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Abstract
Globalfloodmodels (GFMs) are becoming increasingly important for disaster riskmanagement
internationally. However, thesemodels have had little validation against observedflood events,
making it difficult to comparemodel performance. In this paper, we introduce the first collective
validation ofmultiple GFMs against the same events andwe analyse howdifferentmodel structures
influence performance.We identify three hydraulically diverse regions inAfrica with recent large scale
flood events: Lokoja, Nigeria; Idah,Nigeria; andChemba,Mozambique.We then evaluate the flood
extent output provided by sixGFMs against satellite observations of historical flood extents in these
regions. The critical success index of individualmodels across the three regions ranges from0.45 to 0.7
and the percentage offlood captured ranges from52% to 97%. Site specific conditions influence
performance as themodels score better in the confined floodplain of Lokoja but score poorly in Idah’s
flat extensive floodplain. 2Dhydrodynamicmodels are shown to perform favourably. Themodels
forced by gauged flowdata show a greater level of return period accuracy compared to those forced by
climate reanalysis data. Using the results of our analysis, we create and validate a three-model
ensemble to investigate the usefulness of ensemblemodelling in aflood hazard context.We find the
ensemblemodel performs similarly to the best individual and aggregatedmodels. In the three study
regions, we found no correlation between performance and the spatial resolution of themodels. The
best individualmodels show an acceptable level of performance for these large rivers.

Introduction

Flooding is the most frequent and the most damaging
of natural disasters globally [1]. From 1995–2015,
floods affected 2.3 billion people, killing 157 000 [2].
Fluvial (river) flooding is the most common type of
flood event and with over half of the world’s popula-
tion living within 3 km of a freshwater body, it has
truly global implications [3]. Flood impacts will

continue to increase in severity, as the population
exposed to fluvial flooding is expected to rise by 31%
over the next 30 years. Certain vulnerable regions,
such as Sub-Saharan Africa, are predicted to see an
increase in exposed population by as much as 104%
[4]. Given current CO2 emission trends, global tem-
peratures could rise by up to 4 °C by 2100 [5]. To put
this into a fluvial flooding context, a temperature rise
of 4 °C could result in 70% of the global population
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experiencing a 500% increase in flood risk [6].
Increased population exposure, coupled with the
increased frequency and severity of flooding, means
that reducing the risks associated with flooding is of
vital importance to the United Nations Office for
Disaster Risk Reduction (UNISDR) as outlined in their
global assessment reports [7]. Reducing disaster vul-
nerability is a key target in goal 11 of the United
Nation’s Sustainable Development Goals [8] and
specific risk reduction targets, to be met by 2030, were
introduced in the Sendai Framework for Disaster Risk
Reduction [9].

Flood models are an integral tool for managing
and reducing the risks associated with flooding. In the
past decade, increased computing power and preci-
sion of remote sensing datasets has led to the develop-
ment of global flood models (GFMs) [10]. These
models are being developed by a number of different
groups that include consultancies [11], research
groups [12], intergovernmental organizations [13, 14],
academia [15], and academic affiliated companies
[16, 17]. GFMs are being actively used for disaster risk
management: providing flood hazard maps in data-
scarce countries where there is little local or national
information about flood risk [18]. They are also being
used extensively in research: for evaluating the benefits
of flood protection investments globally [19] and to
determine changes in future flood risk due to climate
change [6, 20, 21].

Despite their extensive applicability, each flood
model has only had limited, internal, validation
against either observed events, existing regional
models, or reported fatalities and financial losses
[12–17, 19, 22]. The Global Flood Partnership (GFP)
(https://gfp.jrc.ec.europa.eu/), a cooperation frame-
work between developers and users of global flood
tools, made the comparison of GFMs a research prior-
ity at their annual meeting in 2014 [23]. The resulting
GFM Intercomparison Project (GFMIP) was the first
study to compare the flood hazard output of six GFMs
on the continent of Africa. Research from the GFMIP
showed there was wide variation in the flood hazard
output of the six GFMs [24]. TheGFMIP identified the
need for collective validation of the GFMs against
observedflood extents.

This study is a continuation to the GFMIP, using
its outputs and original GFM model output data to
validate against observed flood events and expand on
the testing of collective model output. It is the first
study to validate multiple GFMs under the same fra-
mework and against the same observed events, allow-
ing model performance to be easily compared. This
study should help identify which GFMs perform best
and how different model structures influence perfor-
mance. The results should also provide further insight
into the reasons for model disagreement originally
identified in theGFMIP [25].

The collective validation presented in this paper
expands the rigorous GFM comparison begun in the

GFMIP. As the models are improved and are used
more extensively for disaster risk reduction, the need
to compare model performance becomes increasingly
apparent. The results of a rigorous comparison pro-
vide both users and model developers with informa-
tion pertinent to the potential applicability of GFMs.

In this study, we identify regions with recent, large
scale flood events with good observational validation
data. We then develop a validation framework under
which we test the output of six GFMs and the aggre-
gated output of the GFMIP. We aim to answer which
models perform best and identify the most important
model characteristics affecting GFMperformance.We
also investigate whether an ensemble of the best indi-
vidual GFMs improves the predicted flood extent.

Data andmethodology

Models
The six GFMs compared in the GFMIP and in this
study are the Catchment-Based Macro-scale Flood-
plain (CaMa-Flood) model [15], the Centro Interna-
zionale in Monitoraggio Ambientale and United
Nations Environment Program (CIMA-UNEP)model
[13], the EuropeanCentre forMedium-RangeWeather
Forecasts (ECMWF) [14]model, the Global Flood Risk
with Image Scenarios (GLOFRIS) model [17, 22], the
Joint Research Centre (JRC)model [12], and the SSBN
model (now known as Fathom Global Ltd) [16]. GFM
output was provided for this study by each of the six
developers in the form of flood extent maps. The
models use different techniques to predict flood extent
and depth for a given return period flow. These range
in complexity from 1D hydraulic modelling (CIMA-
UNEP) and simple 2D flood redistribution methods
(GLOFRIS) tomore complex 2D (ECMWFandCaMa-
UT) and 2D hydrodynamic models (JRC and SSBN).
GFM forcing can be split into cascade model type
(CaMa-Flood, GLOFRIS, ECMWF, JRC) and gauged
flow model type (SSBN, CIMA-UNEP) [24]. Cascade
models use climate reanalysis data over 40 years to
determine the probability that a cell is flooded. Gauged
flow models use a growth curve to determine extreme
flow. This flow is then input into a hydraulic model
that predicts the flood extent for a given return
period flow. Model output resolutions at the equator
vary between ∼90m (SSBN, CIMA-UNEP), ∼540m
(CaMa-UT, ECMWF), and ∼900m (GLOFRIS, JRC).
All the GFMs use the Shuttle Radar Topography
Mission (SRTM) Digital Elevation Model (DEM) as
their input DEM. Further information regarding
model setup and the differences in model forcing and
computational engine can be found in the supplemen-
tary material (available online at stacks.iop.org/ERL/
13/104007/mmedia). The aggregated fluvial flood
extent (figure 1(d)), an output of theGFMIP that shows
the level of agreement in flood extent between all six
models, was also validated in this study to assess the
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potential for using multiple model combinations for
flood extent prediction [24, 26].

Case study
Three hydraulically varied regions in Africa were
chosen for validation: two in Nigeria and one in
Mozambique (figure 1). Nigeria and Mozambique
were identified in the GFMIP as countries with high
exposure to flooding [24]. An important factor in the
choice of study regions was the size of the river. All the
reaches contained rivers sufficiently large that they
should be accurately represented in the GFMs regard-
less of the model spatial resolution. Validating model
performance on rivers narrower than the resolution of
the coarsest GFM would produce unfair results. In

addition to this, delta regions were avoided for analysis
to prevent issues associated with the demarcation of
fluvial and coastal flooding, the latter of which is not
currently represented in the GFMs, although recently
CaMa-Flood was coupled with the results of a Global
Tide and SurgeModel [28] to simulate the influence of
tide and surge on river levels [29].

The first region in Nigeria, referred to in this study
as Lokoja, is at the confluence of the Niger and Benue
rivers. It is a region with narrow, confined floodplains.
The second region in Nigeria, located south of Lokoja
between the cities of Idah andOnitsha, is referred to as
Idah in this study. The Idah region is relatively flat and
contains an extensive floodplain that has a number of
smaller channels and streams. Downstream of the
Idah floodplain is a tectonic constricted outlet.

Figure 1. (a) Location of study> regions inAfrica. (b)Lokoja and Idah study regions withMODIS imagery of 2012flooding [27].
(c)Chemba study regionwithMODIS imagery of 2007flooding [27]. (d)Globalfloodmodel aggregated fluvialflood extent output
(25 year return period) for each regionwhere the cell colour represents the number ofmodels that predict it willflood in the
corresponding cell [26].
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Located in central Mozambique, the final analysis
region is referred to as Chemba and is situated in the
lower Zambezi basin, upstream of the delta. The Zam-
bezi River in the Chemba region can be classified as
anabranching (more than one channel) with a very
wide valley floor trough [30].

The flood events used as the benchmark validation
datasets were the floods of 2007 in Mozambique and
of 2012 in Nigeria. These events were chosen as they
were recent large-scale disasters with good observa-
tional validation data. Torrential rain betweenDecem-
ber 2006 and February 2007, coupled with the landfall
of Cyclone Favio in February 2007, caused flooding in
Mozambique that affected more than 130 000 people
[31]. The 2012 flooding in Nigeria was even more
devastating; affecting almost four million people [32].
The floods in Nigeria were caused by heavy rainfall
between July andOctober 2012.

Data
Flood imagery of both events was taken from the
Dartmouth FloodObservatory (DFO) archive [27]. The
DFO uses Moderate Resolution Image Spectroradi-
ometer (MODIS) imagery to capture flood events
globally, and stores them online in an open-access
archive. Vegetation bias was determined to have a
negligible effect on the MODIS flood imagery in the
three study regions [33]. The Chemba region is
dominatedby shrubbery andgrasslands, and anywood-
land is sparse [34] and although there are forests in both
regions inNigeria, these have not detrimentally affected
the observedMODIS flood imagery. For the 2012 event
in Nigeria, 45 days of imagery (15 September–29
October) were downloaded from the DFO archive and
merged into one flood extent. Using over six weeks of
data ensured that the entire event (maximum extent)
was captured. The flood extent for the 2007 event in
Mozambique was taken from a floodmap image on the
DFO website. The process of georeferencing the image
for analysis is outlined in the supplementarymaterial.

Both flood events had, very approximately, esti-
mated return periods of around 50 years [35, 36]. The
GFMIP compared the flood extent outputs of six
return periods: 25, 100, 250, 500, and 1000 years. Not
all of the individual GFMs had a 50 year return period
output. Therefore, to ensure that the validation results
best represent the skill of the models, two return peri-
ods were tested in the individual analysis: 25 and 100
years. For the aggregated analysis, only a 25 year return
period was used. The return periods mentioned in this
study, both reported and modelled, should be inter-
preted with an understanding of their associated
uncertainties. Both events’ 50 year flood return period
was reported in news reports with no indication of
how the value was calculated [35, 36]. Individual GFM
return periods will not be consistent with one another
due to the different approaches each takes to deter-
mine a given return period flood extent. Depending on

the GFM model type, the climate model used, or the
gauge data used, each GFM will have different esti-
mated return period extents.

All the datasets used for validation in this study are
open access, with the thought that the regions and events
studied canbeused for futureGFMvalidation. The data-
sets are available fromResearchData Leeds for academic
research and education purposes (https://doi.org/10.
5518/340).

Analysis
The analysis in this study was done in QGIS (v2.18).
Individual GFM outputs were converted from extents
with pixels indicating depth of flooding to binary
(wet/dry) water masks representing only flood extent.
No specific flood depth threshold was used, only the
wet/dry threshold of each individual GFM output.
The modelled and observed extents were then over-
lapped in each of the study regions. The MODIS flood
imagery used in this study was obtained in ∼250 m
resolution. In order to preserve the detail of the highest
resolution models, and because comparison needs to
be carried out at the same spatial resolution, the
MODIS imagery and all GFM outputs that were not
previously of ∼90 m resolution were resampled using
the nearest neighbour method to ∼90 m resolution.
Because the datasets are binary, false accuracy errors
associated with resampling to a higher resolution are
not introduced. This is because interpolation between
binary pixels during resampling does not result in new
values (as is the case when resampling a continuous
value dataset). Resampling may have introduced
geospatial overlap errors, however, these errors occur
regardless of the resolution resampled to and they are
unlikely to have affected the validation results. The
degree of overlap between the modelled flood extents
and the observed DFO extents was calculated in terms
of the number of pixels that showedmodel agreement,
overprediction, and underprediction. Maps visualiz-
ing this overlap were produced (figure 3). The numer-
ical data from these calculations was then used to
calculate performance scores. The aggregated GFM
output (figure 1(d)) was extracted in six different
model agreement levels. The extents ranged from
largest to smallest: from any model agreement (�1
models agree) to all model agreement (six models
agree). Each of the six model agreement levels was
converted to a binary water mask and underwent the
same analysis as the individual GFMs.

The performance metrics used in the analysis of
the flood models are commonly used in flood model
assessments and for forecast verification in the atmo-
spheric sciences [37]. The scores were also used by a
number of GFMproviders for their own in-house vali-
dation [12, 16, 37–39]. The three performance scores
were chosen as their results represent the most impor-
tant aspects of model performance: model fit, model
bias, and the proportion of total flood captured. The
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first, and most comprehensive, score is the F<2> score
or the critical success index (CSI) [37]:

CSI
F F

F F
1m o

m oÈ
=

Ç ( )

where F Fm oÇ is the intersection of the modelled and
observed flood extent, or number of correct forecasts,
and F Fm oÈ is the union of modelled and observed
extent. The CSI ranges from 1 (best) to 0 (worst). The
CSI has been shown to favourably bias larger floods
[40]. However, because the floods compared in this
study have a similar return period and because model
performance is being comparedwithin the same flood,
CSI was deemed appropriate. The second score, the hit
rate (HR) [37], measures the proportion of the
observedflood that was captured by themodel:

F F

F
HR , 2m o

o

=
Ç ( )

where Fo is the total observed flood extent. The HR
ranges from 1 (entire flood captured) to 0. The third
score is the Bias score [37], which measures whether a
forecast is biased towards underprediction or over-
prediction:

F F F

F F F
Bias 1, 3m o m

m o o

=
Ç +
Ç +

-
( )
( )

( )

where Fm is the total modelled flood extent. A Bias
score of 0 indicates an unbiased model. Positive and
negative bias scores indicate bias towards overpredic-
tion and underprediction respectively.

Although there are a number of other forecast ver-
ification scores that could have been used, the three
performance scores chosen for this study were deemed
appropriate because they do not consider the dry area
in the validation regions. Performance scores such as
the Pierce skill score, false alarm rate, and F<1> that
account for dry area in their formulae are not desirable
in situations where correct ‘no’ forecasts dominate the
analysis, as would be the case for the large validation
regions in this study [40].

The variation in flood hazard output between the
GFMs identified in the GFMIP [24] raises the ques-
tion of whether an ensemble model performs better
than any individual flood model. Multiple model
combinations have been used extensively in the
atmospheric sciences in the form of model ensem-
bles [41–46]. The ensemble model proposed in this
study is a simple composite of the best performing
individual models. In theory, this ensemble should
reduce the uncertainty associated with using any
individual model. Using a combination of the best
performing individual models should reduce uncer-
tainty as using multiple models with different mod-
elling methods would negate any errors associated
with a single modelling method. The best perform-
ing individual models to include in the ensemble are

determined by the following ensemble score (ES):

ES Average CSI 0.2 Average Bias . 4= - *∣ ∣ ( )

In order to have one common ensemblemodel output,
the average of the 25 year return period performance
scores across the regions was used to determine the ES.
A Bias adjustment factor of 0.2 was added to the ES to
penalize for any significant bias towards overpredic-
tion or underprediction. The value of 0.2 was chosen
as it was large enough to penalize for bias, but small
enough that the CSI remained the most important
score in the ES. The bias adjustment factor reduces the
likelihood that any GFM that is heavily biased towards
over or underprediction is included in the ensemble
model. Excessive overprediction is especially detri-
mental to the ensemble model as the resulting flood
footprint would be dominated by themodel that tends
towards overprediction. The number of individual
models to include in the ensemble model was decided
based on the performance scores of the different
model agreement levels in the aggregated model
validation.

Once the best individual models to include in the
ensemble model had been determined, the ensemble
model was created in QGIS by combining the flood
extents of the individual models into one, binary,
ensemble flood extent. The ensemble extent was then
validated using the same methodology as for the indi-
vidual and aggregatedmodels.

Results and discussion

Individualmodels
The performance scores are represented graphically in
figure 2 and the GFMs are arranged from left to right
in order of resolution from coarsest to finest. The
results indicate that there is a significant variation
between the GFMs ability in modelling the flood
events in each region. The average CSI of the GFMs
range from 0.45 (GLOFRIS) to 0.70 (JRC) for a 25 year
flow. To put these scores into context, CSI scores from
other flood validation literature, in different validation
regions, range from 0.3 to 0.9 [12, 16, 39], with >0.7
considered good and<0.5 poor.

Lokoja stands out as the region in which almost all
of the models perform best. The higher CSI scores in
Lokoja are likely a reflection of the region’s narrow
confined floodplain, and the relative simplicity of
modelling the flood where extent is not sensitive to
flood discharge magnitude. The increased complexity
in floodmodelling in flat extensive floodplains such as
the one in Idah is reflected in the lower CSI scores for
the region. The overlap of the observed and modelled
extents (figure 3) illustrates the varied success of the
GFMs atmodelling floodplain inundation in Idah.

GLOFRIS, which uses a simple flood volume dis-
tribution method for modelling inundation, had the
lowest average CSI score across the three regions and
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showed very large regions of underprediction in Idah.
The other 2Dmodels, which have amore hydrodynamic
flood modelling scheme, scored better across the three
regions. This could be due to amore accurate representa-
tion of the physics of floodplain flow or a better char-
acterization of the river floodplain. This is evident in
Idah, where CaMa-Flood, SSBN, and JRC performed
better, possibly due to the greater connectivity modelled
within the floodplain by their native sub-grid models.
Although implementing similar schemes, the subtleties
of their 2D model structures differ. This could explain
why the JRC model had higher performance scores
across the three regions. The benefits of CIMA-UNEP’s
simpler 1D cross-section approach to modelling flood-
plains proved successful atmodellingmuchof the central
floodplain missed by GFMs as the 1D section implicitly
connects lowareas along the cross-section.However, this
can also lead to overprediction if the 1D approach mod-
els inundation in low lying floodplain areas with no con-
nectivity to the channel.

The GFM with one of the highest CSI scores in
Chemba is ECMWF, whereas the GFM with the lowest
CSI score in Chemba is CaMa-Flood. This highlights the

importance of input flow in GFM performance: CaMa-
Flood and ECMWF share the same core hydrodynamic
model, but differ in theirflowgenerationmodel. Theper-
formance of CaMa-Flood also significantly improves as
the modelled return period is increased from 25 to 100
years. This suggests that the input flow was the limiting
factor affecting the performance scores of the 25 year out-
put. Apart from ECMWF, increasing the return period
from 25 to 100 years generally increased the CSI scores of
the GFMs. Increasing the GFM return period resulted in
averaged CSI percentage increases of 14% (GLOFRIS),
0.1% (JRC), 5% (CIMA-UNEP), 19% (CaMa-Flood),
and 15% (SSBN). These findings show that in these three
study areas, GLOFRIS, CaMa-Flood and SSBN are sensi-
tive to input flow. However, the level of return period
sensitivity couldbe exaggeratedby the fact that these three
models all showed higher bias towards underprediction
at the 25 year return period than the rest of the models.
Increasing the return period of an underpredicting and
an unbiased flood model would likely result in a com-
paratively greater proportion of additionalflooding being
captured by the underpredicting model at the higher
returnperiod, thus leading to a larger increase inCSI. JRC

Figure 2. Individual globalfloodmodel (GFM) critical success index (CSI), Bias, and hit rate (HR)performance scoreswhen compared
against observed events in Lokoja, Idah, andChemba. Results shown for 25 and 100 year return periodGFMoutput.
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continues to perform the best of all the models at either
return period when averaged across the three regions.
The variation in input flow is reflected in the HR and
BIAS scores of the GFMs. Averaged across all three
regions, ECMWF captures almost all the flooding, with
anHR of 0.96 for a 25 year flood. However, it is the GFM
that showed the largest bias in either direction: 0.44 for
the 25 year return period and 0.49 for the 100 year return
period. These results suggest that ECMWF is significantly
overestimating inputflowatboth returnperiods.

The differences in model forcing (climate reana-
lysis data versus gauged discharge data) is apparent in
the bias scores of the GFMs. CIMA-UNEP and SSBN,
both based on gauged discharge data, show an average
bias towards underprediction at the 25 year return
period and an average bias towards overprediction at
the 100 year return period. This suggests that both
gauge forcedmodels are doing a good job at estimating
the reported 50 year return period of the observed
flooding. Three of the four models forced by climate
reanalysis data show bias in only one direction at both

return periods, suggesting that the climate forcedmodels
have greater difficulty predicting a representative return
period. This could be due to the fact that the validation
regions are in the tropics and reanalysis datasets have
been found to poorly represent precipitation in the tro-
pics [47]. However, caution should be taken before draw-
ing general conclusions because inputflow is not the only
parameter influencing floodplain extent (for instance,
poorly represented floodplain connectivity might cause a
systematic estimationbias onfloodextent).

The improved connectivity offered by higher spa-
tial resolution GFMs is evident in the Idah floodplain
(figure 3). CIMA-UNEP and SSBN, both with outputs
of 90 m resolution at the equator, are able to model
some of the smaller channels within the floodplain
(either implicitly or explicitly). Despite the improved
connectivity representation, there is no discernible
correlation between the performance scores and GFM
spatial resolution, indicating that the models still need
further improvements in capturing river/floodplain
connectivity. At present, there is currently no

Figure 3.Overlap of individual globalfloodmodel extent for return period flows of 25 and 100 years andMODIS observed flood
extent for Lokoja, Idah, andChemba.
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well-developed method to represent channel bifurca-
tion in 1D fluvial models. A better representation of
bifurcation would improve the performance of both
1D and 2D sub-grid models in areas of high bifurca-
tion, such asfloodplains [48].

The comparative usefulness of GFMs and regional
flood models is a point of contention in flood model-
ling literature [18, 49]. Thomas [50] developed a regio-
nal flood model for southern Nigeria and validated it
against the 2012 floods. The model incorporated local
bathymetric and hydrographic data. When compared
with MODIS data of the flood event, the regional
model’s CSI scores were 0.73 and 0.53 for Lokoja and
Idah, respectively. Comparison with the best GFM
performance scores show that JRC and CaMa-Flood
outperform the regional model in Lokoja with CSIs of
0.78 and 0.75, respectively. The case for the GFMs is
even stronger in Idah as five GFMs outperform the
regional model: JRC, SSBN, CaMa-Flood, ECMWF
and CIMA-UNEP with CSI scores of 0.70, 0.65, 0.58,
0.62 and 0.58 respectively. Comparison of perfor-
mance scores between the studies should be approa-
ched with some caution as the analysis areas in
Thomas’ [50] study varied slightly compared with the
ones used in this study. However, in the cases shown
here, the performance of GFMs is comparable to, or in
some cases better than, the performance of a locally
calibrated regionalmodel.

Aggregatedmodel
Theperformance scores of the different levels ofmodel
agreement for the 25 year return period aggregated
model (figure 4(a)) show that the CSI peaks at�2 and
�3 model agreement. These results correspond with
the results of the individual model validation: two or
three models consistently outperform the rest. A HR

of 0.36 at 6 model agreement shows that all six models
are correctly capturing at least 36% of the observed
flood events. The bias trends steadily from overpredic-
tion to underprediction as the model agreement level
increases. The least bias in either direction occurs at
�3 and �4 model agreement, this is likely due to the
fact that the opposite bias of the individual models
shown infigure 2 balanced one another out.

Ensemblemodel
The aggregated model validation found that the �2
and �3 model agreement groups had the highest CSI
scores. As a result, the number of models chosen to
include in the ensemble model was three. The
individual models included in the ensemble model,
chosen using the ES, were JRC, CIMA-UNEP, and
SSBN (figure 4(b)). The validation performance scores
of the ensemblemodel are compared (figure 4(c))with
the best performing models from the individual and
aggregate group: JRC and �2 model agreement. The
results show that there is little difference between the
CSI scores of the ensemble model, JRC, and�2model
agreement. Furthermore, the JRC GFM scores higher
than the ensemble model in Lokoja and Idah. The aim
of an ensemble model is to reduce the uncertainty
associated with using a single model. For an ensemble
model to perform better than individual models, the
individual models that make up the ensemble model
need to compensate for the uncertainty in the other
models either through different input data or different
modelling methods. Judging from the results of the
analysis, it seems that the combination of individual
models did not improve the results as a whole. If
anything, they added to the uncertainty in the form of
increased overprediction, which resulted in the
reduced CSI scores. Although the ensemble model did

Figure 4. (a)Critical success index (CSI), hit rate (HR), and Bias scores averaged across all three study regions for the six different levels
of aggregatedmodel agreement for a 25 year return period flood. (b)The three best performing individual globalfloodmodels (GFMs)
that are included in the ensemblemodel as determined by the ensemble score. (c)CSI scores for the compositemodel, the best
performing individual GFM (JRC), and the best performing aggregatedmodel agreement level (�2Model Agreement) for a 25 year
return period flood.
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not outperform the best individual model, it did score
comparably well. There are situations where this
ensemble approach could be of use. For example, in
regionswhere it is not possible to validatefloodmodels
to determine the best individual model, the use of a
multiplemodel ensemble could reduce the uncertainty
associated with using only one model, whilst not
significantly reducing the flood extent prediction
accuracy.

Observational data
It is imprudent to discuss our validation findings
without making some reference to the observational
data used and the inherent uncertainty that is asso-
ciated with flood observation mapping. This study
used extents from the DFO archive, which is currently
the most extensive global flood database. However,
work is being done to develop a global database of
historic flood events in Google Earth Engine (GEE)
[51, 52]. The DFO flood extents used in this study and
the equivalent extents from the new GEE global
database [52]were analysed to examine the agreement
between the two data sources. The results of the
analysis show that there is 12%disagreement in Lokoja
(CSI 0.88), 11% disagreement in Idah (CSI 0.89), and
63% disagreement in Chemba (CSI 0.37) between the
observed flood extents from the two data sources. The
bias scores are also always in the direction of the DFO
extents (Lokoja 0.02, Idah 0.01, and Chemba 1.32)
indicating that the DFO extents are larger. Figures
showing the observational agreement and disagree-
ment are included in the supplementarymaterial. This
observational disagreement between data sources
highlights an underlying problemwith floodmapping.
Satellite imagery, both optical and radar, faces issues
with observational bias. Optical imagery is affected by
cloud cover and radar imagery is affected by vegeta-
tion. Data sources differ in the methods they use to
reduce the effects of such observational bias. As a
result, flood maps for the same event can differ if they
are obtained from different sources. Neither source
captures all of the flooding; eachmisses different parts.
The task faced by the end user when confronted with
the uncertainty associated with two disagreeing data-
sets is to decide which most closely represents the
actual event. Even then, the chosen extent is used
under the assumption that it is entirely correct. If these
observational uncertainties could be incorporated into
floodmaps, it would allow for ameasure of confidence
to be calculated relating to the accuracy of the
observations and as a result, the accuracy of the
validation findings.

Conclusions

This paper has outlined the first validation intercom-
parison between GFMs. Validation of the individual
models against observed events in Nigeria and

Mozambique showed that there is a significant varia-
tion in GFM performance, with average CSI scores
ranging from 0.45 to 0.7. Site specific conditions
played an important role in model performance. The
GFMs scored well in Lokoja, where flood extents were
restricted by a confined floodplain. Conversely, the
models showed less skill in Idah, a flat extensive
floodplain with complexmorphology. The underlying
hydraulic models showed varied success in modelling
floodplain inundation. CIMA-UNEP’s 1D approach
was able to implicitly model greater connectivity
within the Idah floodplain. Generally however, the
connectivity provided by 2D models was evident in
both the performance scores and the inundation
maps. 2D hydrodynamic models showed significantly
more skill at predicting inundation than 2D volume
redistribution methods. Input flow was identified as a
crucial factor in modelling a representative flood
inundation extent and increasing the return period of
the GFMs resulted in significant improvements for
half of the GFMs. The GFMs forced by gauged data
showed better return period accuracy than those
forced by climate reanalysis data. This was attributed
to the poor reanalysis representation of precipitation
in the tropics. Spatial resolution, although showing
some improvement in floodplain connectivity, did not
obviously improvemodel performance.

Comparison of the GFMs with a regional flood
model developed for Nigeria showed that some of the
GFMs outperformed the regional model. Through
validation, the three best models were identified and
combined into a composite model. The validation of
the composite model, showed that it performed simi-
larly, but not better than the best individual GFM.

Outlook

This study has demonstrated the usefulness of a
collective GFM validation procedure. The compari-
sons and conclusions that can be drawn from the
common validation data cannot be made using the
individual internal GFM validation data that has been
available thus far. The focus area of this study has been
limited to three regions in Africa and has looked only
at flood extents. The GFMs tested in this study have a
multitude of uses beyond only flood extent mapping.
These include, but are not limited to:flood forecasting,
estimating future impacts, and real time disaster
response. Going further, a more extensive validation
procedure that incorporates a comparison of flow
velocity [53], inundated depth, and flood duration
[54] would allowmore conclusions to be drawn about
both the performance and different uses of themodels.
The validation also needs to be extended across
different climates and continents. To do this, a
catalogue of appropriate validation regions needs to be
developed and the observational data used for valida-
tion needs to be shared openly. Future studies should
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also incorporate more GFMs such as insurance
catastrophe models to encourage the knowledge
transfer between research and industry. Incorporating
advanced methods of model output validation and
applying them across more regions would allow for a
truly global validation comparison study ofGFMs.
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