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1 |  INTRODUCTION

The case for the sustainable intensification (SI) of agricul-
ture in order to meet rising demand for food while sup-
porting ecosystem services, livelihoods, and wellbeing 
is widely accepted (Godfray & Garnett, 2014), despite 
some debate concerning the usefulness of the term (e.g. 
Gunton, Firbank, Inman, & Winter, 2016). It is therefore 

essential to be able to measure farm performance across 
the range of factors that contribute to SI, namely produc-
tivity, economics, human wellbeing, environmental impact 
and social characteristics (Smith et al., 2017). Most cur-
rent sets of SI indicators address levels of food production 
and environmental pollution, following earlier framings 
of SI just in terms of food and environment. For example, 
Firbank, Elliott, Drake, Cao, and Gooday (2013) adopted a 
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simplified set of SI indicators that were intended to mea-
sure performance across an efficiency frontier, considering 
food production (expressed in terms of energy content), 
modeled emissions of nitrates to watercourses, modeled 
ammonia and greenhouse gases (GHGs) to air and an in-
dicator for biodiversity, drawn from data on habitats and 
land management. Other indicator sets include animal 
welfare (Kuneman et al., 2014), socioeconomic properties 
(Smith et al., 2017), and developmental goals (Musumba, 
Grabowski, Palm, & Snapp, 2017). Any of these approaches 
could be used to assess the performance of commercial 
farms on at least some aspects of SI.

However, there is no real consensus as to which vari-
ables should be included in SI assessments, nor about how 
the variables should be integrated and interpreted. This re-
flects in part the wide range of uses of SI metrics, and the 
different understandings about what actually constitutes SI: 
thus agricultural productivity can be defined in terms of 
financial value, energy value (Firbank, Elliott, et al., 2013), 
nutritional value (Godfray & Garnett, 2014), or values of 
the brand to the consumer. The range of environmental and 
social variables to be included varies greatly, as does the 
choice of units; furthermore, very different impressions can 
be given by scaling metrics per unit area (Firbank, Elliott, 
et al., 2013) as opposed to per unit product (Zhou et al., 
2014). The choice of method of integration and presenta-
tion of data also has a strong influence on the perception 
of sustainability; variables can be integrated using finan-
cial values (Glendining et al., 2009; Rodriguez- Ortega 
et al., 2014), visualization (Elliott, Firbank, Drake, Cao, & 
Gooday, 2013) or integrated analysis (Coelli & Rao, 2005; 
Del Prado et al., 2011).

Here, we develop a new approach to measuring SI using a 
novel indicator set developed through consultation with a di-
verse range of stakeholders, including a new indicator for farm 
biodiversity derived without the need for site- specific survey 
data. We demonstrate and test this indicator set through the 
collection of one of the most comprehensive and large- scale 
SI surveys of commercial farms undertaken to date. This ap-
proach is designed to integrate with the routine collection of 
farm performance data within the EU Farm Accountancy Data 
Network (FADN) (Kelly et al., 2018; Lynch, Skirvin, Wilson, & 
Ramsden, 2018), and is therefore relevant to wider international 
performance monitoring, and has the potential to be used in on- 
going data collection programs over a large number of farms.

2 |  HEADLINE INDICATORS OF 
FARM PERFORMANCE

A long list of potential indicators of SI was prepared by col-
lating those used in previous studies (Supporting Information 
Material 1). During a workshop with researchers and 

stakeholders, this list was reduced to reflect the availability 
and reliability of primary data, while considering the data 
needs and potential sensitivity to SI interventions (also in 
Supporting Information Material 1). The reduced list of in-
dicators was further refined while designing and testing the 
process of data collection, and a subset of these variables was 
selected to act as Headline Indicators of the major aspects 
of farm performance (Table 1). These indicators covered the 
main goods, services, and disservices provided by the farm 
over the year. All were measurable at whole farm scales, 
but could also be reported per unit area, product or profit as 
appropriate.

2.1 | Farm description
Farms were classified into Defra Farm Types (Defra 2014). 
Virtual land area was used to account for all land actually 
farmed by the business, an estimate of land area used to 
grow animal feed imported onto the farm (following Firbank, 
Elliott, et al., 2013), along with a standardized 25% of all 
common land accessible to the farm.

2.2 | Farm financial performance
While the SI debate has not focused on the financial perfor-
mance of farms, it is axiomatic that the financial objectives of 
the farm have to be met for it to be sustainable as a business. 
Two Headline Indicators were calculated from farm finan-
cial data, one for the proportion of income arising from farm 
sales, as opposed to Government support and other forms of 
income, and one for farm profit. Profit was calculated from 
data provided by the farmers as total income less livestock 
imports, feeds, fertilizers and pesticides, but not accounting 
for costs of labor, power, rent, insurance, or interest. More 
complete calculations of profit were not possible because 
there were too many gaps in the data.

2.3 | Food production
Food production is presented in terms of energy content, 
thus standardizing across different products but not between 
farming systems, as this measure favors the production of 
energy- dense foods, notably cereals. Data covering the ex-
port of foodstuffs from the farm per annum were obtained 
either from farm management software or by interview. Crop 
production was provided from areas and yields per crop. Data 
on forage production were often lacking, but it was assumed 
to be used on farm and therefore did not need to be measured 
separately. Milk yields were provided directly, while meat 
production was given as the net weight of animals exported 
from the farm. These exports were converted to a single 
production figure of energy production ha−1, using standard 
composition tables following Firbank, Elliott, et al. (2013). It 
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was not possible to do the same for protein or other aspects of 
food composition. Membership of farm assurance schemes 
was used to provide evidence of commitment to product 
quality and animal welfare (Pandolfi, Stoddart, Wainwright, 
Kyriazakis, & Edwards, 2017). Farms were scored accord-
ing to whether there was no scheme membership (Score = 0), 
Red Tractor (score = 1) or higher level certification scheme, 
here including Organic, RSPCA assured, and the Maedi 
Visnae health scheme for sheep, given scores of 2.

2.4 | Social characteristics
Data were collected on the social aspects of the farmer, 
the farm business, and potential impacts of the farm to 
wider society. We recorded the age and highest educa-
tion level attained by the farmer (indicated using a score, 
1 = School education (Left at 16 or before); 2 = A Levels; 
3 = Technical qualification (NVQs, BTEC, OND, HND, 
etc.); 4 = Undergraduate degree; 5 = Postgraduate degree 

T A B L E  1  Headline Indicators of farm performance. See text for details

Category Issue Indicator Description

Farm description

Farm Type Farm Type Using Defra list of farm types. Note that one farm 
classed as “mixed upland” was reclassified as 
“Grazing Livestock LFA”

Farm area, including that used to 
grow feed imported to farm

Virtual Farm Area (ha) Adjusted Total Farm Area with estimates of area used 
to grow any animal feed imported onto the farm

Farm financial performance

Profitability Profit excluding indirect 
costs (£)

Include all sources of income less in direct costs

Reliance on farm sales for income Proportion of income arising 
from sales of farm goods

Income from farm sales/all income

Production

Quantity of production Net Energy content GJ 
removed from the farm

Used to standardize net agricultural production, using 
total yields for each food type (net of imports of 
livestock to the farm), and standard tables of energy 
contents. Note that forage is not included as it used on 
farm

Animal welfare and quality assurance Farm Assurance Score 0 =  no assurance; 1 =  Red Tractor; 2 higher level

Social characteristics

Farmer age Farmer age (y) From farmer interview

Farmer education Farmer education level Scored from farmer interview, from school to postgrad-
uate qualification

Farm labor Total hours worked by all 
staff on the farm (h)

From farm records

Investment in training Total hours spent on staff 
training (h)

From farm records

Engagement with other farmers Cooperative farming score Scored according to the variety of forms of cooperation

Provision for social goods Length of footpaths across 
the farm (km)

From farm records

Area of open access land 
(ha)

From farm records

Environmental quality

Impact on climate regulation Potential GHG emissions 
(kgCO2 eq)

Modeled using Farmscoper from inputs, outputs, and 
relevant management details using a combination of 
IPCC tier 1 and tier 2 methods

Impacts on air and water quality Potential nitrate losses to 
water (Kg)

Modeled using a disaggregated modification of 
NEAP- N, plus nonfield losses, within Farmscoper 
from data provided by farmer on physical inputs, 
outputs, land management, and soil characteristics

Biodiversity Biodiversity score Weighted scoring system on basis of land cover
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and 0, Prefer not to disclose). Information about the work-
force was summarized as the total number of hours worked 
over the year, and numbers of hours spent on staff training. 
Data were also used on levels of engagement by the farmer 
with others, through membership of networks including 
buying groups. This was done because collaboration be-
tween farmers builds social capital (Bchir, 2011; Gomez- 
Limon, Vera- Toscano, & Garrido- Fernandez, 2014) with 
potential economic and environmental benefits including 
mutual learning and strengthening relationships and net-
works (Wynne- Jones, 2017). The levels of cooperation 
may influence the adoption of SI interventions, especially 
those that rely on more than one farm, e.g. catchment man-
agement (Waterton et al., 2015). The score was derived 
according to the variety of business engagements, with 
one point for each approach to shared working, excluding 
contracting, including membership of a buying group, a co-
operative or producer group, collaborative environmental 
management, share farming, sharing labor, sharing machin-
ery, swapping manure, and lending sires. Membership of a 
discussion group was not included in the score.

One of the major cultural services from agriculture is the 
provision of settings for leisure for exercise, enjoying the 
landscape, observing wildlife, hunting and fishing, or other 
reasons (Millennium Ecosystem Assessment 2005). Such 
recreation has benefits for human health (Barton & Pretty, 
2010) as well as local economies. Length of footpaths and 
areas of open access land were used to indicate the farm’s 
contribution to rural recreation.

2.5 | Environmental quality
Environmental indicators distinguish between flows and 
stocks. Flows are, broadly speaking, those ecological pro-
cesses that underpin ecosystem services. They include the 
biogeochemical gains and losses in a farming system; the 
gains are typically nutrient additions by the farmer, but can 
also include carbon sequestration. Losses to the environment 
are inevitable for nearly all farming systems, though are in-
creased when resource use efficiency is poor, with the losses 
typically behaving as pollutants, influencing climate regula-
tion, air and/or water quality. Stocks include the biophysical 
resources available to the farm. Some of these, notably soil 
quality, act as natural capital and pay dividends to the farmer 
into the future (Pretty, 2008), while others, such as biodiver-
sity, can support cultural and spiritual services of the enjoy-
ment of nature, as well as provide direct benefits to human 
health and continued food production (Firbank, Bradbury, 
McCracken, & Stoate, 2013). Pesticide use was not included 
as a high level indicator, because of the sensitivity of envi-
ronmental impact to the choice of compound, adjuvant and 
application method, as well as to the timing and conditions 
of spraying.

2.5.1 | Impacts on climate regulation
Globally, agriculture is responsible for approximately 30- 
35% of GHG emissions (Foley et al., 2011). In the United 
Kingdom, agriculture- linked GHG emissions are primarily in 
the form of nitrous oxide (N2O) from fertilized soils, meth-
ane (CH4) produced by livestock and livestock slurries and 
manures, and carbon dioxide (CO2) produced through energy 
consumption, including on farm energy use and embedded 
within the production of and transport of inputs. Agriculture 
may also sequester carbon in soil or plants, if appropriate 
management activities are undertaken (Smith et al., 2008). 
Improving energy use efficiency can increase both economic 
and environmental sustainability by decreasing the costs 
alongside decreasing GHG emissions (Alluvione, Moretti, 
Sacco, & Grignani, 2011).

Collecting data on absolute physical usage of fuels and 
electricity is relatively easy on farm as these are normally 
monitored, or their expenditure is available from accounts re-
cords. Models are used to estimate GHG emissions from par-
ticular agricultural activities, including changes in land use. 
They are broadly categorized into three levels of complex-
ity (IPCC 2006). Tier 1 uses international emissions factors; 
Tier 2 uses national emissions factors within more com-
plex IPCC modeling methodologies, while Tier 3 may use 
approved national models or methodologies. Here, the tool 
FARMSCOPER (Gooday et al., 2014) version 3 was used to 
estimate GHG emissions from agricultural management and 
energy use around the farm, which includes Tier 2 methods 
where possible, otherwise Tier 1.

2.5.2 | Impacts on air and water quality
Agriculture can compromise air and water quality through 
losses of nitrogen and phosphorus compounds, pesticides, and 
microorganisms. The pollutant loadings of potential losses 
of ammonia to air, nitrate and phosphorus to watercourses 
can be estimated via the mechanistic models PSYCHIC, for 
phosphorus (Davison, Withers, Lord, Betson, & Stromqvist, 
2008); the NEAP- N catchment- scale nitrate model (Lord 
& Anthony, 2000) and combining models for ammonia 
(Chambers, Lord, Nicholson, & Smith, 1999; Webb et al., 
2006). Outputs from these models have been incorporated 
into FARMSCOPER as a detailed set of coefficients that 
use secondary data on local physical environment (soil type, 
precipitation, temperature) and physical inputs (e.g. fertilizer 
applications, livestock excreta) to predict losses for a given 
farm (Gooday & Anthony, 2010). Risks from emissions of 
toxic microbes can be inferred from modeling the flows of 
fecal indicator organisms (Kay et al., 2010). While it is also 
possible to estimate losses of pesticides using similar models 
(Gooday et al., 2014), their interpretation is difficult because 
of the great variation in the products and their ecological 
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effects. Here, the potential losses of nitrate to water courses, 
as estimated by FARMSCOPER V 3, are used as a Headline 
Indicator of pollution and risk to water quality.

2.5.3 | Biodiversity
The mosaic of farmland in Europe has provided a habitat 
rich in biodiversity; however, agricultural intensification has 
been strongly linked with a widespread decline of biodiver-
sity in recent decades (Stoate et al., 2001). Designing com-
prehensive, scientifically justified biodiversity indicators is 
a significant challenge given that different taxa have differ-
ent requirements of habitat type, quality and configuration 
(Benton, Vickery, & Wilson, 2003), that biodiversity of many 
taxa depends not simply on the characteristics of an individ-
ual farm, and that no taxonomic group is a good indicator of 
all others (Billeter et al., 2008). There is currently no consen-
sus indicator for farmland biodiversity suitable for farm- scale 
studies that can be obtained solely from records of land use 
and farm management. Therefore, a new biodiversity scoring 
system was developed using an approach backed by industry 
and conservation bodies, in which points are given for par-
ticular interventions and management practices: weightings 
helped ensure that the score was not systematically higher 
for particular farm types or for larger farms (Table 2). The 
method was validated using bird data collected from a sepa-
rate sample of English farms (see Supporting Information 
Material 2).

3 |  METHODS

Data were collected from two surveys of farmers: an ini-
tial survey explored farmer behavior, while the more de-
tailed follow- up survey was designed to collect most of the 
management data, designed to be capable of being inte-
grated with the Farm Business Survey. The sample frame 
included commercial farms from six areas of England 
and Wales, chosen to capture the range of farm types 
from upland to lowland, livestock to arable. Specialist 
pig, poultry, and horticultural businesses were excluded. 
Fifty- nine validated surveys were undertaken by face- 
to- face interviews between July and November 2015, 
addressing production during 2014; 46 farms provided 
complete data for the calculation of the selected Headline 
Indicators (Table 3), and the other farms were included in 
analyses that were not affected by the data gaps. The data 
were analyzed to identify covariation among the Headline 
Indicators across the farms, and especially between farm 
types, both at the farm scale and, where appropriate, per 
unit area. Interrelationships among the Headline Indicators 
were also explored, using Principal Components Analysis 
(PCA) among other approaches. The sample size is very 

small for this analysis (Guadagnoli & Velicer, 1988). 
The approach is justified here because there is no inten-
tion to generalize the results to a wider population (cf 
MacCallum, Widaman, Preacher, & Hong, 2001), rather 
to help with data interpretation and to inform the selection 
of other analyses. All statistical analyses were conducted 
using SPSS Version 21.

4 |  RESULTS

4.1 | Variation across all farms
The main variation in the Headline Indicators of farm per-
formance across farms in the sample was explored using 
Principal Components Analysis (PCA). At the whole farm 
level (Figure 1a), the first axis (that accounted for 21% of 
overall variation) related to variation in commercial pro-
ductivity and levels of pollution, as it was highly correlated 
with nitrate losses (0.88), profit (0.79), and GHG emissions 
(0.67). The second axis (13%) drew out farm size, as it was 
correlated most strongly with virtual area (0.60) and biodi-
versity score (0.71). The third axis (also 13%) appeared to 
have reflected an upland extensive/lowland intensive split, 
as it was correlated with area of open access land (0.68), 
farm assurance score (0.611), and energy content of food 
produced (- 0.59). The fourth component (explaining 11% 
of variation) related to the structure of the farm business, 
and was correlated with proportion of income from farm 
scales (0.50), farm assurance score (0.52), and farmer educa-
tion level (0.61). Dairy farms showed the least variation in 
Headline Indicators (Figure 1).

T A B L E  2  Allocation of values for the Biodiversity Score. 
Habitat areas/lengths are multiplied by the weighting value and 
summed to provide a single value for each farm, which can then 
divided by virtual area of the farm if required. See Supporting 
Information Material Table S2.1 for full details

Habitat Unit Value

Arable noncropped habitats ha 2

Arable field boundary km 1

Arable grass margins ha 1

Arable flower rich habitats ha 2

Arable seed rich habitats ha 2

Arable spring sown crops, excluding cereals ha 1

Livestock noncropped habitats ha 2

Livestock field boundary ha 1

Livestock rough grazing ha 0.5

Livestock flower rich ha 2

Spring cereals ha 1

Root crops ha 1

Forage crops excluding maize (e.g. Lucerne) ha 1
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Some Headline Indicators (profit, food energy, hours 
worked, GHG, nitrate and biodiversity scores) were also 
analyzed per unit area (using virtual area, to take into ac-
count land used to grow feeds imported onto the farm). 
The overall patterns were similar to those at the whole 
farm scale, but explained a higher proportion of variation 
in the data. The first axis of the resulting PCA, that ac-
counted for 43% of the variation, corresponded with vari-
ation in commercial productivity and levels of pollution, 
as it was highly correlated with nitrate losses (r = 0.93), 
profit (0.84), and GHG emissions (0.77), although it was 
highly influenced by two farms (Figure 1b). The second 
axis accounted for 25% of the variation and was strongly 
correlated with food production (0.77) and biodiversity 
(0.72); cereal and mixed farms had the highest scores on 
this axis.

4.2 | Variation between and within 
farm types
As one would expect, there were substantial differences in 
mean indicator values between farm types. In this sample, 
cereal farms were the largest and most profitable farms, 
produced the most food (in terms of embedded energy), 
had the highest biodiversity scores, and highest levels of 
nitrate emissions (Figure 2a). Per unit area, cereal farms 
generated the most food energy and lowest levels of GHG 
emissions; LFA livestock farms were the least produc-
tive in terms of food energy, but had the lowest nitrate 
losses and highest biodiversity scores while dairy and 
mixed farms were the most profitable but contributed the 
highest GHG emissions (Figure 2b). Such differences are 
consistent with what is already known (Firbank, Elliott, 

et al., 2013), and reflect the very different levels of poten-
tial food production between farm types and environments. 
Performance when scaled per unit food energy is highly 
dependent on farming system (Figure 2c); scaling perfor-
mance against profitability (Figure 2d) is difficult to in-
terpret because of the sensitivity to input and output price 
fluctuations (see also Supporting Information Material 3 
for numerical values).

Levels of variability varied strongly between farm 
types and indicators. Dairy farms were the least variable 
in performance across most indicators (Figure 3a). At the 
whole farm scale, there was much more variation in pub-
lic access, biodiversity and training compared with farmer 
age and emissions of pollutants (Figure 3a). These differ-
ences were less apparent when corrected for virtual area 
of the farm, which emphasizes variation in food produc-
tion among the livestock farms, biodiversity, and the hours 
worked (Figure 3b).

4.3 | Relationships between variables 
describing farm performance in environmental, 
financial, and productivity terms
The PCA suggested strong relationships between food 
production, profitability, and levels of pollution, with 
weaker relationships with biodiversity; here, these rela-
tionships are explored in more detail. When considered 
per unit area, the relationships between GHG emissions 
and both food production and profit showed a strong in-
crease across livestock farms, but no real relationship 
within cereal farms: mixed farms showed a reduction in 
GHG emissions with increasing food production, pos-
sibly reflecting the varying balance between livestock 

T A B L E  3  Categorization of returns from farm survey by (A) farm type and (B) SIP study area. Note that one of the cereal farms lacked basic 
data on yields and finances, so was excluded from all analyses

(A) Numbers of farms of different 
types

Farm type

TotalCereals Dairy
Grazing livestock Less 
Favored Area (LFA)

Grazing livestock 
lowland Mixed

Total 11 5 21 10 12 59

Total that provided complete data 6 5 20 6 9 46

(B) Numbers of farms in each study region

Avon 6

Conwy 14

Eden 6

Nafferton 5

Taw 7

Upper Welland 16

Wensum 5



   | 7 of 12FIRBANK et Al.

and crop production (Figure 4a,d). The relationships be-
tween nitrate emissions and both food production and 
profit were strongly positive across all farm types, again 
with less variation within the farm types than between 
them (Figure 4b,e, see also Supporting Information 
Material 4 and 5 for all correlation results). There were 
no clear relationships between the biodiversity scores 

and either profit or food production when scaled per unit 
area (Figure 4c,f). Significant correlations among the 
various social variables were few: in particular, there 
were no significant correlations between farmer age, 
education and cooperation and levels of food produc-
tion, pollution nor profitability (Supporting Information 
Material 2).

F I G U R E  1  Principal component 
analysis of financial, production, social, and 
environmental characteristics of all farms, 
with data provided at (a) whole farm basis 
and (b) per unit area. In (a), the calculation 
uses all Headline Indicators given in 
Table 1, with points representing individual 
farms indicated by farm type. For (b), a 
subset of Headline Indicators (profit, food 
energy, hours worked, GHG, nitrate, and 
biodiversity scores) was analyzed per unit 
virtual farm area. Cereal farms are dark blue 
filled circles; dairy, black, open diamonds; 
Less Favored Area (LFA) livestock, green, 
filled squares; lowland livestock, purple, 
filled circles and mixed farms orange, filled 
circles
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5 |  DISCUSSION

It is increasingly recognized that agricultural sustainability 
is not simply about profit, production, and environment, but 
also includes human wellbeing (not least health and nutri-
tion) and social sustainability. These aspects of farming 
have been called the ‘five domains of sustainability’ (Smith 
et al., 2017), and are reflected in the Headline Indicators 
used here. There are a variety of methods of assessing some 
or all of these domains at the farm scale (Gunton et al., 2016; 
Mahon, Crute, Simmons, & Islam, 2017; Smith et al., 2017), 
which can differ in scale as well as objective (Gunton et al., 
2016), and will often reflect the ease of data collection; thus 
here we did not collect enough data to consider the costs of 
power and energy in our calculations of profit. Those indica-
tors used here were taken from a combination of direct data 
collection from the farmers, and simple relationships and 
models to generate some variables, including emissions of 
pollution, biodiversity levels, and virtual areas. Such mod-
els are prone to errors at the scale of the individual farm, as 
the fine details of farm environment and management can-
not be accounted for. Thus actual emissions of GHGs and 
water pollution depend on the weather and timing in ways 
that cannot be currently be captured by the models used; re-
porting food production in terms of energy does not address 

issues of nutritional quality, and the estimation of virtual 
farm area oversimplifies the actual use of common land and 
the assumptions of standard relationships between land use 
and livestock feed type. Furthermore, the interpretation of 
the indicators depends much on how they are scaled: envi-
ronmental effects can look very different if scaled per unit 
land area than if scaled per unit product.

Farm performance using these indicators is strongly dif-
ferentiated by farm types. Such influence is not surprising; 
farming systems are typically located according to the ca-
pability of the land (Firbank, Elliott, et al., 2013; Musumba 
et al., 2017), and some metrics are sensitive to the type of 
food produced (Firbank, Elliott, et al., 2013). It appears that 
some farm types display greater uniformity than others, re-
flecting the greater biophysical variation and diversity in 
income streams in extensive upland compared to dairy en-
terprises, for example. Over all of the farms of this study 
however, there were broad positive correlations among 
productivity, profitability and modeled levels of pollution 
(with the notable exception of cereals and GHG emissions, 
Figure 4). This result seems surprising; one might expect 
the uptake of technology such as precision farming and ge-
netic improvement to disrupt these relationships by reduc-
ing inputs without sacrificing yields. However, such changes 
are hard to observe from a single dataset measured at one 

F I G U R E  2  Radar plots of farm performance, in terms of per farm (a), per unit area (b), per unit food production (c), and per unit profit (d). 
The values plotted are the ratios of the mean value for each indicator on each farm type over the mean values of these means across all farm types 
for the indicators; the plots therefore visualize the relative performance of the different farm types for the different indicators. Cereal farms in dark 
blue, dairy in black, Less Favored Area (upland) livestock farms in green, lowland livestock in purple, and mixed farms in orange

(a) (b)

(c) (d)



   | 9 of 12FIRBANK et Al.

time, rather than observing trends from the same farms over 
time. Furthermore, while there are many ways for farmers 
to reduce pollution from livestock, modeled emissions are 
currently driven largely by livestock numbers: more work 
is necessary to capture actual emissions. The same issue 
applies to pollution where impact is premised on input use 
rather than the systems and technologies or mitigation used 
to recycle/capture potential losses. By contrast, the relation-
ships between production, profit, and biodiversity scores are 
not statistically significant (Figure 4). Support for biodiver-
sity is seen by some farmers as a cost to business, to be paid 
through the public purse (Firbank, Elliott, et al., 2013), even 
though there is evidence that biodiversity can support food 
production and add value to farm performance (Pywell et al., 
2015). If agrienvironmental support is to become more re-
stricted, the economic and social arguments based on eco-
system services from farmland biodiversity may need to be 
strengthened (Reed et al., 2017) and alternative methods of 
incentivizing farmers considered (Hanley, Banerjee, Lennox, 
& Armsworth, 2012).

Social variables were also poorly related to production and 
profitability. This result is surprising, given that many views 
of SI involve social factors (Struik & Kuyper, 2017), and that 
adoption of best practice can vary with social characteristics 
of the farmers (Liu, Bruins, & Heberling, 2018). It is possible 
that the social variation among these particular farmers was too 
small to reveal effects that can be found among more diverse 
groups.

Collecting these indicators for the same farms over time, 
e.g. using an extension to the FADN (Buckley, Wall, Moran, 
& Murphy, 2015; Lynch et al., 2018), will identify the resil-
ience of farm performance to external change, as well as iden-
tify trends and their relationships to potential drivers. These 
will include on- farm variables, exogenous changes to markets 
and weather, and the multiple public policy interventions. 
Such work will support change within each farm type, espe-
cially if used to target knowledge exchange and supported by 
benchmarking, and will particularly encourage SI by increas-
ing resource use efficiency. However, the transition toward a 
truly sustainable agricultural system requires a more radical 

F I G U R E  3  Radar plots of the variability of 
farm performance, in terms of per farm (a) and per 
unit area (b). Values shown are the coefficients of 
variation for each indicator across all farms of each 
farm type. No transformation or normalization was 
required. Cereal farms in dark blue, dairy in black, 
Less Favored Area (upland) livestock farms in green, 
lowland livestock in purple, and mixed farms in 
orange

(a)

(b)
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approach that takes a more holistic approach to food security, 
provision of ecosystem services, and increasing resilience to 
external trends, including policy, trade, social and environ-
mental change (Norton, 2016). New approaches to quantify 
desirable levels of particular land uses (Firbank, 2017) cou-
pled with place- based support schemes (Reed et al., 2017) 
are showing how this can be achieved.
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