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Abstract: The Mexican Hairless dog, or Xoloitzcuintle, is a breed characterised by a
sparse hair coat and a severe oligodontia. This phenotype is a consequence of Canine
Ectodermal Dysplasia (CED) caused by a mutation on the Fox/3 autosomal gene. First
accounts of hairless dogs in Mexico are dated to the 16™ century CE, according to the
historical record, but pre-Hispanic dog skeletons presenting missing and abnormally shaped
teeth have been interpreted as earlier evidence of hairless dogs. However, several questions
remain unanswered regarding the timing of apparition of this phenotype and its relationship
with modern hairless breeds. In this paper, we review the morphological characteristics of
potential hairless dogs and we apply ancient mitochondrial DNA analyses along with
radiocarbon dating to eight archaeological dog mandibles from Tizayuca, Basin of Mexico,
presenting anomalies that could be attributed to a CED. The archaeological dogs were dated
between 1620 and 370 years BP. Among these eight individuals, we identify four different
mitochondrial haplotypes including two novel haplotypes. The dogs from the Basin of Mexico
display a very high genetic diversity and continuity from the Classic to the Postclassic.
However, our attempt at amplifying the FoxI3 mutation was unsuccessful. Finally, we show
that some haplotypes are present in both archaeological dogs and modern hairless breeds,

perhaps reflecting their maternal ancestry.

Keywords: Mesoamerica; Xoloitzcuintle; Zooarchaeology; Domestication; Ancient DNA;

Canine Ectodermal Dysplasia; Radiocarbon Dating;

Highlights

- We studied the mitochondrial DNA from eight ancient Mexican dogs
- The dogs show dental anomalies usually associated with Canine Ectodermal Dysplasia
- Some haplotypes are present in both archaeological dogs and modern hairless breeds

- Mexican dogs display a high genetic diversity and continuity for ca. 1000 years



58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

1. Introduction
While dog (Canis familiaris) domestication would have started during the Palaeolithic,
breed formation is a recent phenomenon that occurred mostly during the last 200 years (e.g.
Larson et al., 2012; Lindblad-Toh et al., 2005; Parker et al., 2017a; Vila et al., 1997). Some
morphotypes were then genetically isolated by reproductive rules to enable the formalisation
of breed standards and many breeds that were thought to be of ancient origin (also called
primitive breeds) appear to be recent creations (Parker et al., 2004). In Latin America, the

Mexican Hairless Dog (also named Xoloitzcuintle) and the Peruvian Hairless Dog are

recognised by the World Canine Organisation (FCI) as “Primitive breeds” (http://www.fci.be,
Group 5 Section 6) although many questions remain unanswered regarding their antiquity

(Parker et al., 2017a; van Asch et al., 2013).

American dog populations have been created by two major migration events. The first one
occurred about 10,000 years ago when domesticated dogs were first introduced to the
continent following human migrations (Leonard et al., 2002; Ni Leathlobhair et al., 2018;
Witt et al., 2015). Then, about 500 years ago, European exploration and colonisation of
America lead to the introduction of numerous dogs from Western Europe and the progressive
vanishing of indigenous maternal lineages (Castroviejo-Fisher et al., 2011). However, some of
them may have survived among the modern breeds of American origin (van Asch et al.,
2013). Yet, these assertions are mostly based on modern genetic data with limited

contribution of archaeological evidence.

The Xoloitzcuintle is one of the Native American breeds with a long-running history. Its
first naturalistic description arises from the 16™ century (Dibble and Anderson, 1975: 16;
Hernandez, 1959). At the beginning of the 20" century, hairless dogs are still present in
Mexico, although they are uncommon (“The hairless dog,” 1917). The first standard of the

breed is established in 1956 from those residual populations (Blanco et al., 2008) and the
3
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Xoloitzcuintle is definitively recognised by the FCI in 1961'. The breed presents sparse or
absent hair coat along with a severe oligodontia and abnormally shaped teeth, both
consequences of Canine Ectodermal Dysplasia (CED) of autosomal dominant monogenic
inheritance caused by a mutation of the FoxI3 gene (Drégemiiller et al., 2008; Kupczik et al.,
2017; Robinson, 1985). Whereas the dental anomalies were not mentioned by the 16" century
naturalists, Darwin (2008, p. 58) notices, by the first half of the 19 century, the correlation

between the absence of hair and absence of teeth.

Because skin and fur are usually not preserved, archaeologists have used oligodontia and
abnormally shaped teeth as an evidence for the presence of hairless dogs in pre-Hispanic sites,
along with iconographic depictions of wrinkled and naked dogs (Valadez Azua et al., 2009;
Viésquez Sanchez et al., 2016, 2009). Dogs with missing premolars and teeth of simplified
form were identified as hairless dogs and a direct lineage between these and modern hairless
breeds has been claimed (Blanco et al., 2008; Valadez Azda et al., 2013; Véasquez Sanchez et
al., 2016) (SI text 1). It is assumed that this morphotype appeared in Western Mexico at the
beginning of our era, the first ceramic representations of hairless dogs being found in the
region of Colima during the Preclassic (ca. 1500 BCE — 200 CE); from the 6" century CE,
they would have spread across Mesoamerica until reaching the Andean region during the 140
century CE (Carot and Hers, 2016; Valadez Azua et al., 2010, 2009; Vasquez Sanchez et al.,

2016) (Figure 1).

! http://www.fci.be/en/nomenclature/XOLOITZCUINTLE-234.html, consulted on the 21/01/2018.
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Figure 1 - Top: location of Tizayuca (red star) and other Mesoamerican sites that have yielded remains of
dogs identified as hairless (red dots) and aDNA references (white dots). Bottom: chronology of the Basin of
Mexico and distribution of the archaeological remains described as hairless dogs in Mesoamerica with the
minimum number of individuals (MNI), according to Collins (2002) and Valadez et al. (2009).

However, no genetic study confirms the relationship between this archaeological
morphotype and modern hairless breeds. Indeed, aDNA analyses of archaeological dogs are
scarce in Latin America, with only 17 individuals published so far including one possible
hairless dog from Tula, Hidalgo (Leonard et al., 2002; Ni Leathlobhair et al., 2018; Valadez et
al., 2003) and past genetic diversity remains mainly unknown. Moreover, missing teeth have
been observed in several modern dog breeds as well as in wild carnivores (Buchalczyk et al.,
1981; Knyazev et al., 2003; Losey et al., 2014; Miles and Grigson, 1990; Szuma, 1999; Vila
et al., 1993), although there is no quantitative estimation of their proportion in the canine
population (see SI text 1 for a discussion). Indeed, both a low selective pressure on the

number of premolars and a high potential for evolutionary plasticity to diet change on the
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molars could contribute to this variability (Asahara, 2013; Vila et al., 1993). Therefore, the
identification of hairless dogs through their phenotype needs to be clarified and further
genetic analyses are essential to support affinity between modern hairless breeds and ancient
dogs. Finally, accurate dating of each sample is crucial to ascertain their origin and

chronological distribution.

Here we apply genetic analyses along with direct radiocarbon dating to eight
archaeological dogs from Central Mexico, which show dental anomalies that are similar with
modern hairless dogs (referred to here as a “hairless-like” phenotype). Our aims were to
clarify the origin of this phenotype and to document the past genetic diversity of dogs from
Central Mexico, testing for their relationship with modern breeds, in particular ones of

American origin.

2. Material and methods

2.1. The archaeological site of Tizayuca

All the archaeological elements analysed in this study come from three settlements of the
municipio of Tizayuca, Mexico, excavated between 2006 and 2010 (Equihua Manrique et al.,
2008). Architectural, lithic and ceramic elements from Tlamimilolpa, Xolalpan (both
associated to the Teotihuacan cultural complex), Toltec and Aztec phases as well as some
Colonial remains attest to the persistent occupation of the area from the 3" to the 16" century
CE (Figure 1). Located in the vicinity of the powerful settlements of Teotihuacan, Tula and
Mexico-Tenochtitlan, the area of Tizayuca would have been under their direct influence.
However, the stratigraphy is highly disturbed and prevented a clear chronological attribution

of the ecofacts (Equihua Manrique et al., 2008).
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The archaeological area of Tizayuca yielded a total of 3,327 vertebrate remains, from
which more than 25% have been attributed to Canis sp. (number of identified specimens,
NISP = 877). Osteological identification between dog, Mexican wolf (Canis lupus baileyi)
and coyote (Canis latrans) was based on morphological and morphometrical criteria (Blanco
Padilla et al., 2009; Lawrence and Bossert, 1967). Measurements were taken following von
den Driesch (1976) and ruled out the presence of wild canids in several cases (SI Text 1). We
identified at least six juveniles (neonatal to 6 months; Hilson, 2005) and 36 adults (> 7
months; Hilson, 2005), exceeding the presence of any other animal. Canids are followed by
leporids (Sylvilagus spp., Lepus spp., NISP = 271), turkey (Meleagris gallopavo, NISP = 144)
and large artiodactyls (Odocoileus virginianus, O.hemionus, cf. Ovis canadensis, NISP = 130)
(Manin and Lefevre, 2015). Four dogs (three adults and a juvenile) have been deliberately
buried, either as connected or rearranged skeletons, and we also recovered a canine ornament
and a tool made from a canid bone. Moreover, burning and butchering marks suggest the
consumption of dog meat. These different elements show the importance of dogs to the
inhabitants of Tizayuca in both ritual and economic spheres, as was the case in many

American cultures (Schwartz, 1997).

2.2. Canid sampling

Among the 36 unpaired canid adult mandibles, several dental anomalies were observed in
the premolar row (NISP = 11). The absence of the first premolar (NISP = 3) has been
described in many American dog specimens — archaeological and contemporaneous — and is
not specifically related to hairless dogs (Allen, 1920: 439; Miles and Grigson, 1990).
However, other anomalies have been regularly described as characteristics of hairless dogs
(Grouard et al., 2013; Urbano Torrico, 2008; Valadez Azda, 1995), in particular missing 2" to

4™ premolar and abnormal shape (see criteria in SI Text 1). The eight dog mandibles carrying
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these anomalies (representing 22% of the dog population in Tizayuca) were selected for
further investigation (Table 1; Figure 2). In order to perform radiometric and molecular
analyses, sections of about 1 cm x 3 cm were opened in the body of each mandible with an
electric saw to take samples for aDNA (0.8 — 2.34 g) and collagen extraction (0.6 — 2.13 g).
To avoid contaminations, the saw and the working space were bleached between each

sampling and a new blade has been used.

Figure 2 — Illustration of the eight archaeological individuals analysed in this study, including computed
tomography (Az-749) and X-ray (Az-1791) images.
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ID Dental anomalies

Az-314 P, absent

Az-657 P, absent, supernumerary M3

Az-749 Only presence of P3, P,, M;; P; abnormally shaped
Az-1791 Persistence of dp, (or dp3) and dp, on adult specimen
Az-1923 P; and P, absent

Az-1930 P; and P, absent

Az-1934 P, absent

Az-1935 P, absent

Table 1: List of dental anomalies observed on the selected mandibles. P = premolar, M = molar, dp =
deciduous premolar.

2.3. Radiocarbon dating

Bone collagen from the eight samples was extracted in the Museum national d’Histoire
naturelle of Paris (France) and dated using the compact AMS ECHoMICADAS at Gif-sur-
Yvette following the method outlined in SI Text 1. All the samples provided acceptable

collagen yield [>1%, (Ambrose, 1990)].

2.4. Ancient DNA analyses

All the aDNA extraction and analyses were carried out in the Palgene facility at the Ecole
Normale Supérieure of Lyon (France) with tools dedicated to aDNA and strict protocols of
decontamination and control. Ancient DNA was extracted following a silica based method
(Bastian et al., 2018, see also method outlined in SI Text 1). DNA of the eight samples has
been retrieved in two batches consisting of four Mesoamerican dogs, a fish vertebra that was
used as cross-contaminant and a blank extraction to rule out aerosol and reagent

contaminations.

We used two pairs of published PCR primers (Leonard et al., 2002) to target two
overlapping fragments of Canis mtDNA control region (CR) producing a 173 bp fragment
(position 15515-15687 on the complete mitogenome, Kim et al., 1998). This fragment was
chosen as it was short enough to be retrieved even in highly degraded samples, and allows

9
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enough resolution for haplogroup attribution (Frantz et al., 2016), detection of the Latin
American clade la (Leonard et al., 2002) and individualisation of the American private
haplotype A185 (van Asch et al., 2013). Positive amplicons were sequenced on a lon PGM

System (Ion Torrent, Thermofisher).

The sequences were visualised and aligned using Seaview software v.4.6 (Gouy et al.,
2010) and the MUSCLE algorithm (Edgar, 2004). Authentic sequences were determined by
analysing the reads obtained for each product (218 to 157,669 reads per amplicon) and by
considering three independent amplifications for each gene and sample. New SNPs were
confirmed by their presence in more than 50% of the reads. Haplotypes were compared

through the NCBI BLAST (https://blast.ncbi.nlm.nih.gov) to identify matching sequences.

Novel haplotypes were described following the recommendations from Pereira et al. (2004).
Briefly, the sequences were aligned to the reference genome (Kim et al., 1998) and the
position of the polymorphisms was listed unambiguously from this alignment. Position
numbers without superscripts denote transitions (e.g., A to G or C to T) whereas other base

changes are explicitly indicated.

The sequences produced in this study were then compared to 339 published sequences
(Table S1) from American archaeological dogs (Ames et al., 2015; Barta, 2006; Brown et al.,
2013; Kemp et al., 2017; Leonard et al., 2002; Thalmann et al., 2013; Witt et al., 2015),
American dogs of indigenous origin (Castroviejo-Fisher et al., 2011) selected according to
van Asch et al. (2013) and modern dogs from four breeds of presumed American origin:
Carolina Dog, Chihuahua, Xoloitzcuintle and Peruvian Hairless Dog (van Asch et al., 2013;
Vila et al., 1999). Multiple alignments of these sequences, number of segregating sites (S),
haplotype diversity (Hd), nucleotide diversity (m), Watterson’s estimator per sequence (Ow)
and Tajima’s D test were assessed using DnaSP v.5.10 (Librado and Rozas, 2009). Analysis

of molecular variance (AMOVA) and pairwise Fsr population comparison (using the

10
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Reynold’s distance and Jukes and Cantor computation of the distance matrix, with a threshold
of 0.05) were implemented in Arlequin v.3.5.2.2 (Excoffier et al., 1992; Excoffier and
Lischer, 2010). Relationships between the sequences were visualised by constructing

phylogenetic trees and median-joining networks (Bandelt et al., 1999).

In order to evaluate past diversity of American dogs, ancient sequences were grouped in
six regions according to cultural similarities and geographic proximity: Alaska, North Pacific
Coast, Illinois, Florida, American South West, Mesoamerica and South America. Overall

archaeological diversity was also compared to modern diversity in the selected sample.

2.5. Modern DNA analyses

In order to amplify the mutation on the first exon of the FoxI3 gene responsible for the
hairless phenotype in modern hairless breeds, we designed a pair of PCR primers targeting a
58-65 bp fragment including the 7 bp duplication previously described (Drégemiiller et al.,
2008). Modern DNA of different breeds (including hairless and coated ones) was obtained
through the Antagene laboratory (France). Amplifications were carried out following the
protocol outlined in SI Text 1 §6 and positive amplicons were sequenced on a Ion PGM
System (Ion Torrent, Thermofisher). The sequences (0 to 175 reads per amplicon) were
visualised and aligned to the first exon of the FoxI3 gene using MUSCLE (Edgar, 2004)
through Seaview software v.4.6 (Gouy et al., 2010). However, none of them matched the

targeted sequence (see detailed results in SI Text 1 §6).

3. Results

3.1. Morphological description of the archaeological dogs

From the eight individuals selected for this study (Table 1; Figure 2), seven are isolated
mandibles, often fragmented, limiting the reconstitution of the morphotype. The last one (Az-
749) is a complete dog that was buried in a Teotihuacan compound (Tlamimilolpa or

Xolalpan phase), allowing a more accurate description of the animal.

11
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In Az-749, incisors and canines are missing, but remodelled bone indicates the teeth were
lost during the life of the animal. This scar tissue is not present at the location of the Py, Pa,
M, and M3, however, suggesting an agnosis of these dental pieces. The M; is present but it
displays a reduced talonid. All these anomalies were observed on both left and right
mandibles. Computed tomography scanning showed the absence of dental bud inside the
mandible. On the skull, only the canine, P* and M' are present on both sides but remodelled
bone on the dentary indicates the incisors were lost. Pl, P? and P? would have never erupted,
considering the absence of scar tissue. The canines are thin and slightly curved and the P*
misses the protocone on both left and right side (Figure 2). Overall, the dog was of medium
size, with an estimated shoulder height of 36 to 40 cm (Harcourt, 1974) (Table S2). The
presence of a bacculum indicates it was a male that died after 6 years according to the pelvis

suture (Barone, 1976; Piérard, 1967).

Az-1791 shows the presence of deciduous dps and dp, (or dp;) simultaneously with the
alveoli of fully erupted P3 (or Ps) and M;. X-ray images indicate the dental buds of the
missing permanent premolars never developed (Figure 2). Both Az-1923 and Az-1930 show
missing P; and P4 while all the other teeth are present, in particular the P; and M3. On Az-
1935, there is no P, and despite the breakage pattern it seems P; is also missing. P4 is also
missing on Az-657 but two alveolar cavities behind the M, suggest an uncommon M; with
two roots or a supernumerary molar. Finally, Az-314 and Az-1934 show missing P4 but the

fragmentation limits further observations.

3.2. Chronology

12
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The radiocarbon dates of the eight samples range from the 4™-6™ c. CE to the 15"-17" c.
CE. This age range matches the archaeological occupation of Tizayuca, even for the elements
found in superficial or disturbed layers (Table 2; Figure 3). The oldest sample (Az-749) is
dated from the Classic Period (phase Xolalpan) and is consistent with the context of its
discovery, in an architectural complex strongly influenced by the Teotihuacan culture. Four
specimens cluster in an Epiclassic — Early Postclassic group and three specimens in a Late
Postclassic one. The two more recent samples (Az-1923 and Az-1930) could also pertain to

the Colonial period, albeit with a reduced probability.

Lab ID Sample 14C age (year BP)  Calibrated age (26)°  Chronological period
ECHo-1528 Az-749 1620 + 25 386 - 536 CE Classic

ECHo-1236 Az-657 1170 £25 772 -951 CE Epiclassic — Early Postclassic
ECHo-1242 Az-1935 1170 £25 772 -951 CE Epiclassic — Early Postclassic
ECHo-1241 Az-1934 1135+£25 777—-984 CE Epiclassic — Early Postclassic
ECHo-1235 Az-314 1080 £ 25 895 -1018 CE Early postclassic

ECHo-1238 Az-1791 545 +£25 1318 — 1432 CE Late Postclassic

ECHo-1240 Az-1930 400 £ 25 1439 — 1619 CE Late Postclassic — Colonial
ECHo-1239 Az-1923 370 £ 25 1449 — 1631 CE Late Postclassic — Colonial

Table 2: Results of the radiocarbon dating. * Calibrated ages were obtained using the OxCal online program v4.2.4

(Bronk Ramsey, 1994) and the IntCal 13 calibration curve.

13
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Figure 3: Chronological distribution of the samples with the representation of the haplotypes involved. Age

probability is presented with 1 and 2 ¢. Calibration was obtained using the OxCal online program v4.2.4

(Bronk Ramsey, 1994) and the IntCal 13 calibration curve. Haplotypes are coloured as follow: red = Xol-
HI; green = Xol-H2; Yellow = A11-15-65; blue = A165 (see colours in online version).

Lab ID Sample Haplotype GenBank accession match Novel haplotype definition
1618 Az-1791  Al76 KF002258.1

1619 Az-1923  Al1-15-65 KT321361.1

1620 Az-1934  Al11-15-65 KT321361.1

1621 Az-1935  (Xol-HI) 15621 15639™* 15651

1622 Az-749 (Xol-H1) 15621 15639™* 15651

1623 Az-1930  (Xol-HI) 15621 15639™* 15651

1624 Az-314 Al1-15-65 KT321361.1

1625 Az-657 (Xol-H2) 15633 15639™4

Table 3 — Results of the mitochondrial aDNA amplification (173 bp fragment of the DLoop). Haplotype names

are given after Angleby et al. (2014); when multiple entries were matching identically on GenBank, one only

has been given. Novel haplotypes are defined according to Pereira et al. (2004), based on Kim et al. (1998) dog

complete mitochondrial genome.

280

14

3.3. Genetic characterisation of the archaeological samples
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The eight specimens analysed yielded positive amplification of the 173 bp targeted in this
study, allowing the identification of four different sequences. Comparison with the NCBI
standard nucleotide BLAST for highly similar sequences indicates two corresponding
sequences and two novel haplotypes: Xol-H1 and Xol-H2 (Table 3). All the sequences have

been submitted to GenBank under accession number MH175494-MH175501.

Three individuals carry a sequence identical to haplotypes All, A15 and A65 on the
targeted 173 bp (Angleby et al., 2014). While A15 and A65 are rare, A11 is a Universal Type
(UT) highly frequent in all dog populations (Angleby et al., 2014; Pang et al., 2009; van Asch
et al., 2013). One dog carries a sequence identical to haplotype A176, which has only been
recognised in a Swedish Dalmatian so far (Angleby et al., 2014), but varies from A11-15-65
of only one mutation on the sequence considered here (T>C, position 15650 on the complete
mitogenome, Kim et al., 1998). One novel haplotype (Xol-H1), shared by three archaeological
dogs widely separated in time, varies from haplotype A185 (van Asch et al., 2013) by one
substitution (C>T, position 15651 on the complete mitogenome, Kim et al., 1998). Haplotype
A185 has been considered as a Private Type (PT), only found in the modern Chihuahua breed,
and 1identical sequences have been found in ancient dogs from Central Mexico and North-
western America (Ames et al., 2015; Barta, 2006; Leonard et al., 2002). The second novel
haplotype (Xol-H2), found in one archaeological dog, differs from A11-15-65 by one

substitution (T>C, position 15633 of the complete mitogenome, Kim et al., 1998).

Relationships between these archaeological dogs and other American dogs (both modern
and ancient) are illustrated on a median-joining network (Figure 4). The four sequences
obtained in this study cluster in Haplogroup A, the most diverse and the most common in

ancient American dogs (Thalmann et al., 2013), but none cluster with clade 1a, described by
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305  Leonard et al. (2002) as characteristic from Latin America. Xol-H1 is also closely related with
306 a haplotype carried by modern indigenous dogs from Yucatin (Castroviejo-Fisher et al.,

307  2011) and an ancient Mesoamerican dog from Texcoco (Leonard et al., 2002).

Indigenous dogs

[ South America
FEZ%] Mexico
B Canada

Modern breeds

Bl Xoloitzcuintle
[] Peruvian Hairless
[ Chihwahua

BE carolina dog

Archaeological dogs

[ South Amenca
B Mesoamerica
[ American South West
Il North Pacific Coast

B 1linois

[ Alaska

Figure 4 — Median-joining networks displaying the relationships between the obtained sequences (bold
circles) and existing archaeological sequences (left; data from Ames et al, 2015; Barta, 2006; Brown et al,
2006; Kemp et al., 2017; Leonard et al., 2002; Witt et al., 2015), with the addition of modern sequences
(right; data from van Asch et al., 2013; Castroviejo et al, 2011; Vila et al. 1999); see colours in online
version. Comparative sequences were truncated to the 173 bp analysed in this paper.

308 3.4. Genetic diversity in the Basin of Mexico

309 All four haplotypes identified here are different from the five haplotypes previously
310  described in archaeological dogs from the Basin of Mexico (Leonard et al., 2002). No other
311  comparative Mesoamerican samples are available yet, but data from other regions in America
312  enable large-scale comparison of genetic diversity. We used a set of 339 published
313 comparative sequences of ancient and modern dogs (Table 4) to perform diversity tests. All

314  the sequences have been truncated to match the 173 bp fragment targeted in this study.
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Most of the published ancient American dogs belong to Haplogroup A, but three
individuals belong to Haplogroups B and C. Clade B encompasses one dog from Tula
(Mexico), previously identified as a hairless dog (Valadez et al., 2003), and one dog from
Gaadu Din Cave (British Columbia, Canada) with no specific dental anomalies reported
(Barta, 2006). The last one, in Namu (British Columbia, Canada), pertains to clade C (Barta,

2006).

The genetic variation in archaeological and modern dogs is presented in Table 4. The
haplotype diversity Hd is strongly correlated with the nucleotid diversity n (r = 0.80, p =
0.011) and the Watterson’s estimator Ow (r = 0.80, p = 0.010), denoting a similar trend
between these different indices. However, and although sample sizes are very dissimilar, none
of these metrics correlate with the number of individuals in each group (p > 0.05), indicating

that the diversity observed here in not driven by the sample size and enabling regional

comparisons.
Group n S h Hd (o) m (o) 6w (o)
TOTAL 347 34 46 0.85(0.02)  0.0192(0.00094)  5.29 (2.12)
Modern 153 21 25  0.89(0.01)  0.0255(0.00095)  3.75 (1.15)
Archaeological 194 30 29  0.71(0.71)  0.0087 (0.00083)  5.14 (1.43)
Alaska 13 9 8 0.91(0.06)  0.0114 (0.00205)  2.90 (1.70)
Mllinois 34 2 3 0.17 (0.08)  0.0016 (0.00084)  0.49 (0.36)
North Pacific 66 16 11  0.80(0.04) 0.0116(0.00137)  3.36(1.19)
American SW 58 3 3 0.13 (0.06) 0.0012 (0.00057) 0.65 (0.40)
Mesoamerica 13 14 9 092 (0.06)  0.0168 (0.00469)  4.51 (2.02)

South America 9 7 6 0.83(0.13)  0.0090 (0.00283)  2.58 (1.39)

Table 4 — Measure of genetic diversity among the 347 dogs compared in this study, for a 173 bp sequence of
the CR: number of individuals (n), number of segregating sites (S), number of different haplotypes (h),
haplotype diversity (Hd), nucleotide diversity (x) and Watterson’s estimator (8y) with associated standard
deviation (o). Mesoamerican dogs (this study, Leonard et al., 2002) are compared to Alaska (Brown, 2006;
Leonard et al., 2002), Illinois (Thalmann et al., 2013; Witt et al., 2015), North Pacific Coast (Barta, 2006;
Ames et al., 2015), American South West (Kemp et al., 2017; Witt et al., 2015) and South American (Leonard
et al., 2002, Thalmann et al., 2013) archaeological populations, and with modern dogs of American origin
(indigenous and pure breed, van Asch et al., 2013; Castroviejo et al, 2011; Vila et al. 1999). One archaeological
dog from Florida (Thalmann et al., 2013) is also included in the archaeological group.

Among archaeological samples, those from Mesoamerica show the highest diversity (Hd =
0.92; m = 0.0168; By = 4.51). Conversely, ancient dogs from Illinois (Thalmann et al., 2013;

Witt et al.,, 2015) and from the American South West (Kemp et al., 2017) present an
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extremely reduced genetic variability (Hd = 0.17, 0.13; = = 0.0016, 0.0012; 6w = 0.49, 0.65;

respectively).

An AMOVA performed on archaeological dogs from the different regions indicates that
the variation within each population accounts for 74 % of the total variation observed in the
sample (Table S4). Conversely, the variation between populations only accounts for 26 % of
the variation. Fsr pairwise population comparison shows the South American dog population
is more closely related to the Mesoamerican population than to the other groups (Figure 5,

Table S5).

South America

Mesoamerica

North Pacific
Coast
| Alaska

lllinois

American SW

Figure 5 — Unrooted neighbour-joining tree of the Fgr pairwise distances showing the relationship between
the archaeological populations. Groups follow Table 6.

4. Discussion

4.1. Origin of the “hairless-like” phenotype and presence of hairless dogs in the

Teotihuacan cultural area
Direct radiocarbon dating of the eight dogs analysed in this study enable us to clarify their

origin. A complete skeleton of hairless-like dog from Tizayuca — Las Golondrinas (Az-749),
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dated from the Xolalpan phase (350-550 AD) slightly predates former evidence related to
Late Classic / Epiclassic in Western Mexico (Rodriguez Galicia et al., 2001), Central Mexico,
(Valadez Azida and Rodriguez Galicia, 2009) or Honduras (Collins, 2002). The settlement of
Las Golondrinas would have had direct contacts with the city of Teotihuacan, visible through
the architecture (concrete floors and stucco finishing), funerary practices or lithic and ceramic

productions, suggesting it was an enclave of the metropolis (Equihua Manrique et al., 2008).

The presence of hairless dogs in the city of Teotihuacan has also been suggested through
the identification of local Classic zoomorphic effigy pots representing dogs with naked skin
(Carot and Hers, 2016). Mesoamerican iconography has often been interpreted in naturalistic
terms (e.g. de la Garza, 1995; Saunders, 1994; Seler, 1996; Sharpe, 2014; Stocker et al., 1980)
and therefore the identification of ancient dog breeds has often been suggested based on
ceramic representations (Guzmén and Arroyo Cabrales, 2014). However, no other skeletal
remains of “hairless-like” phenotype has been found yet in the Classic occupation of
Teotihuacan, despite extensive investigations (Manzanilla and Valadez Azua, 2009; Valadez

Azua et al., 2013).

4.2. Genetic diversity in the Basin of Mexico

Results from the analysis of a 173 bp fragment of dog CR show the presence of four
different haplotypes in Tizayuca, two of them being present in more than one individual.
Regarding their chronological repartition (Figure 3), Xol-H1 appears from the Classic to the
Late Postclassic / Colonial period. Haplotype A11-15-65 is present from the Epiclassic / Early
Postclasssic to the Late Postclassic / Colonial period. Thus, there is an apparent continuity in

the dog population from the area of Tizayuca.

Compared to other American regions, the Basin of Mexico displays a high genetic

diversity. While the extremely reduced diversity observed in Illinois and the American South
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West was interpreted as an expression of bottleneck caused by artificial selection and
breeding (Kemp et al., 2017; Witt et al., 2015), the high diversity in the Basin of Mexico
could be explained by several factors, including a selection for multiple morphotypes or the
presence of a larger and more stable population of dogs. As dental anomalies (including
oligodontia) are recognised as inherited characters (Knyazev et al., 2003), their recurrent
presence amongst the Mesoamerican dogs suggests regular inbreeding. Indeed, in the site of
Tizayuca, we estimate that 22% of the dogs present dental anomalies in the premolar row. In
the meantime the diversity of dogs diet in Mesoamerica, as shown by stable isotopes (eg.
White et al., 2001), and a greater dental plasticity on the premolar row (Asahara, 2013; Vila et
al., 1993) would allow the variability of dental phenotypes to persist. However, further

analyses of full mitogenomes and nuclear markers are required to improve these hypotheses.

Analysis of molecular variance shows there are more differences within the different
populations than between them, confirming the low geographic component of domestic dog
mtDNA (van Asch et al., 2005; Witt et al., 2015). Interestingly, the neighbour-joining tree
built from the Fsr pairwise test results indicates clusters differentiating the populations from
South America and Mesoamerica from other North American populations (Figure 5). The
proximity highlighted between Mesoamerican and South American dogs could be the result of
the genetic bottleneck induced by the dispersion of dogs across America, with a loss of
genetic variability following the North-South migration. This trend might have been also
reinforced by the trade of animals between Mesoamerica and the Andean region. Indeed, eight
of the nine South American dogs come from Peru and Bolivia, which is in the heart of the
Andean culture. Several archaeological and linguistic evidence point toward continuous,
albeit tenuous, exchanges between Mesoamerica and the Andean region during pre-Hispanic
times (e.g. Anawalt, 1992; Carot and Hers, 2016; Holser, 1988) and some authors suggested

dogs, in particular hairless ones, were part of these mouvements (Carot and Hers, 2016;
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Valadez Azta et al.,, 2010, 2009; Vasquez Sdanchez et al., 2016). However, further

comparative analyses will be necessary to address this question.

4.3. Relationship between archaeological “hairless-like” dogs and modern breeds

The Xoloitzcuintle is considered to be a primitive breed and therefore geneticists have
tried to find particular markers differentiating it from other modern breeds (Vila et al., 1999).
Nonetheless recent genomic studies have shown that modern Xoloitzcuintle and Peruvian
Hairless dog were strongly influenced by European breeds as a result of recent breed
selection, and pre-contact traits would have been highly diluted (Ni Leathlobhair et al., 2018;
Parker et al., 2017a). The fact that they share the same causal mutation (Drégemiiller et al.,
2008) sustains the hypothesis of a common origin but it is not clear if it is due to a pre-contact
population movement or modern migrations. Yet, the comparison between these two modern
American breeds and archaeological “hairless-like” dogs shows two shared haplotypes: All,
found in three dogs from Tizayuca and BO1 found in one dog from Tula (Figure 4). Although
we cannot discard their European origin due to post-contact interbreeding, these two

haplotypes could reflect the American maternal ancestry of these modern breeds.

The Chihuahua is another breed showing an American origin (van Asch et al., 2013)
carrying a PT (A185) already found in pre-contact archaeological samples from Mexico
(Leonard et al., 2002) and Northwest America (Ames et al., 2015; Barta, 2006), albeit none of
these present a “hairless-like” phenotype. However, novel haplotype Xol-H1, carried by three
“hairless-like” dogs from Tizayuca, is closely related with haplotype A185. Interestingly,
genomic data show a close relationship between the Chihuahua and the Chinese Crested dog,
another hairless breed carrying the Fox/3 mutation (Parker et al., 2017a). This proximity
highlights the complexity of dog history, strengthening the value of aDNA in the analysis of

modern breeds and calling for more global studies on the origin of modern breeds.
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5. Conclusion

This multidisciplinary analysis of eight dogs with a “hairless-like” phenotype offers new
insights into the origin of the American hairless breeds. With direct radiocarbon dating of the
samples, we show that “hairless-like” dogs were present in the Basin of Mexico since the
Classic, between 386 and 535 CE, and persisted in the archaeological record until 1449 —
1631 CE. It is still unclear, however, if these dogs were the hairless specimens observed by
the first Spanish arriving to Mexico. First of all, the dental criteria used to identify them might
be associated with other developmental anomalies than CED. Also, other mutations exist that
lead to hairless dogs without affecting teeth development (Parker et al., 2017b), stressing the

difficulties in accurately identifying them in the archaeological record.

Nonetheless, we show that the dogs from the Basin of Mexico present a high
mitochondrial diversity and genetic continuity across the different cultural periods suggesting
the existence of a large and stable population of dogs. Some “hairless-like” dogs from Central
Mexico present a similar haplotype as some modern Xoloitzcuintli, Peruvian Hairless Dogs

and Chihuahua that could reflect one of the maternal ancestries of the breeds.

From the eight specimens analysed, we identified four different haplotypes including two
that were never reported before, and all are different from the haplotypes described in ancient
Mesoamerican dogs until now. It shows that most of the diversity of ancient American dog
populations is still unknown and further studies are required with a larger geographical and
chronological sampling to improve our understanding of past and modern dog relationships.
Moreover, this study mostly relies on the mtDNA control region whereas complete
mitogenome would give a better resolution. On the other hand, mtDNA only represents the
maternal half of lineages and plays a limited role in phenotypic expression. Nuclear genomic
approaches have been successfully used in ancient dogs to target specific phenotypes (Ollivier

et al., 2013), metabolic adaptations (Ollivier et al., 2016), and population history (Botigué et
22
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al., 2017; Ni Leathlobhair et al., 2018; Frantz et al., 2016). Therefore, their application to
ancient Mesoamerican dogs would allow for a better understanding of past and modern dog

relationships.
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