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Abstract
Purpose The aim of this multi-center study was to discover and validate radiomics classifiers as image-derived biomarkers for
risk stratification of non-small-cell lung cancer (NSCLC).
Patients and methods Pre-therapy PETscans from a total of 358 Stage I–III NSCLC patients scheduled for radiotherapy/chemo-
radiotherapy acquired between October 2008 and December 2013 were included in this seven-institution study. A semi-
automatic threshold method was used to segment the primary tumors. Radiomics predictive classifiers were derived from a
training set of 133 scans using TexLAB v2. Least absolute shrinkage and selection operator (LASSO) regression analysis was
used for data dimension reduction and radiomics feature vector (FV) discovery.Multivariable analysis was performed to establish
the relationship between FV, stage and overall survival (OS). Performance of the optimal FV was tested in an independent
validation set of 204 patients, and a further independent set of 21 (TESTI) patients.
Results Of 358 patients, 249 died within the follow-up period [median 22 (range 0–85) months]. From each primary tumor, 665
three-dimensional radiomics features from each of seven gray levels were extracted. The most predictive feature vector discov-
ered (FVX) was independent of known prognostic factors, such as stage and tumor volume, and of interest tomulti-center studies,
invariant to the type of PET/CT manufacturer. Using the median cut-off, FVX predicted a 14-month survival difference in the
validation cohort (N = 204, p = 0.00465; HR = 1.61, 95% CI 1.16–2.24). In the TESTI cohort, a smaller cohort that presented
with unusually poor survival of stage I cancers, FVX correctly indicated a lack of survival difference (N = 21, p = 0.501). In
contrast to the radiomics classifier, clinically routine PET variables including SUVmax, SUVmean and SUVpeak lacked any
prognostic information.
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Conclusion PET-based radiomics classifiers derived from routine pre-treatment imaging possess intrinsic prognostic information
for risk stratification of NSCLC patients to radiotherapy/chemo-radiotherapy.

Keywords Radiomics . NSCLC . Survival . PET . Risk stratification

Introduction

Lung malignancy is a leading cause of cancer-related death,
with a predicted 5-year survival rate of 8–13% [1].
Worldwide, approximately 1.8 million new cases were diag-
nosed in 2012. Distinct from histology, stage, and perfor-
mance status, the ability to provide prognosis on the basis of
tumor biology is often lacking in current clinical practice.
More recently, DNA sequencing from several tumor regions
has been undertaken to highlight spatio-temporal mutational
heterogeneity [2, 3]. Currently, imaging identifies the sites of
disease and response to treatment by assessing the change in
size but other than TNM staging provides limited prognostic
information. In addition, outcomes of patients within each
TNM staging group can vary widely highlighting the need
for more accurate prognostic markers. Potential interventional
methods to assess genetic heterogeneity will probably employ
multi-core invasive biopsy, which limits its safe use for routine
prognosis determination. The micro- and macro-structure of
tumors, however, also harbor heterogeneous phenotypes due
to factors such as hypoxia, necrosis, directional/non-
directional tumor cell growth, vascular density, and immune
infiltration. It is hypothesized that the asymmetric local, re-
gional, and global density and architectural distortions of tu-
mor phenotypes could have prognostic value, and this has
resulted in a new 'omics' — radiomics [4–6] — whereby
quantitative features describing tumor phenotypes are extract-
ed in high-throughput from routine radiologic images and fur-
ther processed by machine learning methods for prognostica-
tion; such high-dimensional output of tumor phenotypic het-
erogeneity is thought to have important prognostic value, with
drug resistance and potential for development of metastatic
spread implied.

2-deoxy-2-18Fluorine-fluoro-D-glucose positron emission
tomography-computed tomography (FDG-PET/CT) is rou-
tinely used for staging lung cancer prior to consideration of
radical treatment such as surgery or chemo-radiotherapy in-
cluding the use of stereotactic body radiotherapy. Indeed,
radiomics classifiers based on the CT component have been
investigated for predicting lung cancer histology and shown to
have moderate prediction accuracy [7]. Beyond the use of
FDG-PET/CT for staging, we investigated in the present study
whether pre-therapy radiomics features derived from routine
FDG-PET/CT examinations of non-small-cell lung cancer
(NSCLC) patients who were subsequently treated with
radiotherapy/chemo-radiotherapy across multiple hospitals
might harbor useful prognostic information.

Patients and methods

Patients and procedures

The inclusion criteria were consecutive patients with non-
small-cell lung cancer (NSCLC), or entire available cohort
for The Cancer Imaging Archive (TCIA) (http:/ /
cancerimagingarchive.net/, last accessed June 2015), with a
target lesions ≥ 5 ml who had a pre-therapy FDG-PET/CT
scan available and underwent radical radiotherapy with or
without chemotherapy between October 2008 and December
2013. The minimum lesion volume of interest (VOI) of 5 ml
was selected, in accordance with work carried out by Soussan
et al. [8]. Exclusion criteria were patients undergoing surgery
or palliative treatment. Institutional ethical approval for retro-
spective analysis was obtained, and informed consent was
waived.

The following hospitals took part in the trial (Fig. 1):
Imperial College Healthcare NHS Trust, London, St
James’s University Hospital, Leeds, Guy’s and St.
Thomas’ Hospitals, London, The Royal Marsden Hospital,
Sutton, Nottingham University Hospital, Nottingham, and
Mount Vernon Hospital, Northwood; a dataset was also ob-
tained from TCIA. This work was carried out sequentially
with training and validation followed by TESTI. Data from
the four hospitals and The Cancer Imaging Archive
(Imperial, Kings, Leeds, and Royal Marsden, and TCIA)
patients were collated and randomly split into two (by com-
puter) as training set (n = 133) and validation set (n = 134).
A power calculation based on the training set (HR = 1.78,
median survival: 2.92 years, censoring rate: 0.012, median
follow-up: 2.17 years) suggested a sample size of 203 was
needed to obtain the alpha of 0.05 and beta of 0.25.
Therefore, all 70 cases from another centre were added to
the validation set to make a total of 204. This validation set
was only used for testing the findings from the training set.
We used the maximum number of patients in the TCIA da-
tabase that were available at the time. The original number
of patients screened and basis for exclusion are indicated in
Supplementary Table 1.

Pre-therapy clinico-pathologic data were obtained from
medical records (Table 1). Overall survival was defined as
number of months from commencement of treatment to date
of death. Patients who were alive were censored at last follow-
up to 31st July 2016. The hospital records were used to deter-
mine who was still alive at the time of cut-off. This was a
multi-institutional analysis and so patients were examined on
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different PET/CT scanners including Phillips Allegro Body,
Phillips Gemini TF TOF 16 (Phillips Medical Systems,
Amsterdam, Netherlands), Siemens Biograph 64 mCT,
Siemens Biograph 128 mCT (Siemens Healthcare, Erlangen,
Germany), GE Healthcare Discovery ST, GE Discovery STE
(GE Healthcare, Waukesha, Wisconsin, USA), CTI ECAT
HR+ (CTI PET Systems Inc., Knoxville, Tennessee, USA),
and CPS/Siemens Sensation 16. For PET, slice thickness
ranged between 2 and 5.15 mm; the matrix size ranged be-
tween 1282 and 5122. After injection of 350–500 MBq 18F-
FDG [9], emission data were acquired (five or six bed posi-
tions, 2–4 min per bed position) after a 60–90 min uptake
period. In all cases, PET/CTscans were performed from upper
thighs to the base of the skull following ≥ 4–6-h fast, and had a
measured blood glucose level < 11.0 mmol/l at the time of
injection. CT was acquired without oral or intravenous con-
trast agent. The PET data were reconstructed using OSEM

iterative reconstruction and were attenuation-corrected using
the CT data.

PET analysis

Central analyses of all PET/CT data were conducted at
Imperial College London by a semi-automated adaptive
threshold method. The primary tumor was initially delineated
using an initial threshold of 40% of the SUVmax on semi-
automated software (Hermes Gold3; Hermes Medical
Solutions Ltd., London, UK) and VOIs drawn. The PET vol-
ume was correlated with the primary tumor on CT, and under-
estimation was determined by checking if the PET tumour
VOI encompassed the whole tumour on the CT component
of the PET. If the VOI did not cover the tumour visually, a
lower threshold was used [10]. Manual adjustment was
employed when the VOI incorporated adjacent normal

Fig. 1 Overview of centers and
PET images.a Overview of the
centers contributing to the study
and how the data were randomly
divided into training, validation or
independent test set. TCIA, The
Cancer Imaging Archive. b
Typical images from the PET/CT
scans of two patients including
PET, CT, and fusion images.
Patient 1 (age 74, squamous cell
carcinoma, stage IIA, tumour
volume 22.6, overall survival
8 months) with the lower stage
and smaller volume primary le-
sion had a worse survival out-
come than patient 2 (age 77,
squamous cell carcinoma, stage
IIIA, tumour volume 26.5, overall
survival 33 months) with the
higher tumour stage
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structures such as adjacent myocardial activity [11]. All seg-
mentations were made by the same operator (observer 1, a
radionuclide specialist radiologist with 4 years’ experience
of tumor delineation).

The SUVmean, SUVmax, SUVpeak, metabolic tumor volume
(MTV), and total lesion glycolysis (SUVmean × MTV)(TLG)
of the primary tumor were recorded. Using Youdens’s J to find
the optimal cut-off from the ROC for median survival,
Kaplan–Meier curves were generated. The VOIs were extract-
ed and imported into the radiomics software. To assess intra-
and inter-observer variability of the segmentation method, 18
patients were selected at random by SPSS, and segmentation
of the tumor was performed (at 128 Gy level) by two addi-
tional experienced operators (observers 2 and 3, with 6 and
10 years’ experience of tumor delineation respectively)
blinded to the original results and clinical data. Lymph nodes
were excluded from statistical analyses.

The interclass coefficient was used to assess intra- (by ob-
server 1) and inter-observer (by observers 1, 2, and 3) differ-
ences in texture. The differences between the observers were
performed by a 2-way ANOVA repeated measures model
using Bonferroni correction.

Radiomics analysis

Radiomics analysis (Supplementary Fig. 1) was performed at
seven different quantisation/gray levels— 4, 8, 16, 32, 64,128

and 256 Gy — on TexLAB v2, which was developed and
implemented in-house within Matlab R2015b (MathWorks
Inc., Natick, MA, USA). From each primary tumor, 665
radiomic features (listed in Supplementary Table 3) were ex-
tracted from segmented VOIs using local, regional, global,
fractal, and wavelet techniques. These included intensity fea-
tures, shape features, and texture features [gray level co-
occurrence matrix (GLCM), gray level run length matrix
(GLRLM) and neighbourhood gray difference matrix
(NGTDM)] with or without wavelet transformation, as previ-
ously reported [5, 6]. Radiomics features were determined
from 133 PET scans (training set) using TexLAB v2.

Feature selection and radiomics signature discovery

As with other high-throughput analyses, it is important to
reduce the total number of features for prediction purposes
in order to eliminate Type 1 errors and instead learn the true
basis of a decision. We initially identified highly correlated
features for elimination using heatmaps, as highly correlated
features suggested that some feature reduction could be un-
dertaken without information being lost. Heatmaps were cre-
ated using R software (http://www.r-project.org/; Version 3.03
Vienna, Austria). It is known that there is correlation of several
texture features with volume [12]. Using Spearman's rank
correlation, features that had a high correlation with volume
(≥ 0.7) were normalised by dividing the feature value by

Table 1 Characteristics of the
training, validation and test
datasets

Training set Validation set Test set I

Number 133 204 21

Mean age (range) years 69 (35–89) 71 (42–91) 71 (53–101)

Male (%) 82 (61.7) 126 (61.7) 10 (47.6)

Stage I (%) 24 (18) 33 (16.2) 4 (19)

Stage II (%) 34 (25.6) 37 (18.1) 4 (19)

Stage III (%) 75 (56.4) 134 (65.7) 13 (61.9)

Histology: SCC (%) 69 (51.9) 95 (46.7) 14 (66.7)

Histology: adeno(%) 41 (30.8) 77 (37.7) 5 (23.8)

Histology: NSCLC NOS (%) 18 (13.5) 25 (12.3) 2 (9.5)

Histology: other (%) 5 (3.8) 7 (3.4) 0

SUVmean (range) 8.25 (1.78–17.4) 8.44 (2.11–23.7) 7.75 (4.44–16.8)

SUVmax (range) 16.5 (4.9–42.8) 15.9 (3.26–49.5) 13.6 (6.66–39.2)

SUVpeak (range) 14.2 (3.8–35.4) 14.2 (2.9–43.1) 12.5 (6.26–34)

MTV (range) mls 40.4 (5.13–467) 33.7 (5.27–525) 30.8 (7.03–230)

TLG (range) 344 (16.2–5.45 × 103) 315.2 (19.4–5.7 × 103) 266 (40.5–2.59 × 103)

Median overall survival (months) 25 (0–83) 21.0 (0–85) 20 (2–37)

Number of deaths (%) 88 (66.2) 145 (71.1) 17 (81%)

Length of follow-up (median +
IQR in months)

26 (12–39) 22.0 (11–36) 21 (8–31)

SCC squamous cell carcinoma, Adeno adenocarcinoma, NSCLC non-small-cell lung cancer (not otherwise spec-
ified, i.e., not classified into squamous or adenocarcinoma), MTV metabolic tumour volume, TLG total lesion
glycolysis, IQR interquartile range. Stage AJCC/UICC 7
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volume to obtain volume-invariant texture features (notably,
the two features included in the final analysis did not correlate
with volume, and thus, did not require normalisation to
volume).

From the 665 sets of features at each gray-level, we used
least absolute shrinkage and selection operator (LASSO) re-
gression analysis for data dimension reduction, radiomics fea-
ture vector (composite feature) discovery, generating Kaplan–
Meier curves and computing the Cox regression analysis.
LASSO is a form of penalised regression used to reduce the
problem of multi-collinearity. Briefly, the non-contributory
variables were assigned zero-weighting, and numerous itera-
tions were performed to link the non-zero contributory vari-
ables to the chosen clinical outcome (in this example, overall
survival) [13]. Analyses were conducted with R software; the
packages in R used for our analysis are indicated in
Supplementary Table 4. Two-sided statistical significance
levels were used, and p ≤ 0.05 was considered statistically
significant. SPSS for Statistics Version 22 (IBM, Armonk,
NY, USA) was used for interclass correlation and 2-way
ANOVA.

The most predictive feature vectors (FVX) were computed
by linear combination of selected statistical features of the
matrices weighted by their respective coefficients and by com-
parison with overall survival (OS). Survival curves were plot-
ted using Kaplan–Meier (KM) methods, stage-specific or
Youden’s J cut-off on the receiver operator curve for the me-
dian survival in the case of FVX. Kaplan–Meier curves were
plotted for overall survival using the ‘survfit’ function from
the ‘survival’ package in R using the median cut-off for the
MTV, TLG, and FVX. The statistical significance of the dif-
ference in the survival curves was calculated using the logrank
test implemented in the ‘survdiff’ function. The survival
curves were evaluated using a log-rank test (Cox
Regression). Multivariable analysis of the FVX, stage, MTV,
and TLG were compared with each other using a stepwise
backward procedure to determine significantly independent
survival indicators. P values of ≤ 0.05 were considered statis-
tically significant, and 95% confidence intervals were calcu-
lated. A continuous Cox regression and the C-index, was com-
puted for each prognosticator in the univariate analysis, and
for the multivariable analysis with and without FVX. All four
variables (FVX, stage, MTV, and TLG) were used as contin-
uous variables in the analysis.

Independent validation and testing

Performance of the FVX and stage were tested by comparison
to OS in an independent validation set of 204 patients, and a
further independent set of 21 (TESTI; the final institutional
dataset to be accepted into the study) patients. Similar survival
comparisons were made with routine PET variables including
SUVmean, SUVmax, SUVpeak, MTV, and TLG.

Results

Patient characteristics and PET analysis

Patient characteristics are displayed in Table 1. There were no
significant differences in the proportion of males to females
except in TESTI, which was a very small dataset. The major-
ity of patients were, as expected for such a cohort, stage III.
Typical PET images are shown in Fig. 1b. Primary tumor
SUVmax ranged from 3.3 to 49.5 (Table 1). All patients were
treated with radiotherapy with or without chemotherapy, and
median survival values were not significantly different be-
tween the training, validation, and independent test cohorts,
except in the small cohort in TESTI. No cases treated primar-
ily by surgery were analysed, as the inclusion criterion was the
cohort having radiotherapy with or without chemotherapy
rather than surgery. Admittedly, some patients with stage I
or II disease would have been unfit for surgery, while others
would have elected for radiotherapy with or without chemo-
therapy in preference to surgery due to factors including pa-
tient choice; we do not have accurate data for the reasons for
this choice. Of 358 patients, 249 died within the follow-up
period [median 22 (range 0–85) months]). The comprehensive
data for scanners are provided in Supplementary Table 2.

Segmentation is an important source of variability in
radiomics analysis [14]. The most prevalent threshold cut-off
values were 40% (47.8% of cases) and 30% (27.7% of cases);
together these accounted for 75.5% of all the thresholds;
24.5% required a lower threshold value in order to encompass
the whole tumour as defined by the CTcomponent of the PET.
Furthermore, 9.5% of cases required additional manual adjust-
ment, after setting the initial threshold, to achieve optimal
segmentation. Intra- and inter-observer variability of
radiomics features from 18 randomly selected patients are
displayed in Supplementary Tables 5 and 6. There was near-
perfect [15, 16] intra- and inter-observer variability in the
PET-derived radiomics features. The intra-observer variability
of the radiomics features alone and when combined with PET
features was 0.9 and 0.92 respectively. Corresponding inter-
observer variability values were 0.86 and 0.88 respectively.

Radiomics feature vector selection

Radiomics predictive classifiers (665) were derived from
TexLAB v2. Generation of a heatmap (Fig. 2) from all the patient
data — both training and validation sets — visually indicated
multi-collinearity (when many features are related), and sug-
gested that some features could be reduced without information
being lost. From the 665 radiomics features returned by the soft-
ware in the training set of 133 patient scans, one FVwas selected
as the optimal predictor (FVX)— a weighted linear combination
of the statistical features of size-variance of the gray-level size
zone matrix at 64 Gy levels (GLSZM_SzVarianc_64gl;
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weighted by 0.128) and complexity of the neighbourhood gray-
tone difference matrix (NGTDM) at 64 Gy levels
(NGTDM_Complex_64gl; weighted by −0.018) — using
LASSO conducted independently at each gray level (example
shown in Supplementary Fig. 2). Previous studies have indicated
that primary tumor volume is an important predictor of survival
in lung cancer [17]. A multivariable analysis was performed
which included the new FVX, volume (SNSvol variable) and
stage; volume was not significant, and was not further consid-
ered. Both the stage and FVX were significant and, most impor-
tantly, there was no correlation between the two (p = 0.22).

We tested the influence of PET scanner equipment proper-
ties on the FVX. Principal component analysis of FVX (at
64 Gy levels) was used to assess the congruence of data across
different manufacturer types, manufacturer models, slice
thickness, number of rows, or number of columns (Fig. 3;
Supplementary Figs. 3–5 and Supplementary Table 7). All
elements of the data were tightly clustered around each other
(minimal variance), suggesting that FVX was invariant to the
type of PET/CT manufacturer or slice thickness; thus, no cor-
rection was made for sets of data from different institutions.
Other FVs were dependent on scanner type (data not shown).

Performance of radiomics feature vector

We tested the performance of FVX in an independent valida-
tion cohort comprised of 204 patient scans by comparison to

OS. Kaplan–Meier (KM) plots for stage and FVX are shown
in Fig. 4. FVX was significantly associated with OS in the
validation set when dichotomised at median (p = 0.00465),
optimal cut-off by Kmroc (p = 0.00116) or as a continuous
variable (p = 0.00429), with hazard ratios (HRs) of 1.61
(1.16–2.24), 1.74 (1.25–2.44), and 5.30 (1.69–16.6) respec-
tively. In the TESTI cohort that presented with an unusually
poor survival of the four stage I cancers (Supplementary
Figs. 6 and 7), FVX correctly indicated a lack of survival
difference (p = 0.501). FVX values for image data presented
in Fig. 1b, for instance, were − 29.9 and − 03.1 for patients 1
and 2 respectively, thus correctly predicting survival relative
to stage. In contrast to the radiomics classifier, clinically rou-
tine PET variables including SUVmax, SUVmean, and SUVpeak

lacked any predictive information (Supplementary Fig. 8).
The MTVand TLG were significant on the KM plots; surpris-
ingly, MTV was also significant on the TESTI KM plot (Fig.
5). The MTVand TLG were highly correlated with each other
(Supplementary Table 8), but neither the TLG nor MTVwhen
tested separately with the FVX and stage were significant on
the multivariable Cox regression (Supplementary Table 9).

FVX, stage, MTV, and TLG were the only potential prog-
nosticators that showed significance in the univariate analysis.
The Cox regression analysis associating FVX, stage, MTV,
and TLG with overall survival in three datasets are
summarised in Supplementary Table 9, with both univariate
analysis and multivariable analysis combining all the four

Fig. 2 Spearman rank correlation
of the radiomics features
displayed as a heatmap. High-
level correlation with clustering
of features is seen
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variables. FVX was prognostic, independent of stage, MTV,
and TLG in both training and validation sets. MTVand TLG
were not significant once combined with FVX in the multi-
variable model, suggesting that FVX is a significantly better
prognosticator than MTVand TLG.

Discussion

This multi-institution retrospective study showed that a
radiomics feature vector, FVX, derived from analysis of
FDG-PET data of primary tumors ≥ 5 ml in patients with
NSCLC is invariant to PET scanner properties and predicts
OS. Accurate prognostic information is crucial in stratifying
newly diagnosed NSCLC patients to different treatments or
best supportive care. Currently, TNM staging is the primary
method to stratify treatment approach in NSCLC; however, it
offers imprecise prognostic information, leading to both
under-treatment and over-treatment in some patients. Other
established prognostic factors for lung cancer include perfor-
mance status (Karnofsky or ECOG (Eastern Cooperative
Oncology Group) classification), weight loss (e.g., > 5%)

and systemic inflammation (C-reactive protein or modified
Glasgow Prognostic Score) [18–20]. While factors such as
EGFR (epidermal growth factor receptor) mutation predict
response to targeted therapy [21–23], tumor-specific prog-
nostic factors are lacking. In the current work, we assessed
the role of radiomics features as prognostic factors in
NSCLC. A machine-learning-enabled weighted linear com-
b i n a t i o n o f t h e s t a t i s t i c a l f e a t u r e s o f
GLSZM_SzVarianc_64gl and NGTDM_Complex_64gl —
FVX — was found to possess prognostic information and
importantly was invariant to scanner properties investigated
(Supplementary Table 7). The features do not have imme-
diate physiological relevance. GLSZM is a regional ‘homo-
geneity’ texture feature that calculates lengths of uniform
pixels (picture elements) in a 2D image, or in our case,
directionally-independent groups of uniform voxels (volume
elements) in each of the 26 available directions in 3D
space; GLSZM_SzVarianc_64gl (size variance of the
GLSZM at 64 Gy level) examines the variance in the num-
ber blocks by size (independent of the gray-level) and is
negatively correlated with survival, possibly identifying
hypoxic or necrotic regions with poor prognosis [24–26].

Fig. 3 Principal component analysis (explained variance) of PET
radiomics features (at 64 Gy level) to assess congruence of data from
different manufacturer models: CPS 1023, CPS 1024, Siemens 1080,
1094, Phillips Allegro Body (C), Siemens Biograph 64 mCT, Siemens

Biograph 128 mCT, GE Discovery ST, GE Discovery STE, CTI ECAT
HR+, Phillips Gemini TF TOF 16, and CPS/Siemens Sensation 16
respectively
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NGTDM represents contrast, and is determined by examin-
ing changes in intensity between a target voxel and the
surrounding neighbors to enable calculation of apparent
difference between neighboring regions of voxel intensities.
Contrast is related to the information content of an image
and is a mathematical measure of heterogeneity; non-
responding tumors with poor prognosis tend to have higher
contrast [27]. NGTDM_Complex_64gl (complexity of the
NGTDM for 64gl), which refers to the average visual

complexity within the volume, is positively correlated with
survival, although with less of a magnitude than SzVarianc,
and perhaps acting as a balance on SzVarianc.

This is one of the first reports of a whole tumor image-
derived lung cancer prognostic factor. In our analysis, there
was a higher hazard of death (1.74; p = 0.00116) when the
median FVX was used as input. The implicit assumption here
is that a set of mathematically-derived tumor phenotypes cor-
relate with survival. It should be noted, however, that death as

Fig. 4 Survival analysis based on composite radiomics feature
dichotomized using ROC. Kaplan–Meier plots of a training, b
independent validation, and b TESTI. Note that the validation dataset

has longer follow-up period. K–M =Kaplan–Meier, N = number of sub-
jects, mths, mo, mth =months, Med =median
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an endpoint could have occurred by other means — indirect
consequence of the tumor or non-tumor related — or may
have been subjected to different variations of physician choice
of chemotherapy/chemo-radiotherapy, making this analysis
the more interesting. Furthermore, routine PET variables,
while useful for staging, did not possess prognostic informa-
t ion. Base l ine pr imary tumor SUVmax has been

reported by some groups, but not all, to predict outcome in
NSCLC patients. For resectable NSCLC patients, a meta-
analysis of 13 studies showed that primary tumor SUVmax

has significant prognostic value on patient survival [28]. A
more recent meta-analysis, assessing the prognostic value of
primary tumor SUVmax prior to radiotherapy in NSCLC, re-
ported that higher tumor SUVmax was correlated with shorter

Fig. 5 Survival analysis based on the SUV variables, MTV and TLG,
dichotomized using ROC. Kaplan–Meier plots of a training dataset, b
independent validation set, and c independent TESTI. Note that the

validation dataset has a longer follow-up period.MTV metabolic tumour
volume, TLG total lesion glycolysis
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OS, particularly in stage I NSCLC receiving stereotactic body
radiotherapy (SBRT) [29].

Volumetric parameters, such asMTVand TLG, which con-
sider the whole tumor volume, have been reported to be prog-
nostic in NSCLC. Secondary analysis of the large multicentre
prospective American trial of 196 inoperable Stage IIb/III
NSCLC has reported MTV, TLG to be strongly prognostic
for OS, while SUVmax was not [30]. The TLG and MTV,
which were shown in our study to highly correlate with each
other, were not significant on multivariable analysis.

As this was a large multi-centre study acquired on differ-
ent scanners, voxel sizes differed (Supplementary Table 2);
we did not standardise the voxel sizes. However, slice thick-
ness and matrix size did not significantly affect the FVX.
The robustness of FVX, invariant to instrument factors in-
cluding slice thickness, permits this variable to be applied in
multi-institutional studies. Previous work on scanner types
[31–33] have yielded mixed results in terms of texture sta-
bility across model and manufacturer type, although limited
models have been used. In addition, much thought has been
given in the methodology to reduce Type 1 errors and false
discovery which have entered the published literature [34].
Compared to CT technology that has seen substantive re-
duction in slice thickness, PET FWHM (full width at half-
maximum; a measure of resolution) has not seen such sub-
stantive change over the past decade, and this could have led
to the scanner invariance of our study. We set a threshold of
5 ml, in keeping with earlier work of Soussan [8]. It is likely
that inclusion of smaller tumors would have led to higher
variability given the poor resolution of PET (compared to
CT or MRI). Hence, the inferences from this study are lim-
ited to the group of patients presenting with medium-large
lesions. The classification of patient subgroups in the
Kaplan–Meier analysis was based on the FVX value calcu-
lated from combination of weighted radiomic features. FVX
was a continuous variable, and we have demonstrated that
FVX was linearly correlated with overall survival in the
training and validation sets using a continuous Cox regres-
sion analysis. It should be noted that other analyses were
performed: Cox regression based on dichotomised median
FVX, Kmeans clustering and optimal cut-off (Youden’s J)
from the ROC curve, and showed consistent results (data
not shown).

TESTI was an unusual dataset in terms of size and
heterogeneity with a high number of stage 1 tumors and
high mortality. The fact that these patients had radiothera-
py ± chemotherapy instead of surgery indicates that there
was probably associated poor performance status.
Unfortunately, information on performance status was not
available. However it was felt important to attempt to test
the radiomics signature against this unusual dataset, as
ideally the ‘real-life’ prediction of the radiomics feature
vector should work irrespective of sample size.

A recent single-institution study of a PET/CT radiomics
signature for prediction of disease-free survival (DFS) in
NSCLC undergoing surgery with curative intent reported that
image derived parameters outperformed TNM staging in
predicting DFS. However, although promising, this was a
single-centre study, utilising what appears to be unenhanced
CT scans without external validation and in a different cohort
of patients to our study [35].

Limitations of the present study should be highlighted. 1)
This is a retrospective, albeit multi-institutional, study and
future prospective studies in similarly large cohorts will be
needed to verify this novel endpoint. 2) We did not consider
other prognostic factors as these were not consistently avail-
able from all institutions. Addition of other prognostic fac-
tors in future studies will enable more rigorous assessment
of events likely to have caused death. 3)We did not consider
EGFR mutations/expression or other genetic outcomes, as
these were not available for all patients. 4) Approximately
14% of the initial 535 patients screened were excluded for
having tumours < 5 ml (Supplementary Table 1). The choice
of 5 ml reflects a statistical limitation of applying radiomics
to PET data (less data-points within the VOI compared to
CT). Thus, with regard to generalisation of our study to
patients having chemo-radiotherapy, we would caution the
exploitation of our findings to smaller tumors. Irrespective
of these limitations, we highlight a massive opportunity for
physicians and patients, whereby mathematically-derived
features from scans that newly diagnosed NSCLC patients
would normally have as part of routine care can be ‘re-pur-
posed’ to predict prognosis. Only software implementation
and computing power are required for incorporation into
patient management pathways; thus, we envisage easy ac-
ceptance of this potentially cost-effective methodology for
use with existing prognostic methods. As it is tumor-specif-
ic, patients stratified to poor prognostic FVX groups could
be candidates for earlier follow-up or a lower threshold in
change of therapy [36].

In summary, we have discovered a scanner-invariant
radiomics feature vector that performs well in indepen-
dent validation and test datasets. This multi-institutional
study provides new opportunities for prospective assess-
ment of radiomics features for prognosis in patients with
NSCLC.
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