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1. Introduction

The clustering of human activities in time and space results in substantial social costs
of congestion. For the year 2050, it is expected that 66 percent of the world population will
live in urban areas (United Nations, 2014), and with this ongoing increase of urbanization,
levels of congestion are expected to increase as well. Nash (2003) estimates congestion costs
for European countries at about 1% of GDP, meaning that potential welfare improvements
from the regulation of congestion externalities can be substantial. Since the seminal work of
Pigou (1920) economists have argued that the price of travellers’ trips does not correspond
to the marginal social costs because a driver does not take into account that (s)he raises
the travel time costs of other travellers’ on the road (see Walters (1961) for an early con-
tribution). Therefore congestion pricing has long been advocated as a viable solution, but
political and societal opposition has limited its implementation.

Unlike what is assumed in the earliest contributions to the road pricing literature, re-
searchers cannot observe all determinants of choice. Stochastic User Equilibrium (SUE)
models are therefore widely employed, for example to study pricing and location decisions
of firms (Anderson et al. (1992)), households’ location choices (Bayer and Timmins (2007)),
and route choices of travellers (Daganzo and Sheffi (1977)). Instead of considering purely de-
terministic trade-offs, the utility of alternatives is assumed to depend on a deterministic part
and an unobserved part, that might vary over individuals as well as over choice occasions.
Individuals’ unobserved preferences for routes or modes result in ”benefits of variety”: an
increased number of routes or modes will raise the expected utility of travelling because dif-
ferent alternatives may be appealing to different subsets of consumers. The variety benefits
can be included in the welfare function using an entropy term. For example, Erlander (1977),
Fisk (1980), Miyagi (1986) and Anderson et al. (1988) showed the connection between the
logit model of discrete choices and the benefits of variety: when alternatives have exactly
the same deterministic utility (in equilibrium), and hence the same choice probabilities, the
benefit of variety is maximized. This corresponds to the intuitive notion that additional
alternatives that are (almost) unused in equilibrium hardly increase variety benefits.

1.1. Contribution

This paper shows analytically and numerically how observed and unobserved preference
heterogeneity in SUE impacts first-best and second-best congestion pricing policies. We
include both heterogeneity in the deterministic part of utility, for example caused by the
fact that travellers value travel time differently (Small (2012)), and in the unobserved part
of utility by allowing for group specific substitution parameters. Because congestion taxes
may impact the benefits of variety and the deterministic part of utility of different groups
differently, including preference heterogeneity is of key importance to provide policy makers
information about the distributional impacts of congestion pricing. Furthermore, the welfare
benefits of congestion pricing may be higher when differentiation of congestion taxes between
groups is feasible. The main body of this paper looks at a stylised two-route case to enhance
economic interpretation of first-best and second-best congestion tolling with choices governed
by random utility maximization. It extends the two-route deterministic user equilibrium
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(DUE) models of Verhoef et al. (1996) and Small and Yan (2001) to account for the valuation
of route variety and an arbitrary number of groups with distinct preferences. Our stylised
analytical approach can also be applied in the analysis of taxation of other externalities in
the presence of variety benefits and heterogeneous preferences. Extensions to an arbitrary
number of alternatives are provided in the appendices.

Several earlier studies have studied congestion tolling in SUE network models (see Yang
(1999); Yang and Huang (2004); Maher et al. (2005); Huang and Li (2007)) and have analysed
congestion pricing with heterogeneous preferences (Arnott et al. (1994); Verhoef et al. (1995);
Small and Yan (2001); Verhoef and Small (2004); Mahmassani et al. (2005); Lu et al. (2006);
Zhang et al. (2008); Clark et al. (2009); Jiang et al. (2011); Sumalee and Xu (2011); van den
Berg and Verhoef (2011a,b, 2013)). However, the most likely realistic combination of price-
sensitivity of demand, heterogeneity in valuations of travel time, and benefits of variety
has not been studied in a stylised network before. As we accommodate several sources of
preference heterogeneity in a fairly general way, it can inspire future analytical research on
taxation of externalities in networks in transportation and beyond.

1.2. Structure of the paper and main findings

After introducing the behavioural model in Section 2, Section 3 introduces first-best con-
gestion pricing using a probabilistic SUE model. First, we derive analytical expressions for
first-best congestion tolling with homogeneous values of travel time (VOT) and valuation of
variety (see Section 3.1). We show that probabilistic choice has no impact on the first-best
toll rules, when compared with the Pigouvian toll rules of the Deterministic User Equilib-
rium (DUE) model. However, for asymmetric route costs, the levels of these first-best tolls
may still differ for SUE and DUE, despite the equality of the toll rule, because SUE and
DUE equilibrium flows are different and therefore so are the marginal external costs. These
results also hold for an arbitrary number of alternatives.

Second, we derive first-best congestion tolls in the presence of heterogeneous values of
time and benefits of variety (see Section 3.2). Our model thus allows for scale heterogeneity,
meaning that the benefits of variety may differ between groups. The DUE model with two
groups of Small and Yan (2001) is a limiting case of our model. We assume a finite number
of groups, with each group having a different valuation of travel time, and valuation of route
variety.1 When first-best congestion tolls are group-specific, the SUE tolls have the same
analytical form as the DUE tolls. The marginal expressions do depend on the group-specific
valuations of travel times, but are independent of the benefits of variety. But again, the SUE
toll levels may be different when route costs are asymmetric, because equilibrium aggregate
usage levels are. The uniform first-best toll we find is equal to the group-specific first-best
toll, because we assume that each traveller raises congestion by the same amount. This

1Although a continuous distribution may be even more realistic, compared to the case with homogeneous
preferences, a discrete distribution of VOTs and scale parameters strongly increases the empirical plausibility
of the model and can be connected to empirical applications that seek to estimate preference heterogeneity.
For example, it is well known that VOTs of travellers may be different because of variations in job and other
characteristics (see Small (2012) for a recent review on heterogeneity in VOTs).
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result also holds for an arbitrary number of alternatives as shown in Appendix A.
Section 4 studies second-best congestion pricing using a SUE modelling framework. First,

we derive a second-best toll with homogeneous VOTs and benefits of variety, which has the
deterministic second-best toll of Verhoef et al. (1996) as a limiting case when benefits of
variety vanish (see Section 4.1). Here we find that the toll rule of the DUE model and the
SUE model diverge. This is because the second-best toll corrects for the spillovers on the un-
tolled route. The substitution effect to the untolled route depends on the relative size of the
random idiosyncratic part of utility in the total utility. Lower benefits of variety arise when
route choices are more deterministic and this naturally will lead to a stronger behavioural
response to the toll, in turn leading to a higher diversion of travellers onto the untolled route
when second-best pricing is employed and therefore a larger downward adjustment of the
second-best toll to limit this spill-over. Because drivers are less responsive to tolls in the
SUE model, these second-best tolls will be higher: the spillover effect on the untolled route
is smaller. An extension to an arbitrary number of alternatives is provided in Appendix B.

Second, we derive a group-specific second-best toll rule with preference heterogeneity in
the systematic and the random part of utility (see Section 4.2). The level of this second-
best toll depends on the benefits of variety of the different groups. We find that there are
cases where both groups benefit from SB pricing, but that it is likely to be politically un-
acceptable to implement this policy because the low value of time group faces higher tolls.
For (non-differentiated) uniform second-best tolls, we were not able to derive an analytical
closed-form expression, and therefore this case is analysed numerically. An extension to an
arbitrary number of alternatives is provided in Appendix C.

Section 5 confirms the analytical expressions for first and second-best tolls and gives ad-
ditional insights on the role of variety benefits and the distributional impacts of congestion
tolling. We assume that there are two routes and two groups: one with high VOTs, and one
with low VOTs. With low benefits of variety, there may be a toll differentiated equilibrium,
where the high VOT group uses the tolled road and the low VOTs group uses the untolled
route. However, when the benefits of variety increase, this separation disappears, due to
unobserved route preferences becoming more important in route choice, and a pooled equi-
librium is optimal. The extent to which it is beneficial to differentiate the road taxes in order
to accommodate the needs of distinct groups therefore crucially depends on the valuation of
variety and the heterogeneity in the value of travel times. Higher valuation of variety and
lower heterogeneity in travel time valuations decrease the likelihood of having a separated
optimal equilibrium. This result nuances earlier findings on toll differentiation based on
deterministic models (Verhoef and Small, 2004; Small and Yan, 2001). Furthermore, the
distributional impacts of SB tolling strongly depend on the benefits of variety. With deter-
ministic route choice, the high VOT group benefits from SB tolling and the low VOT group
loses. When route choice is more probabilistic the outcome is more nuanced and there are
cases where both the low VOT and the high VOT group benefit from SB congestion tolling.
Finally, Section 6 discusses extensions to more general networks and Section 7 concludes.
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2. The random utility framework

We consider choice behaviour between two congestible facilities where choice is governed
by random utility maximization. To fix ideas, we cast the analysis in terms of route choice
on a congestible road network. Travellers choose their route on the basis of random utility
maximization. The random utility function of a randomly sampled individual n belonging
to group k, choosing route r from the set of two routes is:

Ukrn = Vkr +
1

θk
εkrn, r = 1, 2, k = 1...K (1)

where Ukrn depends on a deterministic part Vkr and a stochastic idiosyncratic route prefer-
ence εkrn, which is assumed to be identically and independently distributed. These unob-
served preferences reflect route characteristics that affect route choice that are unobserved
by the researcher. For example, one route might be closer to the child care or might be
chosen because of travellers’ habits. This leads to unobserved route preferences that differ
over individuals and differ from one choice occasion to another. The scale parameter θk
governs the relative importance of the unobserved idiosyncratic part of the utility in the
total utility. When these idiosyncratic preferences are i.i.d. extreme value distributed, the
route probabilities are given by the well known logit formula:2

Pnkx =
exp(θkVkx)

exp(θkVk1) + exp(θkVk2)
, x = 1, 2,∀k = 1...K. (2)

Two limiting cases can be considered. First, the unobserved part of route utility may be
very large (θk → 0), resulting in route choices that are independent of the deterministic part
of utility. Choice probabilities then converge, in the limit, to 1/2. Second, the unobserved
part of route utility may become very small (θk → ∞), resulting in a deterministic route
choice model. Because the unobserved part of route utility is interpreted as individuals’
unobserved preferences, there are benefits of variety in the sense that adding an additional
alternative leads to higher expected utility (even when this alternative has lower systematic
utility than all other available alternatives). This becomes more evident when we derive the
expected utility, which is given by the expectation of equation (1) over all alternatives.3

EUnk =
1

θk
ln [exp(θkVk1) + exp(θkVk2)] , (3)

where one noteworthy feature of equation (3) is thus that having more routes to choose from
is valued positively by travellers. The stochastic model has the deterministic model as a
limiting case. When θk → ∞ in equation (3), the systematic utility differences between all
used alternatives must become 0 in equilibrium if both routes are used, because otherwise
all travellers will switch to the most attractive route.

2Luce, D. and Suppes (1965) attribute the proof to E.W. Holman and A.A.J. Marley. McFadden (1974)
showed the reverse: logit probabilities necessarily imply i.i.d. extreme value distributed random utilities

3See Williams (1977) and Small and Rosen (1981) for theoretical contributions and de Jong et al. (2007)
for a discussion on practical applications in transport.
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3. First-best congestion pricing, two route case

3.1. Homogeneous preferences

We start our analysis with first-best congestion pricing in a stylised two-route setting.
This model can be viewed as a probabilistic version of the model in Verhoef et al. (1996).
We assume that there is only one group, meaning that all travellers are identical in terms of
systematic utility and in terms of the distribution of unobserved utility. Therefore we can
write Vkr ≡ Vr and θk ≡ θ. The marginal benefit for entering the network is given by D(N),
where N is the total number of travellers. We assume that tolls and congestion costs enter
systematic utility in an additive separable way, resulting in deterministic utilities for routes
U and T of:

Vr = − (fr + cr(Nr)) , r ∈ {U, T} , (4)

where fr is the toll on route r, and cr(Nr) is the travel cost for route r, which is increasing
in the route flow Nr. For the two route case, equilibrium is implicitly defined by:

Pr =
exp(θVr)

exp(θVT ) + exp(θVU)
=

Nr

NU +NT

=
Nr

N
, (5)

meaning that equilibrium proportions can always be expressed by the number of drivers on
the two routes. The social surplus S is given by the social benefits (the integral under the
inverse demand curve, the toll revenues and the benefits of variety) minus the sum of total
travel costs. The toll payments of the travellers are a money transfer to the regulator, and
they drop out of the social surplus function (we assume zero transaction costs of taxation).
In the absence of income effects, social surplus is given by (Fisk (1980) and Anderson et al.
(1988)):

S =

∫ N

0

D(n)dn−NT cT (NT )−NUcU(NU)− 1

θ

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
. (6)

The first part of this equation captures the consumer surplus and the deterministic total user
costs. The second part is always non-negative and captures the total benefits of variety for
given route flows NT and NU . More precisely: here the individual route entropy PT ln [PT ]+
PU ln [PU ] is multiplied with the valuation of variety 1

θ
, to obtain the benefits of variety per

traveller, which is then multiplied with the total number of travellers to obtain the total
benefits of variety. For given NT and NU , a smaller θ, and hence a higher randomness of
route utility, will lead to higher benefits of variety. For the multinomial logit model, this
relationship between this so-called ”Shannon entropy” and the logit model has long been
recognised (Erlander, 1977; Fisk, 1980; Miyagi, 1986; Anderson et al., 1988).

Entropy is higher when equilibrium route proportions are more alike. This is intuitive:
the benefits of variety are higher when routes are used more equally in equilibrium. The
total benefits of variety are fully expressed by the route proportions and the total number of
travellers. Any change in the congestion costs or the toll on a route will only have an impact
on these benefits via the equilibrium proportions. Furthermore, our model captures that
increases in the benefits of variety will lead to additional overall demand. We now consider
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first-best congestion pricing by a welfare-maximizing regulator, setting a toll on route U and
route T . The Lagrangian is given by:

L =

∫ N

0

D(n)dn−NT cT (NT )−NUcU(NU)− 1

θ

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
+ λT

(
D(N)− 1

θ
ln

[
NT

N

]
− fT − cT (NT )

)
+ λU

(
D(N)− 1

θ
ln

[
NU

N

]
− fU − cU(NU)

)
.

(7)

The constraints govern equilibrium on both routes because travellers keep on entering the
road up to the point where the marginal benefits D(N)− 1

θ
ln
[
Nr
N

]
are equal to the generalised

price of travelling: fr + cr(Nr).
4 In order to find the first-best congestion tolls, the following

first-order conditions need to be solved jointly:5

∂L
∂NT

=D(N)− cT (NT )−NT c
′
T (NT )− 1

θ
ln

[
NT

N

]
+ λT

(
D′(N)− 1

θ

NU

NTN
− c′T (NT )

)
+ λU

(
D′(N) +

1

θ

1

N

)
= 0.

(8)

∂L
∂NU

=D(N)− cU(NU)−NUc
′
U(NU)− 1

θ
ln

[
NU

N

]
+ λT

(
D′(N) +

1

θ

1

N

)
+ λU

(
D′(N)− 1

θ

NT

NUN
− c′U(NU)

)
= 0.

(9)

∂L
∂fT

= −λT = 0. (10)

∂L
∂fU

= −λU = 0. (11)

∂L
∂λT

= D(N)− fT − cT (NT )− 1

θ
ln

[
NT

N

]
= 0. (12)

∂L
∂λU

= D(N)− fU − cU(NU)− 1

θ
ln

[
NU

N

]
= 0. (13)

4The setup of equations (6) and (7) separates the overall demand response from the substitution between
routes and has a clear advantage over an alternative model with a third ”outside” alternative, because then
θ governs both the elasticity of demand and the benefits of variety. The limiting case of θ →∞ then results
in a deterministic model with perfectly elastic demand. Our model is more general and has the nested logit
with a degenerated nest for not travelling as a special case (see also Verboven (1996)).

5Here we use the derivatives of the entropy terms with respect to route demand which shows
how benefits of variety change with route demands. The marginal entropy for route T is given by:

∂
∂NT

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
= ln

[
NT

N

]
, ∂

∂NU

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
= ln

(
NU

N

)
, ∂

∂NT
ln
[
NT

N

]
=

NU

NTN , ∂
∂NU

ln
[
NU

N

]
= NT

NUN . The marginal entropy of route U is given by: ∂
∂NU

ln
[
NT

N

]
= ∂

∂NT
ln
[
NU

N

]
= − 1

N .
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Equations (10) and (11) show that the Lagrangian multipliers of both routes are 0 in the
socially optimal equilibrium. This is intuitive, because these multipliers reflect the marginal
change in social surplus for a unit change in the congestion toll on a route. In equilibrium,
this should be 0, otherwise the tolls would be non-optimal by definition. This matches
insights from deterministic models (Verhoef, 2002a). Substituting equations (10)-(13) in
equations (8) and (9) we obtain:

fT = NT c
′
T (NT ),

fU = NUc
′
U(NU).

(14)

These first-best toll rules have the same form as the standard Pigouvian toll rules of the DUE
model (this is also true for more than two alternatives). Tolls internalise marginal external
cost to make people behave according to the social optimum, when acting in their own
self-interest. In the probabilistic model we may not fully observe all the individual benefit
components, but through the first-best tolls travellers are correctly taking into account all
relevant aspects (their own costs and benefits, be it observable to the outsider or not, and
the impact on other travellers), so they behave so as to maximise welfare. Even though the
toll rules are the same for SUE and DUE, absolute toll levels may diverge when route costs
are asymmetric. This asymmetric case is analysed in more detail in section 5. The extension
to the multinomial case is straightforward and leads to the same toll expression.

3.2. Group-differentiated and common first-best tolls with heterogeneity in preferences

Next, we proceed with the analysis of first-best congestion pricing with heterogeneity
in preferences. Assume that there are K distinct groups in the population. The inverse
demand for travelling, the valuation of travel time, and the benefits of variety are assumed
to be group-specific, and within each group route choice is governed by random utility maxi-
mization where the degree of substitution is group specific. The heterogeneity in travel time
valuation enters the model via the deterministic route costs crk(Nr) for group k, with Nr

being the total number of travellers using route r. Heterogeneity in the benefits of variety is
captured by having a group-specific scale parameter θk. Finally, heterogeneity in overall de-
mand response is captured by having a group-specific marginal benefit function Dk(Nk). Let
NTk be the number of travellers of group k that use route T , and NUk the number of travellers
of group k that use route U . The total number of travellers in a group is Nk = NTk +NUk.
Here we have NT =

∑K
k=1NTk, NU =

∑K
k=1NUk and NT + NU =

∑K
k=1Nk = N . Because

the number of groups can freely be chosen, our model can approximate any continuous dis-
tribution of preferences arbitrarily closely.

Deterministic route costs are determined by the total number of travellers on each route.
To simplify matters, these travel costs are assumed to be equal up to a group-specific mul-
tiplicative term, implying that cTk(NT ) = αkcT (NT ) and cUk(NU) = αkcU(NU),∀k = 1...K.
When cr(Nr) is interpreted as the travel time on route r, this model can be viewed as a
model with travellers having different valuations of travel time αk. To save notation we
define N̄T

α
=
∑K

k=1 αkNTk as the preference weighted number of travellers at route T , and

N̄U
α

=
∑K

k=1 αkNUk as the preference weighted number of travellers for route U . Equilib-
rium route probabilities for group k then satisfy PTk = NTk

Nk
and PUk = NUk

Nk
. Deterministic
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costs frk + crk(Nr) are governed by the total number of travellers on route r, whereas the
total benefits of variety are given by the sum of the group-specific entropy multiplied by the
number of travellers and the inverse of the group-specific scale parameter θk. The benefits of
variety of group k are fully determined by the route proportions of group k. The interaction
of the groups in the network is captured in the deterministic route costs. The Lagrangian
is given by a straightforward extension of equation (7) to K groups:

L =
K∑
k=1

∫ Nk

0

Dk(nk)dnk −
K∑
k=1

αkNTkcT (NT )−
K∑
k=1

αkNUkcU(NU)

−
K∑
k=1

1

θk

(
NTk ln

[
NTk

Nk

]
+NUk ln

[
NUk

Nk

])

+
K∑
k=1

λTk

(
Dk(Nk)− fTk − αkcT (NT )− 1

θk
ln

[
NTk

Nk

])

+
K∑
k=1

λUk

(
Dk(Nk)− fUk − αkcU(NU)− 1

θk
ln

[
NUk

Nk

])
.

(15)

For all groups, the marginal willingness to pay Dk(Nk) should be equal to the generalised
price in equilibrium, resulting in 2K equilibrium constraints and corresponding Lagrangian
multipliers. The system can be solved using the first-order conditions with respect to NT l,
NUl, the Lagrange multipliers and the tolls for a chosen group l. In Appendix A we show
that the group-specific first-best tolls with heterogeneous preferences are given by

fTk = N̄T
α
c′T (NT ),

fUk = N̄U
α
c′U(NU).

(16)

Marginal first-best tolls on the routes have therefore the same analytical form as the differ-
entiated tolls of the deterministic model (this is also true for more than two alternatives).
As with first-best tolling with homogeneous preferences, probabilistic choice only impacts
the level of the toll level, not the marginal rules, via the equilibrium number of travellers
on both routes. Furthermore, equation (16) shows that the first-best tolls are equal for all
groups. This is because congestion is assumed to be anonymous: the change in external
costs for an additional traveller is assumed to be the same for all groups. For external costs
it does not matter to which group the traveller belongs, since travel time losses are assumed
to increase with the same amount independent of the type of traveller.6 This is of course
not the case when groups have different impacts on travel times, as would be likely with
trucks versus passenger cars (see for example de Palma et al. (2008) and Parry (2008)). The
extension to the multinomial case is straightforward and leads to the same toll expression.
Differentiated tolls will in general not be equal across groups for second-best congestion
pricing, as we will show in the next section.

6This observation that congestion charges must be anonymous when drivers are observationally indis-
tinguishable was made earlier by Arnott and Kraus (1998).
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4. Second-best congestion pricing

4.1. Homogeneous preferences

In many cases first-best pricing is not feasible, and often not accepted, because travellers
then do not have the opportunity to travel on an untolled route. Tolling one of the two
routes (a form of second-best congestion pricing), may then be a viable alternative. In
this section we analyse congestion pricing with probabilistic choice in the presence of an
untolled alternative. The SUE model developed in this section is a probabilistic version
of the DUE model of Verhoef et al. (1996), which has its roots in the pioneering DUE
analyses of Marchand (1968) and Lévy-Lambert (1968). For this deterministic model, the
substitution between the routes plays an important role for determining the second-best
toll. Because in the SUE model this substitution is governed by the valuation of variety via
θ, we expect that second-best tolls will depend on θ too. The systematic route utility for
the tolled route is given by VT = − (fT + cT (NT )), whereas for the untolled route it is given
by VU = −cU(NU). Equilibrium is implicitly defined by equation (5), but the equilibrium
conditions are different compared to the first-best case, because no toll is levied on route
U . This has an effect on the generalised price, and on overall entropy, because overall
demand is responsive to generalised price levels. The generalised price for route T is given
by fT + cT (NT ), whereas the generalised price of the untolled route is cU(NU). Because
tolls are a cost for the travellers and a benefit for the government, the toll revenues will not
enter the total social surplus. Therefore the expression for the total social surplus (equation
(6)) will not change. Because we have price-sensitive demand, travellers enter the road up
to the point where for both routes the marginal benefits D(N)− 1

θ
ln
[
Nr
N

]
are equal to the

generalised route price. The Lagrangian is given by:

L =

∫ N

0

D(n)dn−NT cT (NT )−NUcU(NU)− 1

θ

(
NT ln

[
NT

N

]
+NU ln

[
NU

N

])
+ λT

(
D(N)− fT − cT (NT )− 1

θ
ln

[
NT

N

])
+ λU

(
D(N)− cU(NU)− 1

θ
ln

[
NU

N

])
.

(17)

The second-best toll can be found by solving the following system of first-order conditions:

∂L
∂NT

= D(N)− cT (NT )−NT c
′
T (NT )− 1

θ
ln

[
NT

N

]
+ λT

(
D′(N)− c′T (NT )− 1

θ

NU

NTN

)
+ λU

(
D′(N) +

1

θ

1

N

)
= 0.

(18)

∂L
∂NU

= D(N)− cU(NU)−NUc
′
U(NU)− 1

θ
ln

[
NU

N

]
+ λT

(
D′(N) +

1

θ

1

N

)
+ λU

(
D′(N)− c′U(NU)− 1

θ

NT

NUN

)
= 0.

(19)

∂L
∂fT

= −λT = 0. (20)
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∂L
∂λT

= D(N)− fT − cT (NT )− 1

θ
ln

[
NT

N

]
= 0. (21)

∂L
∂λU

= D(N)− cU(NU)− 1

θ
ln

[
NU

N

]
= 0. (22)

Using equations (18), (20) and (21) we obtain:

fT = NT c
′
T (NT )− λU

(
D′(N) +

1

θ

1

N

)
. (23)

Using equations (22) and (20), we can solve equation (19) for λU :

λU =
NUc

′
U(NU)

D′(N)− c′U(NU)− 1
θ
NT
NUN

. (24)

This Lagrangian multiplier is non-positive, implying that when a positive toll on route U
would be feasible, this would result in a welfare increase because tolls enter the constraints
in equation (17) negatively. This is in line with expectations, because raising a toll on route
U will bring the equilibrium closer to the first-best optimum. Substituting equation (24) in
equation (23) gives:

fT = NT c
′
T (NT )−NUc

′
U(NU)

−D′(N)− 1
θ

1
N

c′U(NU)−D′(N)− 1
θ
NT
NUN

, (25)

which becomes equal to the deterministic second-best rule in Verhoef et al. (1996) when
θ → ∞. The first term in equation (25) is equal to the marginal external costs on route
T in the second-best equilibrium. The second term is more complicated and corrects for
the marginal costs of congestion caused by substitution to the untolled route when a toll
is levied on route T . The marginal external costs on route U are multiplied by a fraction
which depends on the sensitivity of the marginal benefits with respect to total demand,
both systematically via D′(N) and via the benefits of variety (via 1

θ
1
N

). It also depends
on the ratio of the equilibrium number of travellers on both routes, the total number of
travellers, and the slope of the congestion cost function of the untolled route. It shows that
the second-best toll depends in a complicated way on the variety benefits via θ, since θ has
a direct positive effect on the numerator and the denominator of the correction term, but
also has an indirect effect on equation (25) via the equilibrium number of travellers. This
last effect is the result of additional total demand when there are higher variety benefits in
equilibrium.

A more detailed look at equation (25) shows that despite the additional terms due to
stochastic route choice, it has a similar analytical structure as the toll rule for deterministic
route choice, and can be written as fT = MECT +MECU

∆NU
∆NT

, where MECr is the marginal
external cost on route r. The marginal external costs on route U are weighted with a term
∆NU
∆NT

, which is the change in the equilibrium number of travellers on route U due to a change
in the equilibrium number of travellers on route T . More specifically, equation (17) shows

11



that the term D′(N) + 1
θ

1
N

is the change in the constraint for route U due to a marginal

change in NT , whereas −c′U(NU)+D′(N)+ 1
θ
NT
NUN

is the change in the constraint for route U

due to a marginal change in NU . The ratio therefore gives ∆NU
∆NT

. As opposed to the first-best
toll rules of equation (14), the toll rules of the DUE model of Verhoef et al. (1996) and our
SUE model differ even for the case with symmetric route costs. Several limiting cases can
be considered.
First, the second-best toll rule of the deterministic model is a limiting case of the stochastic
model when its random component vanishes:

lim
θ→∞

fT = NT c
′
T (NT )−NUc

′
U(NU)

−D′(N)

c′U(NU)−D′(N)
. (26)

This toll is isomorphic to the toll rule for the DUE model developed by Verhoef et al.
(1996). The SUE model therefore has the DUE model as a limiting case, quite intuitively
when θ →∞ and idiosyncratic utility vanishes.

Second, for perfectly overall inelastic demand, D′(N)→ −∞, the toll rule becomes equal
to the difference in marginal external costs on the two routes:

lim
D′(N)→−∞

fT = NT c
′
T (NT )−NUc

′
U(NU). (27)

This toll rule is isomorphic to the toll rule of the DUE model with price-insensitive demand
of Verhoef et al. (1996). Because there is no effect of tolling on the overall demand, the
regulator only seeks to find the optimal route split. This produces the first-best outcome, so
in itself it is no surprise that as with first-best tolls, the toll rules for the DUE and the SUE
model become identical again. The level of the toll in equation (27) may well be different
for DUE and SUE for asymmetric route costs, because θ has an effect on the optimal route
split. Furthermore, equation (27) may be negative if in equilibrium the marginal external
costs on route U are higher than the marginal external costs on route T . This means that
travellers on route T would receive a subsidy instead of paying a toll.

Third, with perfectly elastic overall demand the toll rule becomes:

lim
D′(N)→−0

fT = NT c
′
T (NT )−NUc

′
U(NU)

−1
θ

1
N

c′U(NU)− 1
θ
NT
NUN

. (28)

This is clearly different from the DUE case (see (26)), where the second term vanishes as
−D′(N) becomes 0. For perfectly elastic overall demand the toll rule depends on θ, because
the substitution between the routes depends on the love of variety, whereas the use of route
U would be fully independent of fT with deterministic route choice and perfectly elastic
demand. The reason is that the toll on route T then cannot affect the use of route U , so
there is no benefit from taking route U into account in the toll rule and it is used solely to
optimize the use of route T alone. In the stochastic model, there remains an effect of the
toll on the use of route U , also when D′ = 0, and this is accounted for in the toll rule.

Fourth, if route U is uncongested, c′U(NU)→ 0, and the toll rule (25) reduces to:

lim
c′U (NU )→0

fT = NT c
′
T (NT ). (29)
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which is again isomorphic to the toll rule in the deterministic model. The absence of con-
gestion on route U then means that this route is optimally priced when it is not tolled.
The regulator may therefore ignore route U , and needs only to consider the unconstrained
optimal regulation of route T .

Finally, it turns out that both the deterministic model with perfect substitution and
the stochastic model with imperfect substitution are part of a broader class of models with
a user benefit function B(NT , NU). The first derivative of this benefit function is the in-
verse demand and should be equal to the congestion costs plus the toll in equilibrium. The
second-best congestion toll is then given by (Small et al. (2007), equation 4.47):

fT = NT c
′
T (NT )−NUc

′
U(NU)

− ∂2B
∂NU∂NT

c′U(NU)− ∂2B
∂N2

U

. (30)

For perfect substitutes we have B(NT , NU) =
∫ NT+NU

0
D(n)dn, whereas for stochastic route

choice we observe from equation (6) that there are additional benefits of variety resulting in:

B(NT , NU) =
∫ N

0
D(n)dn− 1

θ

(
NT ln

[
NT
N

]
+NU ln

[
NU
N

])
. If we substitute the second order

derivatives of this benefit function in equation (30), we arrive at equation (25). In Appendix
B we provide an extension to the multiple routes case.

4.2. Group-specific second-best tolling with heterogeneous preferences

This section generalises the SUE model of the previous section by deriving group-specific
second-best congestion tolls with heterogeneous travellers. We use a similar setup as in
section 3.2 where K distinct groups have different preferences for congestion costs, benefits
of variety, and inverse demand curves. The Lagrangian is given by:

L =
K∑
k=1

∫ Nk

0

Dk(nk)dnk −
K∑
k=1

αkNTkcT (NT )−
K∑
k=1

αkNUkcU(NU)

−
K∑
k=1

1

θk

(
NTk ln

[
NTk

Nk

]
+NUk ln

[
NUk

Nk

])

+
K∑
k=1

λTk

(
Dk(Nk)− fTk − αkcT (NT )− 1

θk
ln

[
NTk

Nk

])

+
K∑
k=1

λUk

(
Dk(Nk)− αkcU(NU)− 1

θk
ln

[
NUk

Nk

])
(31)

In Appendix B we first show that the group-specific Lagrangian multipliers of route U are
non-positive, implying that the possibility to raise a positive toll on route U for any of the
groups would increase welfare. Furthermore, we show that the second-best group-specific
toll for group k is given by:

fTk = N̄T
α
c′T (NT )− N̄U

α
c′U(NU)

−D′k(Nk)− 1
θk

1
Nk

αkc′U(NU)−D′k(Nk) + 1
θk

NTk
NUkN

+ φk
, (32)
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where

φk =
K∑
l=1
l 6=k

αlc
′
U(NU)

D′k(Nk)− 1
θk

NTk
NUkNk

D′l(Nl)− 1
θl

NTl
NUlNl

> 0. (33)

The first part in equation (32) is related to the external costs on the tolled route and is
isomorphic to the first-best toll with heterogeneous preferences (equation (16)). The second
part in equation (32) takes into account the substitution effect to the other route which
is different for each group. Several limiting cases can be considered. First, when there is
only one group, φk → 0, and equation (32) reduces to equation (25). Second, the DUE
group-specific toll is a special case for which θk →∞,∀k = 1...K. This results in:

fTk = N̄T
α
c′T (NT )− N̄U

α
c′U(NU)

−D′k(Nk)

αkc′U(NU)−D′k(Nk)− c′U(NU)
∑K

l=1
l 6=k

αk
D′k(Nk)

D′l(Nl)

. (34)

When the slopes of the demand curves of all groups are equal we have D′l(Nl) ≡ D′k(Nk) ≡ D′

this reduces to:

fTk = N̄T
α
c′T (NT )− N̄U

α
c′U(NU)

−D′

c′U(NU)
∑K

l=1 αl −D′
. (35)

This implies that the DUE model with equal slopes of the demand curves lead to common
second-best tolls for all groups because c′U(NU)

∑K
l=1 αk has the same value for all groups. For

the SUE model with equal slopes of the inverse demand curves, tolls are still differentiated
between groups, because the substitution effect to the untolled route does depend on the
equilibrium number of travellers of each group on each route and the group-specific benefits
of variety via θk. The extension to multiple routes is provided in Appendix C.

We were not able to derive analytical solutions for the common second-best toll case
(undifferentiated between groups). The welfare for common second-best tolls will be lower
than for the group-specific second-best tolls, because the inability to differentiate the tolls
between user groups imposes an additional constraint. The Lagrangian problem is equivalent
to (31) with fTk ≡ fT . The next section will include numerical results for this case.

5. Numerical results

5.1. Introduction and calibration

Our numerical results build on those for the DUE model of Verhoef et al. (1996), who
assumed linear inverse demand and linear congestion cost functions. We shall use the DUE
case as a benchmark case against which we judge the implications of moving from a DUE
to SUE framework, considering sensitivity of the results and toll rules to variations in the
benefits of variety. The DUE model of Verhoef et al. (1996) assumes linear inverse demand:

D(N) = δ1 − δ2N, (36)
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Table 1: Assumptions for calibrated paramaters in the deterministic user equilibrium.

δ1 50
δ2 0.01
κT 20
κU 20
βT 0.02
βU 0.02
α1 0.8
α2 1.3

and linear congestion costs for route r defined as:

cr(Nr) = κr + βrNr, (37)

where the base case assumed parameter values are summarized in Table 1. This implies
that both routes are assumed to be identical in the base case resulting in non-intervention
equilibrium route demands of NT = NU = 750. Substituting these values in equation
(37) gives equilibrium average costs of 20 + 0.02 × 750 = 35 and marginal social costs of
20 + 0.04× 750 = 50. Applying optimal first-best tolling results in average costs of 30 and
marginal social costs of 40, whereas the toll is given by 40− 30 = 10. The socially optimal
number of travellers is given by 500 for both routes.

In what follows we consider the various toll rules and welfare implications for homo-
geneous preferences and for heterogeneity in values of time between groups (αk), and het-
erogeneity in preferences between groups (θk) for the symmetric case. In order to make a
comparison between such cases, we calibrate the initial link flows at the non-intervention
equilibrium to be equal to the UE non-intervention flows, and adjust the inverse demand
function(s) accordingly. We also impose a constraint on the flow weighted average VOTs
so that this is equal to the value used in the homogeneous case. This calibration of the
model to observed flows and average VOTs not only ensures that the flows are consistent at
the non-intervention case, but also that the initial aggregate welfare levels are maintained
across models. The symmetric examples may hide some impacts, in particular the change
in route flows when benefits of variety are included (even in the non-intervention case). For
this reason we also develop an asymmetric example (again based on Verhoef et al. (1996)),
where we adjust the systematic route utility with the introduction of a specific constant
on one route, to maintain the equilibrium route flows. This asymmetric example is used
to illustrate the fact that benefits of variety affect equilibrium tolls and flows even in the
first-best homogeneous case. Calibration of this asymmetric case is directed to Appendix D.

When calibrating the SUE model with heterogeneous preferences, we purposely calibrate
the demand function and initial group-specific demands such that the DUE non-intervention
route flows (and demands) are retrieved as we move between cases. As we are dealing with
linear inverse demand and cost functions, these adjustments are additive in nature. Equi-
librium arises where marginal benefits are equal to the generalized price, and therefore we
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have to shift the inverse demand curve by an amount equal to the difference between the
DUE average costs (35 at the no toll equilibrium in our example) and the no toll stochastic
average costs. Hence the new inverse demand function can be written as:

D(N) = δ1 + ν − δ2N, (38)

where the shift term ν is equal to 1
θ

ln
[
N0
T

N0

]
< 0 in order to maintain the same flows in

unregulated equilibrium. Because the benefits of variety decrease expected costs, the in-
verse demand curve needs to be shifted downwards to maintain the same equilibrium non-
intervention flows.

When we move to the case where groups are characterised by different values of time,
we impose the condition that the flow-weighted average VOT is equal to 1, which is the as-
sumed value with homogeneous travellers, reflecting that in the base calibration no explicit
distinction between a travel time function and the average user cost function is made. In
addition we maintain the initial demand, so that we have conditions as follows:

K∑
k=1

αk
N0
k

N0
= 1;N0 =

K∑
k=1

N0
k , (39)

where superscript N0
k refers to the non-intervention values of total group-specific demand

and N0 is total non-intervention demand. For the case with two groups we have:

N0
1 = N0 1− α2

α1 − α2

;N0
2 = N0 −N0

1 . (40)

For the DUE case with two groups, we have to adjust the group-specific demand functions
to account for the change in VOTs in order to maintain the initial systematic average costs
as for the homogeneous case. This is achieved by adjusting the intercept and slope of the
group-specific inverse demand curves as follows:

Dk(Nk) = δ1αk + νk − (δ1 − c0
due)αk

Nk

N0
k

, (41)

where c0
due is the deterministic user equilibrium costs, and νk the negative correction term

for the benefits of variety arising in SUE.
This procedure is best demonstrated by an example. Let the group-specific values of time

be α1 = 0.8 and α2 = 1.3 (see Table 1). This gives initial flows of N0
1 = 1500 1−1.3

0.8−1.3
= 900

and N0
2 = 1500− 900 and intercepts of δ1α1 = 50× 0.8 = 40 and δ1α2 = 50× 1.3 = 65. As-

suming ν1 = ν2 = 0 for the deterministic model, the slopes of the inverse demand curves for

both groups are given by −α1(δ1−c0due)
N0

1
= −15×0.8

900
= − 1

75
, and −α2(δ1−c0due)

N0
2

= −15×1.3
600

= − 13
400

respectively. Substituting these values back in the inverse demand function gives equilibrium
non-intervention average costs of 40 − 1

75
× 900 = 28 and 65 − 13

400
× 600 = 451

2
. Note that

their ratio corresponds to 1.3
0.8

, consistent with the equilibrium travel time being equal for
both groups.
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For the no toll DUE equilibrium, group-specific and total welfare can be calculated using
these equilibrium average user costs. Because of linear inverse demand, welfare is given by
the triangular area above the average cost curve. For group k the welfare is denoted by Wk,0.
The group-specific welfare is given by W1,0 = 1

2
×(δ1α1−28)×N0

1 = 1
2
×12×900 = 5400 and

W2,0 = 1
2
× (δ1α2− 451

2
)×N0

2 = 1
2
× 191

2
× 600 = 5850. Total initial welfare is then given by

Ŵ0 = W1,0 +W2,0 = 5400 + 5850 = 11250, which is equal to the welfare of the homogeneous
DUE case of Verhoef et al. (1996). This procedure for DUE can be extended to SUE by
shifting the group-specific demand curves with the group-specific correction terms ν1 and ν2

in such a way that non-intervention average user costs and welfare levels are maintained.

5.2. First-best congestion pricing with homogeneous travellers and asymmetric route costs

We start with first-best tolling in the homogeneous VOT SUE model with symmetric
route costs. When route costs are symmetric, the first-best tolls from equation (14) were
found to give the same optimal tolls and flows as for the DUE case: tolls of 10 and flows of
500 on each link for all chosen values of θ. However, this is a special case, because it is with
asymmetric route costs that θ has an effect on the toll via its impact on the equilibrium
numbers of travellers on both routes, which in turn directly enters the first-best toll rules. To
illustrate this, assume that the routes have different free-flow travel times κr, with κT = 20
and κU = 10. This changes the non-intervention flows on both routes and from Verhoef
et al. (1996) these are N0

T = 625 and N0
U = 1125 for the DUE case. If we now introduce a

preference for variety in the SUE case then these non-intervention flows would be different.
As discussed in the previous section, we seek to maintain the observed route flows in the
non-intervention case. Therefore we introduce a route specific constant for route U , which
represents a route-specific preference not related to travel time and toll. In Appendix D we
show that the required calibrated constant for any chosen value of θ amounts to:

ASCU =
1

θ
ln

[
N0
T

N0
U

]
, (42)

where the flows are from the DUE non-intervention case. This results in a negative constant
being added to the shorter route U , which attracts more users to compensate for the benefits
of variety term.

Table (2) shows the main variables in the optimum for different values of θ, where the
DUE case θ = ∞ results in the equilibrium solution of 4581

3
and 7081

3
of Verhoef et al.

(1996).
As opposed to the symmetric case, θ changes equilibrium route flows, which in turn

impact the optimal toll levels. The optimal flows on the shorter route U , increase with a
decreasing θ as the alternative specific constant ASCU increases with decreasing θ. The
flows on the longer route decrease when θ decreases. The tolls follow the flows as implied
by the marginal first-best toll rules of (14). Compared to DUE, the overall demand and the
corresponding welfare slightly reduce as the benefits of variety become more important (i.e.
lower θ).
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Table 2: Tolls, flows and welfare for FB tolling with asymmetric route costs.

θ fT fU NT NU N ŴFB

∞ 9.17 14.17 458.33 708.33 1166.7 21042
10 9.16 14.17 458.11 708.49 1166.6 21041
1 9.12 14.20 456.21 709.85 1166.1 21039

0.5 9.09 14.22 454.26 711.23 1165.5 21036
0.1 8.86 14.38 443.11 719.03 1162.1 21020

5.3. First-best congestion tolling with observed heterogeneity in preferences

For first-best tolling with heterogeneous values of time and stochastic route choice we
use group-specific values of time of α1 = 0.8 and α2 = 1.3. As described in section 5.1, we
maintain the average VOT and welfare at the no toll equilibrium using initial flows of 900 and
600 respectively. It was confirmed numerically that the first-best tolls from equation (16)
were optimal, and the resulting tolls, flows and welfare are shown in Table 3. When benefits
of variety are important (low values of θ), there was only one solution with common first-
best tolls which are higher than in the homogeneous case. As with the homogeneous case,
the first-best toll solutions are independent of θ, due to the symmetry in average route costs
for low values of θ. In DUE (θ →∞), almost all the low VOTs group were priced off route
T , with the remaining low VOT travellers using the untolled route.7 Around 441 travellers
of the higher VOT group use the tolled route and another 53.3 using the untolled route in
the deterministic equilibrium. The total welfare is larger than for the homogeneous case,
despite the total demand being only 974.3 users. This is due to the new average VOTs being
1.06 at the first-best equilibrium, because more high VOTs users enter the road.

Table 3: Tolls, flows and welfare for FB tolling with heterogeneous value of time

θ fT1 fT2 fU1 fU2 NT1 NT2 NU1 NU2 ŴFB1 ŴFB2 ŴFB

∞ 11.5 11.5 9.1 9.1 0 441.0 480 53.3 5888.0 9512.0 15400.0
10 11.4 11.4 9.1 9.1 0.3 437.5 471.8 60.4 5791.9 9558.4 15350.3
1 10.2 10.2 10.2 10.2 229.4 251.0 229.4 251.0 6081.7 9212.5 15294.1

0.5 10.2 10.2 10.2 10.2 229.4 251.0 229.4 251.0 6081.7 9212.5 15294.1

Note: for θ < 0.5 the tolls, flows and welfare levels are exactly the same because we deal with
symmetric route costs. Initial welfare for group 1 is given by 5400 and by 5850 for group 2.

For different values of θ two types of solutions arise with group flows tending towards
a differentiated toll equilibrium with a high number of high VOTs users on the link with

7For high values of θ we obtain several solutions that satisfy the first-best toll expressions of equation
(16) with heterogeneity. Due to symmetry we leave out two solutions because it is always possible to swap
the route flows. Furthermore, there may be solutions that satisfy the toll expression but that are local
minima. We therefore used different starting values and checked the eigenvalues of the Hessian matrix to
be sure that the solution found is a maximum.
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a high toll, and a high number of low VOTs users at the other route. This separation
result occurs also in the heterogeneous DUE case of Arnott et al. (1992) and Verhoef and
Small (2004), but eventually disappears in the SUE case when θ becomes sufficiently low.
Route preferences of individuals then become so stochastic that toll differentiation is not
beneficial in welfare terms. The toll differentiated equilibrium then dissipates due to the
lower sensitivity to deterministic costs, and the toll differentiated solution is “smoothed”
out, by randomness in route choice. Toll differentiated equilibria in our model become more
likely for two reasons. First, these equilibria become more likely when route choice is more
deterministic, so for higher values of θ. Second, when values of times are more heterogeneous,
a toll differentiated equilibrium is more likely to occur because it is more beneficial to offer
differentiated roads (see Small and Yan (2001) and Verhoef and Small (2004)). For our
model this implies that when we increase the difference between α1 and α2, while keeping
the average VOTs constant, a toll differentiated equilibrium will occur for lower values of θ
(numerical results available upon request).

Including benefits of variety also changes the distributional impacts of congestion tolls.
When route choice is almost deterministic (θ = 10), the low VOT group has a welfare gain
of 391.9, whereas the high VOT group benefits more with an increase of 3708.4 in welfare.
This increase is lower for the low VOT group compared to the DUE. For values of θ < 10
we observe a higher welfare increase for the low VOT group compared to the DUE case.

5.4. Second-best tolling, homogeneous values of time

When first-best tolling is not feasible, second-best tolling with a toll on route T might be
a realistic and viable alternative. The numerical results in this section confirm the optimal
toll rule of equation (25). Figure (1) shows how the welfare improvement varies with the
second-best toll on route T for different values of θ. Quite intuitively, as θ increases, the
solution of the second-best toll tends towards the UE solution of 5.45 of Verhoef et al. (1996).
The general tendency in Figure (1) is that the optimal second-best toll increases when route
preferences become more stochastic. The reason is that travellers are less responsive to the
deterministic part of utility, and therefore the behavioural response to the toll to route T is
less strong. This allows the regulator to more fully internalize the marginal external costs
on route T , without spillovers upon route U mitigating the gains, and therefore SB tolls can
be higher when the benefits of variety increases. Randomness in utility thus mitigates the
central inefficiency under second-best tolling. Table (4) shows the optimal second-best tolls,

route flows, and relative efficiencies ω = ŴSB−Ŵ0

ŴFB−Ŵ0
. The latter is defined as the welfare gain

due to second-best regulation divided by the welfare gain due to first-best regulation, where
non-intervention is the benchmark (see Verhoef et al. (1995)).

As expected, the optimal toll with SUE increases when θ decreases, because road users
become less sensitive to the deterministic part of average costs. Because equilibrium expected
generalised costs increase with θ, overall demand decreases as well. The relative efficiency
increases with decreasing θ, as the induced welfare losses on route U become smaller. This
implies that the welfare losses due to second-best congestion pricing are lower when route
choice is governed by random utility maximization.
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Figure 1: Welfare gains ŴSB − Ŵ0 against toll level fT for second-best tolling with homogeneous
values of times for varying values of θ.

Table 4: Tolls, route flows and welfare for second-best tolling with symmetric route costs and
homogeneous values of times.

θ fT NT NU N ŴSB − Ŵ0 ω

∞ 5.45 545.00 818.18 1363.60 1022.70 0.27
10 5.50 544.95 817.74 1362.70 1029.90 0.27
1 5.87 540.63 813.67 1354.30 1093.90 0.29

0.5 6.28 536.18 808.96 1345.14 1163.30 0.31
0.1 9.26 510.43 768.57 1279.00 1653.70 0.44
0.05 12.13 493.56 721.03 1214.60 2113.20 0.56
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5.5. Second-best tolling, heterogeneous benefits of variety

Next, we allow for heterogeneity in the scale of utility, and thus in the importance of
unobserved preferences, between two groups of equal size and with their VOTs set to 1. We
will compare the results with the homogeneous second-best toll case of the previous section.
The example follows the symmetric case, where θ2 is varied for group 2 holding θ1 constant
at 10. This allows us to study the effect of heterogeneous benefits of variety. Demand is
calibrated as discussed in section (5.1). As we deal with symmetric route costs, the initial
group flows are split equally between the links in the no toll case. Table (5) shows the results
for the second-best group-specific tolls from equation (32), which were confirmed numerically
to give the optimal tolls. The second row of Table (5) shows the result for homogeneous
benefits of variety and has the same toll as the toll in the second row of Table (4). Table
(5) shows the total welfare so that we can examine the differences between groups. The
base welfare is 11250 so the total welfare gain corresponds to the reported value in Table
(4) second line. A decrease in θ2 results in a decrease of the optimal toll for group 1 and
an increase of the optimal toll for group 2. Since group 2 has higher benefits of variety, this
group is less responsive to the toll and a higher toll can be charged without causing serious
spillovers, and more of the congestion externalities of route T can be internalized.

Table 5: Tolls, flows and welfare for SB tolling with heterogeneous returns to variety

θ1 θ2 fT1 fT2 NT1 NT2 NU1 NU2 N1 N2 ŴSB1 ŴSB2 ŴSB

10 ∞ 5.51 5.45 238.9 306.4 442.0 375.8 680.9 682.2 5935.0 6323.8 12277
10 10 5.50 5.50 272.5 272.5 408.9 408.9 681.4 681.4 6140.0 6140.0 12280
10 1 5.44 5.98 300.5 243.4 384.5 429.9 685.0 673.3 6325.3 5989.4 12315
10 0.5 5.37 6.51 304.1 238.9 384.8 425.8 688.9 664.7 6380.1 5972.3 12352
10 0.1 4.94 10.07 311.4 226.0 404.8 378.4 716.2 604.4 6668.4 5928.5 12597

Note: Initial welfare levels for group 1 and 2 are given by 11250
2 = 5625.

The tolls for group 2 are consistently higher than those for the same value of θ in the
homogeneous case in Table (4), because the said mechanism prevails whenever θ2 < 10. Con-
sistent with the toll levels, the equilibrium flows on the tolled link for group 1(2) increases
(decreases) as θ2 decreases for group 2. The group-specific welfare levels show that group
1 benefits from the decrease of θ2. The result that the toll is higher for the second group
as θ2 decreases can be inferred from the toll rule of equation (32), where the second term
represents the group-specific route substitution and demand effects. This term increases
with decreasing own values of θ, so that the toll increases whereas the term decreases for
decreasing θ of other groups, so that then the toll decreases.

Heterogeneity in the benefits of variety gives rises to another type of distribution effects
when group specific second-best tolls are applied: the group with highest benefits of va-
riety pays the highest toll and also has the lowest welfare gains. Both results stem from
the untolled route being a less attractive alternative. The group with more deterministic
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preferences benefits from this and pays a lower toll and has higher welfare gains when the
benefits of variety of the other group increase.

5.6. Second-best congestion tolling, heterogeneous values of time, group-specific tolls

This section presents the results for group-specific second-best tolls with heterogeneous
values of times of α1 = 0.8 and α2 = 1.3. Table (6) presents the numerical results for
different values of the scale parameter θ which is assumed to be equal across groups for this
example. The SB tolls for both groups first decrease in θ and then increases in θ for lower
values of θ. A lower θ means that more travellers with a low VOT and fewer travellers with
a high VOT will use the tolled route. This leads to a downward adjustment of the first
direct term in equation (32), which captures the marginal external costs of route T . But
a further decrease in θ also means that spillovers become less and less important, and that
means that the second term in equation (32) decreases. This effect raises the value of the
second-best toll. The U-shaped pattern in Table (6) is the combined result of these two
opposing forces.

Table 6: Tolls, route flows and welfare for differentiated second-best tolls with heterogeneous values
of time

θ fT1 fT2 NT1 NT2 NU1 NU2 N1 N2 ŴSB1 ŴSB2 ŴSB

∞ 8.55 8.55 0.00 503.4 801.4 30.8 801.4 534.3 4281.3 8941.3 13223
10 8.28 8.55 0.00 496.2 793.1 41.7 793.1 537.9 4193.2 8947.0 13140
1 7.37 7.72 89.1 404.2 675.2 152.3 764.3 556.5 4550.7 8151.3 12702

0.5 7.31 7.25 175.5 331.2 583.6 230.1 759.1 561.3 5125.3 7521.3 12647
0.1 11.0 8.45 230.1 263.0 450.2 307.6 680.3 570.6 5604.9 7512.7 13118
0.05 14.7 10.4 218.8 254.8 381.2 319.3 600.0 574.0 5624.6 8008.2 13633

Note: Initial welfare for group 1 is given by 5400 and by 5850 for group 2.

Including benefits of variety gives interesting insights on the distributional impacts of
second-best congestion tolling. When benefits of variety are low, the high VOT group
will gain whereas the low VOT group will lose from second-best tolling. However, when
benefits of variety increase the low VOT group might benefit from congestion tolling as well.
Therefore there are cases where both groups benefit from second-best congestion which is
the result of having two dimensions of heterogeneity in the model: tolling will impact both
travel time costs as well as benefits of variety. When benefits of variety are high a more
equal distribution of travellers over the routes is more beneficial. In the presence of high
benefits of variety, the low VOT group is less responsive to the toll and a higher toll is
needed to reduce total demand of this group. For practical implementation the case where
both groups benefit is likely not political acceptable because the SB toll of the low VOT
group is higher than the SB toll for the high VOT group.
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5.7. Second-best congestion tolling, heterogeneous values of time, common tolls

It may well be that the regulator is not able to observe and distinguish the VOTs for
different groups and that only undifferentiated ”common” tolls can be applied. Table (7)
shows that the numerically determined common second-best tolls are between the group-
differentiated second-best tolls of Table (6). Because tolls cannot be differentiated between

Table 7: Tolls, flows and welfare for common second-best tolls with heterogeneous values of time

θ fT NT1 NT2 NU1 NU2 N1 N2 ŴSB1 ŴSB2 ŴSB

10 8.55 0.0 496.2 793.1 41.7 793.1 537.9 4193.2 8947.0 13140
1 7.60 73.2 420.0 688.9 139.1 493.2 828.0 4427.3 8271.3 12699

0.5 7.28 177.9 328.9 581.8 231.9 506.8 813.7 5142.1 7504.4 12646
0.1 9.81 258.1 236.0 448.5 313.7 706.6 549.7 5860.9 7225.1 13086
0.05 12.77 251.9 224.2 395.8 313.6 647.7 537.9 6013.7 7565.8 13580

Note: Initial welfare for group 1 is given by 5400 and by 5850 for group 2.

groups, overall welfare levels can never be higher than in the previous section. When we
compare differentiated and common second-best tolls for higher values of θ, the high VOT
users benefit further from a common toll for higher values of θ, but benefit less for lower
values of θ. Compared to group-specific SB tolls, common tolls therefore appear to benefit
the high VOT users when route choice is more deterministic and lead to higher welfare gains
compared for the low VOT users for high benefits of variety. When comparing the results of
Table (6) with Table (7) we find that for θ = 0.5, the second-best tolls of both groups and
the corresponding welfare gains are almost equal, meaning that for this case differentiation
of tolls between groups is hardly beneficial. The welfare benefits of toll differentiation are
therefore influenced by the randomness of route preferences, and are highest for very low
and very high values of θ. This nuances earlier findings on the welfare benefits of toll dif-
ferentiation in deterministic models (see Verhoef and Small (2004); Small and Yan (2001)),
and calls for empirical investigation of scale heterogeneity for practical tolling applications.

The distributional impacts of SB common tolls are comparable to the case with differen-
tiated SB tolls. For high benefits of variety both groups might gain from congestion tolling
whereas for more deterministic route choice only the high VOT group gains. For all cases
presented the high VOT group always benefits more in absolute terms.8

6. Extension to larger networks

Having now considered various variants of the two-route problem, a natural follow-up
question is to what extent our results may be expected to carry over to more general net-

8For high values of θ the solution approaches the DUE case reported in the first line of Table 5. It is
then computationally difficult to find a solution as the route flow of group 1 on the tolled route becomes very
small (see Clark et al. (2009) for a discussion on these issues for DUE network models with heterogeneity).
This shows another advantage of reformulating the constrained optimization problem into an unconstrained
optimization problem as done for the other cases in the paper.
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works. A full analysis of this question seems beyond the scope of this paper, but quite
some intuition can be gained by considering this issue in the context of the generalization
of Verhoef et al. (1996) as it was presented in Verhoef (2002a,b). This work generalized
the deterministic two-route problem to the problem of finding the second-best optimal toll
formulae for a deterministic general network, of undetermined size and shape, on which an
arbitrary sub-set of links can be tolled. The mathematical formulation of the problem thus
allows for a set of OD pairs, indexed i; each of which has its own inverse demand function
Di and a set of possible routes or paths p where an indicator δip indicates that path p serves
OD-pair i; and a set of links indexed j, each with their own average cost function cj, where
an indicator δjp indicates that link j belongs to path p. Like in the two-route problem
considered above, the associated Lagrangian consists of an objective that adds up user ben-
efits over all OD-pairs and subtracts user costs added up over all links, and constraints that
equate marginal benefit to the generalized price for every used route. Without specifying the
network’s graph, no closed-form solutions exist for the associated route-specific Lagrangian
multipliers λp, but the second-best optimality conditions for these multipliers as well as
the available second-best tolls fl, all in function of other route-specific multipliers λq 6=p, are
nevertheless instructive and will also be helpful in the current context. Not surprisingly, this
implicit solution has the solution to the deterministic two-route problem, and the associated
Lagrangian multipliers and second-best toll, as a special case.

To trace the consequences of extending the basic model of Section 3.1 to cover a full
network, first observe that the objective function in Equations 6 and 7 would be extended
by having summations of the conventional Marshallian benefit terms and the entropy terms
over OD-pairs i, where for each such term the relevant N’s are those route flows that pertain
to the OD-pair under consideration. Next, user cost terms would be included for all links
j, where for each link the relevant N’s include all those route flows that use the link under
consideration. Now to the extent that idiosyncratic preferences can be assumed to pertain
to routes, or can be written as such after summing link-specific idiosyncratic terms over
the route’s links, this means that in the second-best optimality conditions for the resulting
Lagrangian (e.g. equation (6-9) in Verhoef (2002a)), and therefore also in the associated ex-
pressions for path-specific multipliers λp and second-best link-specific tolls fl (e.g. equations
(10) and (11) in Verhoef (2002a)), we can expect marginal entropy (or θ-related) terms to
show up in perfect companion with OD-specific marginal willingness-to-pay-related (or D-
related) terms. These marginal entropy terms will take on similar forms as in Equations (9),
(12) and (13) in the current paper. In contrast, the structure of interactions between link-
specific costs will remain unaltered compared to how these work out on the deterministic
generalized networks of Verhoef (2002a,b).

Given the complexity of the general second-best tax expression obtained in Verhoef
(2002a,b), where direct and indirect demand and cost interactions will eventually occur be-
tween any pair of links or OD-pairs, it is impossible to describe exactly how the consideration
of idiosyncratic preferences would alter the insights obtained for deterministic networks. But
given the limiting impact that idiosyncratic preferences have on route diversion in response
to second-best tolls, and given the maintained purely additive (over relevant serial links)
generalized cost expressions for systematic generalized costs and tolls at the route level, one
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would expect in larger networks that the consideration of idiosyncratic preferences leads in
particular to a relatively strong upward adjustment of second-best tolls where these were
lowered under deterministic preferences to prevent excessive induced congestion on unpriced
parallel routes. In contrast, one would expect relatively modest upward adjustments for
second-best link-tolls in corridors that offer no (congested) alternatives. That is: interac-
tions between links that are largely substitutes, or that are parts of routes or route segments
that are largely substitutes, can be expected to justify smaller downward toll adjustments
with idiosyncratic preferences than with deterministic preferences. Interactions between
links that are largely (serial) complements will justify more modest adaptations because of
idiosyncratic preferences – ignoring now, of course, toll adjustments on any such pair of links
that is part of a corridor that would face reduced spill-overs from parallel competition after
introducing idiosyncratic preferences. And finally, since idiosyncratic preferences primarily
limit substitution under second-best pricing which in itself usually justifies downward toll
adjustments, one might expect upward toll adjustments to dominate when introducing id-
iosyncratic preferences. But exactly because of network interactions, we hypothesize that
incidental downward toll adjustments cannot be excluded. An example could be the case
where under deterministic preferences an upstream toll was relatively high because a down-
stream unpriced-substitute problem led to a low downstream second-best toll. In such cases,
the downstream toll increase that would result from considering idiosyncratic preferences
might well justify an upstream toll reduction, especially if that upstream link is also used
by users who do not use the described downstream trip segment. Obviously, hypotheses like
these justify further study for more realistic general networks.

It seems impossible to give any more specific predictions without narrowing down the
size and shape of the network and considering alternative archetype configurations, which
seems hard to fit within the scope of this paper. We therefore leave further investigation of
this issue for future work.

7. Conclusion

This paper presented new analytical results for optimal first-best and second-best conges-
tion prices in the presence of observed and unobserved preference heterogeneity. It revisited
the classical two route problem of Verhoef et al. (1996) and extends it to include two dimen-
sions of heterogeneity: heterogeneous values of travel times and heterogeneity in the degree
of unobserved route preferences. Our analytical approach incorporates travellers’ benefits
of variety in a tractable way in the welfare function and provides new insights on potential
distributional impacts of congestion pricing and the value of the ability to differentiate taxes
between alternative routes or modes. The analytical approach that we used can be useful for
other discrete choice applications where externalities are present. Extensions to an arbitrary
number of alternatives are presented in the paper. It is a first step towards the analysis of
taxation of externalities in networks with general stochastic and deterministic preference
heterogeneity.

We show that when values of travel time savings are homogeneous, welfare losses due
to second-best pricing are lower when benefits of variety are present than for deterministic
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route choice. When values of travel times are heterogeneous, the picture is less clear cut
because the benefits of toll differentiation between groups first decrease, and then increase
when travellers value variety more. In line with this, we find that there are cases where the
non-differentiated second-best congestion tolls are very close to the group-specific (differen-
tiated) tolls. For these cases the welfare loss due to the inability to differentiate congestion
taxes between groups is negligible, which makes implementation of these taxes much easier
because users can be treated as anonymous.
One assumption we make in this paper is that we have an equilibrium in expected utility
implying that travellers only learn the realisation of the stochastic part of utility after mak-
ing their choice. Therefore the best they can do to optimise their decisions is to optimize
their expected utility. When travellers know the stochastic part of utility before making the
choice, the random part of utility will enter the constraints in Equation (7) instead of the
entropy terms.
For future research it is interesting to investigate the size of the benefits of variety empir-
ically, and to investigate whether our qualitative results also hold for realistic large scale
networks as discussed in more detail in Section 6. This will allow us to make more precise
quantitative predictions about the impact of stochastic user equilibrium on tolling policy
recommendations.
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Appendix A. Derivation of first-best tolls with heterogeneous preferences

Define N̄j
α

=
∑K

k=1 αkNjk as the preference weighted average number of travellers at route
j. Then the Lagrangian is given by:

L =
K∑
k=1

∫ Nk

0

Dk(nk)dnk −
J∑
j=1

N̄j
α
cj(Nj)−

K∑
k=1

1

θk

J∑
j=1

(
Njk ln

[
Njk

Nj

])

+
K∑
k=1

J∑
j=1

λjk

(
Dk(Nk)− fjk − αkcj(Nj)−

1

θk
ln

[
Njk

Nk

]) (A.1)

The first-order conditions are given by:

∂L
∂Nil

= Dl(Nl)− N̄i
α
c′i(Ni)− αlci(Ni)−

1

θl
ln

[
Nil

Nl

]
−

K∑
k=1

J∑
j=1

λjkαkc
′
i(Ni) = 0,∀i = 1...J,∀l = 1...K.

(A.2)

∂L
∂fil

= −λil = 0,∀i = 1...J,∀l = 1...K. (A.3)

∂L
∂λil

= Dl(Nl)− fil − αlci(Ni)−
1

θl
ln

[
Nil

Nl

]
= 0,∀i = 1...J,∀l = 1...K. (A.4)

Equations (A.3) show that the Lagrangian multipliers are 0. Substituting equations (A.3)
and (A.4) in equation (A.2) we obtain:

fil = N̄i
α
c′i(Ni), ∀i = 1..J,∀l = 1...K. (A.5)

Because N̄i
α

is equal for all groups, the tolls on every route are equal for all groups. This is
because every additional traveller raises congestion with the same amount.

Appendix B. Second-best pricing with homogeneous preferences

For second-best pricing with homogeneous preferences we define the set of routes as S, the
subset of tolled routes as ST and the subset of untolled routes as SU . The Lagrangian is
given by:

L =

∫ N

0

D(n)dn−
∑
j∈S

Njcj(Nj)−
1

θ

∑
j∈S

Nj ln[Nj] +
∑
j∈ST

λj

(
D(N)− 1

θ
ln

[
Nj

N

]
− fj − cj(Nj)

)
+
∑
j∈SU

λj

(
D(N)− 1

θ
ln

[
Nj

N

]
− cj(Nj)

)
.

(B.1)
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For the tolled routes the first-order conditions are given by:

∂L

∂Ni

= D(N)− ci(Ni)−Nic
′
i(Ni)−

1

θ
ln

[
Ni

N

]
+ λi

(
D′(N)− 1

θ

N −Ni

NNi

− c′i(Ni)

)
+

∑
j∈ST ,j 6=i

λj

(
D′(N) +

1

θ

1

N

)
+
∑
j∈SU

λj

(
D′(N) +

1

θ

1

N

)
= 0,∀i ∈ ST .

(B.2)

For the untolled routes the first-order conditions are given by:

∂L

∂Ni

= D(N)− ci(Ni)−Nic
′
i(Ni)−

1

θ
ln

[
Ni

N

]
+ λi

(
D′(N)− 1

θ

N −Ni

NNi
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+
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(
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1

θ

1

N

)
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(
D′(N) +

1

θ

1

N
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= 0,∀i ∈ SU .

(B.3)

∂L

∂fi
= −λi = 0,∀i ∈ ST (B.4)

∂L

∂λi
= D(N)− 1

θ
ln

[
Ni

N

]
− fi − ci(Ni) = 0,∀i ∈ ST (B.5)

∂L

∂λi
= D(N)− 1

θ
ln

[
Ni

N

]
− cj(Nj) = 0,∀i ∈ SU (B.6)

From B.4 we know that the multipliers for the tolled routes are 0. Together with B.5 and
B.6 we can rewrite B.2 and B.3.

∂L

∂Ni

= fi −Nic
′
i(Ni) +

∑
j∈SU

λj

(
D′(N) +

1

θ

1

N

)
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⇔
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(
D′(N) +

1

θ

1

N

)
,∀i ∈ ST .

(B.7)

This shows that when we solve for the multipliers of the untolled routes we obtain a closed-
form expression for the second-best toll.

∂L
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θ
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− c′i(Ni)

)
+

∑
j∈SU ,j 6=i

λj

(
D′(N) +

1

θ

1

N

)
= 0, ∀i ∈ SU .

(B.8)

Using 1
θ
N−Ni
NNi

= 1
Ni
− 1

N
gives:

λi

(
−1

θ

1

Ni

− c′i(Ni)

)
+
∑
j∈SU

λj

(
D′(N) +

1

θ

1

N

)
= Nic

′
i(Ni),∀i ∈ SU . (B.9)
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Solving for λi gives:

λi =

∑
j∈SU λj

(
D′(N) + 1

θ
1
N

)(
1
θ

1
Ni

+ c′i(Ni)
) − Nic

′
i(Ni)(

1
θ

1
Ni

+ c′i(Ni)
) ,∀i ∈ SU . (B.10)

Summing these multipliers over all untolled routes gives:

∑
i∈SU

λi =
∑
i∈SU

∑j∈SU λj
(
D′(N) + 1

θ
1
N

)(
1
θ

1
Ni

+ c′i(Ni)
) − Nic

′
i(Ni)(

1
θ

1
Ni

+ c′i(Ni)
)
 ,∀i ∈ SU .

=
∑
i∈SU

∑
j∈SU

λj

(
D′(N) +

1

θ

1

N

)(
1

1
θ

1
Ni

+ c′i(Ni)

)
−
∑
i∈SU

Nic
′
i(Ni)

1
θ

1
Ni
− c′i(Ni)

,∀i ∈ SU .

=

(∑
j∈SU

λj

)(
D′(N) +

1

θ

1

N

)∑
i∈SU

(
1

1
θ

1
Ni

+ c′i(Ni)

)
−
∑
i∈SU

Nic
′
i(Ni)

1
θ

1
Ni

+ c′i(Ni)
,∀i ∈ SU .

⇔(∑
j∈SU

λj

)(
1−

∑
i∈SU

D′(N) + 1
θ

1
N

1
θ

1
Ni

+ c′i(Ni)

)
= −

∑
i∈SU

Nic
′
i(Ni)

1
θ

1
Ni

+ c′i(Ni)
,∀i ∈ SU .

(B.11)

Solving for
∑

j∈SU λj gives:

∑
j∈SU

λj =

∑
j∈SU

Njc
′
j(Nj)

1
θ

1
Nj

+c′j(Nj)∑
j∈SU

D′(N)+ 1
θ

1
N

1
θ

1
Nj

+c′j(Nj)
− 1

(B.12)

Which is negative under the assumption that D′(N) + 1
θ

1
N
< 0 and c′j(Nj) > 0. Substituting

in B.7 gives:

fi = Nic
′
i(Ni)−

(
D′(N) +

1

θ

1

N

) ∑
j∈SU

Njc
′
j(Nj)

1
θ

1
Nj

+c′j(Nj)∑
j∈SU

D′(N)+ 1
θ

1
N

1
θ

1
Nj

+c′j(Nj)
− 1

,∀i ∈ ST (B.13)
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Appendix C. Derivation of group-specific second-best tolls with heterogeneous
preferences

Define the set of routes as S, the subset of tolled routes as ST and the subset of untolled
routes as SU . The Lagrangian is given by:

L =
K∑
k=1

∫ Nk

0

Dk(nk)dnk −
K∑
k=1

∑
j∈S

αkNjkcj(Nj)−
K∑
k=1

∑
j∈S

1

θk
Njk ln

[
Njk

Nk

]

+
K∑
k=1

∑
j∈ST

λjk

(
Dk(Nk)− fjk − αkcj(Nj)−

1

θk
ln

[
Njk

Nk

])

+
K∑
k=1

∑
j∈SU

λjk

(
Dk(Nk)− αkcj(Nj)−

1

θk
ln

[
Njk

Nk

])
(C.1)

For tolled routes we obtain the following first-order condition for group ` for route i:

∂L
∂Ni`

= D`(N`)−
K∑
k=1

αkNikc
′
i(Ni)− α`cj(Nj)−

1

θ`
ln

[
Nj`

N`

]
+ λi`

(
D′`(N`)− α`c′i(Ni)−

1

θ`

(
N` −Ni`

N`Ni`

))
−
∑
k 6=`

λik(αkc
′
i(Ni)) +

∑
j∈SU

λj`

(
D′`(N`) +

1

θ`

1

N`

)

= D`(N`)−
K∑
k=1

αkNikc
′
i(Ni)− α`cj(Nj)−

1

θ`
ln

[
Nj`

N`

]
+ λi`

(
D′`(N`)−

1

θ`

(
N` −Ni`

N`Ni`

))
−
∑
k

λikαkc
′
i(Ni)

+
∑
j∈SU

λj`

(
D′`(N`) +

1

θ`

1

N`

)
= 0,∀i ∈ ST , ` = 1...K

(C.2)

For the untolled route the first-order condition is given by:

∂L
∂Ni`

= D`(N`)−
K∑
k=1

αkNikc
′
i(Ni)− α`cj(Nj)−

1

θ`
ln

[
Nj`

N`

]
+ λi`

(
D′`(N`)−

1

θ`

(
N` −Ni`

N`Ni`

))
−
∑
k

λikαkc
′
i(Ni)

+
∑
j∈ST

λj`

(
D′`(N`) +

1

θ`

1

N`

)
= 0,∀i ∈ SU , ` = 1...K.

(C.3)

For the tolls and the multipliers we obtain:

∂L

∂fi`
= −λi` = 0,∀i ∈ ST , ` = 1...K. (C.4)
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∂L

∂λil
= D`(N`)− fi` − α`ci(Ni)−

1

θ`
ln

[
Ni`

N`

]
= 0,∀i ∈ ST ,∀` = 1...K. (C.5)

∂L

∂λil
= D`(N`)− α`ci(Ni)−

1

θ`
ln

[
Ni`

N`

]
= 0, ∀i ∈ SU ,∀` = 1...K. (C.6)

Substituting C.4, C.5 and C.6 in C.2 and C.3 gives:

fi` =
K∑
k=1

αkNikc
′
i(Ni)−

∑
j∈SU

λj`

(
D′`(N`) +

1

θ`

1

N`

)
,∀i ∈ ST ,∀` = 1...K. (C.7)

showing that we need the group-specific multipliers of the untolled routes to obtain a closed-
form solution for the toll. Furthermore we have:

K∑
k=1

αkNikc
′
i(Ni) = λi`

(
D′`(N`)−

1

θ`

(
N` −Ni`

N`Ni`

))
−
∑
k

λikαkc
′
i(Ni),∀i ∈ SU ,∀` = 1...K.

(C.8)
The solution for the group-specific Lagrangian multipliers for group ` on route i can be
obtained using the system of K equations (C.8) for a given route i. These systems can be
written in matrix notation:

Aiλi = bi,∀i ∈ SU (C.9)

where λi is the K×1 vector with unknown multipliers for route i, b is the K×1 vector with
each element equal to

∑K
k=1 αkNikc

′
i(Ni), and A is the following K ×K matrix:

Ai =


D′1(N1)− α1c′i(Ni)−

1
θ1

(
N1−Ni1
N1Ni1

)
−α2c′i(Ni) . . . −αKc′i(Ni)

−α1c′i(Ni) D′2(N2)− α2c′i(Ni)−
1
θ1

(
N2−Ni2
N2Ni2

)
. . . −αKc′i(Ni)

...
...

. . .
...

−α1c′i(Ni) −α1c′i(Ni) . . . D′K(NK)− αKc′i(Ni)−
1
θ1

(
NK−NiK
NKNiK

)


The solution for the vector λi can be found by Cramers’ rule. Let Ai`(bi) be the matrix Ai

with column l replaced by the vector bi. The solution for the lth Lagrangian multiplier is
given by a ratio of determinants:

λ∗i` =
det(Ai`(bi))

det(Ai)
,∀i ∈ SU ,∀` = 1...K. (C.10)

and therefore we need det(Ai) 6= 0 to have a unique solution for the multipliers. Equation
(C.10) can be made more explicit using analytical expressions for the determinants. Because
the matrix Ai has many common elements, its determinant can be written in a tractable
closed-form:

det(Ai) =
K∏
k=1

[
D′k(Nk)−

1

θk

Ni −Nik

NikNk

]
−

K∑
k=1

αkc
′
i(Ni)

K∏
m=1
m6=k

[
D′m(Nm)− 1

θm

Ni −Nim

NimNm

]
.

(C.11)
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We can divide out the first product term in equation (C.11):

det(Ai) =
K∏
k=1

[
D′k(Nk)−

1

θk

Ni −Nik

NikNk

]
︸ ︷︷ ︸

<0

(
1−

K∑
k=1

αkc
′
i(Ni)

D′k(Nk)− 1
θk

Ni−Nik
NikNk

)
︸ ︷︷ ︸

>0

. (C.12)

Because D′k(Nk) − 1
θk

Ni−Nik
NikNk

< 0,∀k = 1...K, the first part in equation (C.12) will be a

product of negative numbers resulting in a number that is unequal to 0. Because αkc
′
i(Ni) >

0, and D′k(Nk)− 1
θk

Ni−Nik
NikNk

< 0, the summation is over negative numbers resulting in a positive

number for the part between large brackets. Therefore equation (C.12) is unequal to 0 and
a unique solution for the Lagrangian multipliers exists. The solution (C.10) can be further
investigated by using the following analytical expression for the determinant det(Ai`(bi)):

det(Ai`(bi)) =
K∑
k=1

αkNikc
′
i(Ni)

K∏
r=1
r 6=`

[
D′r(Nr)−

1

θr

Ni −Nir

NirNl

]
. (C.13)

We have det(Ai`(bi)) 6= 0 implying that all the Lagrangian multipliers for route i have a
unique non-zero value. Substituting equations (C.12) and (C.13) in equation (C.10) gives:

λ∗i` =

∑K
k=1 αkNikc

′
i(Ni)

∏K
r=1
r 6=`

[
D′r(Nr)− 1

θr

Ni−Nir
NirNr

]
∏K

k=1

[
D′k(Nk)− 1

θk

Ni−Nik
NikNk

](
1−

∑K
k=1

αkc
′
i(Ni)

D′k(Nk)− 1
θk

Ni−Nik
NikNk

) , (C.14)

which can be rewritten as:

λ∗i` =
K∑
k=1

αkNikc
′
i(Ni)

1(
D′l(Nl)− 1

θl

Ni−Ni`
Ni`Nl

)(
1−

∑K
k=1

αkc
′
i(Ni)

D′k(Nk)− 1
θk

Ni−Nik
NikNk

) . (C.15)

Taking the `th term out of the summation this reduces to:

λ∗i` =
K∑
k=1

αkNikc
′
i(Ni)

1

D′l(Nl)− 1
θl

Ni−Ni`
Ni`Nl

− αlc′i(Ni)− c′i(Ni)
∑K

k=1
k 6=l

αk
D′l(Nl)−

1
θl

Ni−Ni`
Ni`Nl

D′k(Nk)− 1
θk

Ni−Nik
NikNk

.

(C.16)
This shows that the Lagrangian multipliers for each group are non-positive. Because tolls
enter the constraints negatively, an increase in the group-specific toll fi` from 0 (which is
the SB case under consideration) to a positive value will lead to higher welfare. Substituting
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equation (C.16) in equation (C.7) gives:

fi` =
K∑
k=1

αkNikc
′
i(Ni)−

∑
j∈SU


∑K

k=1 αkNjkc
′
j(Nj)

(
D′l(Nl) + 1

θl

1
Nl

)
D′l(Nl)− 1

θl

Nj−Njl
NjlNl

− αlc′j(Nj)− c′j(Nj)
∑K

k=1
k 6=l

αk
D′l(Nl)−

1
θl

Nj−Njl
NjlNl

D′k(Nk)− 1
θk

Nj−Njk
NjkNk

 ,

∀j ∈ ST , ∀` = 1...K.

(C.17)

This completes the proof.

Appendix D. Calibration of the asymmetric route flows

If we want to calibrate the model in the no-toll case for given values of θ, we have observed
number of travellers for both routes and the corresponding total number of travellers. We
therefore also have the observed route probabilities which are functions of these. The inverse
demand is assumed to be linear and is given by equation (36). In the no-toll equilibrium we
have two conditions that need to be satisfied, since the marginal benefits should be equal to
the generalised price. Assuming βT = βU = β this results in:

δ1 − δ2(NT +NU)− 1

θ
ln

[
NT

N

]
= κT + βNT .

δ1 − δ2(NT +NU)− 1

θ
ln

[
NU

N

]
= ASCU + κU + βNU ,

(D.1)

where ASCU is the alternative specific constant for route U . Solving equation (D.1) for
ASCU gives:

ASCU = κT − κU + β(NT −NU) +
1

θ
ln

[
NT

NU

]
. (D.2)

We want to have N0
T and N0

U as the flows in deterministic user equilibrium, implying κT +
βN0

T = κU + βN0
U =⇒ κT − κU + β(N0

T −N0
U) = 0. Substituting in equation (D.2) gives:

ASCU =
1

θ
ln

[
N0
T

N0
U

]
. (D.3)

The symmetric case N0
T = N0

U is a special case and gives ASCU = 0. This completes the
calibration for asymmetric route flows.

35


	Introduction
	Contribution
	Structure of the paper and main findings

	The random utility framework
	First-best congestion pricing, two route case
	Homogeneous preferences
	Group-differentiated and common first-best tolls with heterogeneity in preferences

	Second-best congestion pricing
	Homogeneous preferences
	Group-specific second-best tolling with heterogeneous preferences

	Numerical results
	Introduction and calibration
	First-best congestion pricing with homogeneous travellers and asymmetric route costs
	First-best congestion tolling with observed heterogeneity in preferences
	Second-best tolling, homogeneous values of time
	Second-best tolling, heterogeneous benefits of variety
	Second-best congestion tolling, heterogeneous values of time, group-specific tolls
	Second-best congestion tolling, heterogeneous values of time, common tolls

	Extension to larger networks
	Conclusion
	Derivation of first-best tolls with heterogeneous preferences
	Second-best pricing with homogeneous preferences
	Derivation of group-specific second-best tolls with heterogeneous preferences
	Calibration of the asymmetric route flows

