordered twig matching algorithms
as our future work.

References

1. S Alireza Aghili, Li Hua-Gang, Divyakant Agrawal and Amr El Abbadi. TWIX:
twig structure and content matching of selective queries using. InfoScale ’06:
Proceedings of the 1st international conference on, page 42, 2006.

2. Shtwai Alsubai and Siobhán North. A Prime Number Approach to Matching
an XML Twig Pattern including Parent-Child Edges. In The 13th International
Conference on Web Information Systems and Technologies (WEBIST 2017), pages
204–211, Porto, 2017. SCITEPRESS Science and Technology Publications, Lda.

3. Nicolas Bruno, Nick Koudas, and Divesh Srivastava. Holistic twig joins: optimal
XML pattern matching. In Proceedings of the 2002 ACM SIGMOD international
conference on Management of data, pages 310–321, Madison, Wisconsin, 2002.
ACM.

4. Songting Chen, Hua-Gang Li, Junichi Tatemura, Wang-Pin Hsiung, Divyakant
Agrawal, K Sel, #231, uk Candan, and K Selçuk Candan. Twig2Stack: bottom-up
processing of generalized-tree-pattern queries over XML documents, 2006.

5. Ting Chen, Jiaheng Lu, and Tok Wang Ling. On Boosting Holism in XML Twig
Pattern Matching Using Structural Indexing Techniques. Science, pages 455–466,
2005.

6. B Choi, M Mahoui, and D Wood. On the optimality of holistic algorithms for twig
queries. Database and Expert Systems Applications, pages 28–37, 2003.



TwigStackPrime 19

7. Nils Grimsmo, Truls Amundsen Bjørklund, and Magnus Lie Hetland. Fast optimal
twig joins. VLDB, 3(1-2):894–905, sep 2010.

8. Jiang Li and Junhu Wang. Fast Matching of Twig Patterns. Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 5181 LNCS:523–536, 2008.

9. Jiaheng Lu, Ting Chen, and Tok Wang T.W. Ling. Efficient Processing of XML
Twig Patterns with Parent Child Edges : A Look-ahead Approach. In Proceed-
ings of the thirteenth ACM international conference on Information and knowledge
management, number i, pages 533–542, Washington, D.C., USA, 2004. ACM.

10. Jiaheng Lu, Xiaofeng Meng, and Tok Wang Ling. Indexing and querying XML
using extended Dewey labeling scheme. Data & Knowledge Engineering, 70(1):35–
59, 2011.

11. Lu Qin, Jeffrey Xu Yu, and Bolin Ding. TwigList: Make Twig Pattern Match-
ing Fast. In Ramamohanarao Kotagiri, P Radha Krishna, Mukesh Mohania, and
Ekawit Nantajeewarawat, editors, Advances in Databases: Concepts, Systems and
Applications: 12th International Conference on Database Systems for Advanced
Applications, DASFAA 2007, Bangkok, Thailand, April 9-12, 2007. Proceedings,
pages 850–862. Springer Berlin Heidelberg, Berlin, Heidelberg, 2007.

12. Huayu Wu, Chunbin Lin, Tok Wang Ling, and Jiaheng Lu. Processing XML twig
pattern query with wildcards. Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),
7446 LNCS:326–341, 2012.

13. Chun Zhang, Jeffrey Naughton, David DeWitt, Qiong Luo, and Guy Lohman. On
supporting containment queries in relational database management systems. ACM
SIGMOD Record, 30:425–436, 2001.

14. S Al-Khalifa, H V Jagadish, N Koudas, J M Patel, D Srivastava, and Wu Yuqing.
Structural joins: a primitive for efficient XML query pattern matching. In Data
Engineering, 2002. Proceedings. 18th International Conference on, pages 141–152,
2002.

15. Haw, S.-C. and Lee, C.-S. (2011). Data storage practices and query processing in
XML databases: A survey. Knowledge-Based Systems, 24(8):1317–1340.

16. Gang, G. and Chirkova, R. (2007). Efficiently Querying Large XML Data Repos-
itories: A Survey. Knowledge and Data Engineering, IEEE Transactions on,
19(10):1381–1403.

17. Lu, J., Ling, T. W., Bao, Z., and Wang, C. (2011a). Extended XML tree pattern
matching: Theories and algorithms. IEEE Transactions on Knowledge and Data
Engineering, 23(3):402–416.

18. R. Goldman and J. Widom, Dataguides: Enabling query formulation and opti-
mization in semistructured databases, Proc. Int. Conf. Very Large Data Bases, pp.
436445, 1997.

19. R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth, Covering indexes
for branching path queries, Proc. 2002 ACM SIGMOD Int. Conf. Manag. data -
SIGMOD 02, p. 133, 2002.

20. T. Chen, J. Lu, and T. W. Ling, On Boosting Holism in XML Twig Pattern
Matching Using Structural Indexing Techniques, Science (80-. )., pp. 455466, 2005.

21. R. Bača, M. Krátký, T. W. Ling, and J. Lu, Optimal and efficient generalized twig
pattern processing: a combination of preorder and postorder filterings, VLDB J.,
vol. 22, no. 3, pp. 369393, Oct. 2012.

22. R. Bača and M. Krátký, XML query processing, Proc. 16th Int. Database Eng.
Appl. Sysmposium - IDEAS 12, pp. 813, 2012.



20 S. Alsubai & S. North.

23. C. Mathis, T. Härder, K. Schmidt, and S. Bächle, XML indexing and storage:
fulfilling the wish list, Comput. Sci. - Res. Dev., pp. 118, 2012.

24. A. Schmidt, F. Waas, M. Kersten, R. Busse, M. J. Carey, and G. B. Amsterdam,
XMark : A Benchmark for XML Data Management, in VLDB 02 Proceedings of
the 28th international conference on Very Large Data Bases, 2002, pp. 974985.

25. G. Miklau, UW XMLData Repository. [Online]. Available:
http://www.cs.washington.edu/research/xmldatasets/. [Accessed: 04-Feb-2016].


