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Abstract

In this paper we demonstrate that the capillary thinning dynamics of a weakly viscoelastic jet

follow a different timescale than a liquid bridge of the same fluid between two stationary surfaces

for similar geometrical scales. The thinning in the latter case observed with capillary breakup

extensional rheometry (or CaBER) follows an in literature well established scaling of the radius

with time for an elasto-capillary (EC) balance of R ∼ exp(−t/3λ). However, for the thinning

of the filaments between droplets in a jet it was so far just assumed that the same scaling law

holds. In this paper we experimentally demonstrate that the jet thinning in a Rayleigh-Ohnesorge

jetting extensional rheometer (or ROJER) follows a different scaling of R ∼ exp(−t/2λ). This is

demonstrated by a direct comparison of the thinning dynamics of weakly viscoelastic (Oh < 0.01)

aqueous solutions of polyethylene oxide in the two experimental set-ups, covering a wide range of

jetting velocities or Weber numbers of 1 - 70.

We demonstrate outgoing from a momentum balance that includes inertia and elasticity that this

difference in scaling is due to a constant axial tension in the jet arising from the constant creation

rate of new surface at the nozzle. Numerical simulations using the FENE-P model support this

theory and demonstrate that in the exponential thinning regime of the jet the elastic stresses

are indeed balanced by the axial tension (rather than by capillary pressure as in the EC balance

regime of the CaBER experiment). It is readily shown from the reduced stress balance that this

axial-elastic (AE) balance regime in the ROJER experiment leads to a faster exponential thinning,

following the new scaling of R ∼ exp(−t/2λ) that was experimentally observed. Furthermore,

we observe both in experiment and simulation that a jet thinning does not exhibit a self-similar

structure of the corner region where the thinning filament connects to the drop as it is generally

observed for a filament with an axial tension decaying with the filament radius as in the CaBER.

The resulting difference of 50% in extensional relaxation time λ extracted from ROJER experiments

might require to revisit previously reported ROJER experiments and is required for the correct

evaluation of future jetting rheomety experiments.

∗ University of Nottingham, School of Mathematical Sciences, Nottingham, NG7 2RD, United Kingdom
† Author to whom correspondence should be addressed: christian.clasen@kuleuven.be
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I. INTRODUCTION

When a liquid is sent through a nozzle at sufficiently high velocity, a liquid jet is formed

that spontaneously disintegrates into a series of small droplets under the influence of sur-

face tension. The cylindrical fluid column that appears after the nozzle exit is inherently

unstable due to capillarity. Sinusoidal disturbances on the jet surface with a sufficiently

large wavelength reduce the surface area and are thus thermodynamically favourable as they

reduce the surface energy. The amplitude of the instability grows exponentially in time with

a particular growth rate that depends on the wavelength. As the jet flows downstream, the

instability progressively thins and the jet disintegrates into a series of droplets with sizes

that depend on the wavelength of the perturbation [1, 2].

Adding a small amount of flexible polymers to the liquid considerably alters the thinning

dynamics of the jet [3]. Performing a linear stability analysis on a viscoelastic jet shows

that the instabilities grow faster compared with a Newtonian fluid with the same inertia

and zero shear viscosity [4, 5]. However, non-linear effects quickly dominate the breakup of

these fluids. As the local radius of the jet decreases, elastic stresses grow and the jet profile

consists of a series of small droplets joined by small threads, that thin slower than a purely

viscous liquid [4, 6, 7]. This typical ’beads-on-a-string’ morphology is displayed in Figures

1a and 1b for an aqueous polyethylene oxide (PEO) solutions.

Viscoelastic jets are encountered in various spraying and dispensing operations [8]. For sev-

eral processes, small concentrations of polymer are included in the fluid formulation to alter

the atomisation characteristics. Examples include high molecular weight polyisobutylene

(PIB) that is used to suppress misting of numerous inflammable liquids [9], or appropriate

concentrations of polymers of a desirable molecular weight that are added to inkjet printing

fluids to control the droplet deposition [10]. Such polymer additions can suppress the for-

mation of unwanted satellite drops, which arise during the capillary breakup of a Newtonian

fluid and cause a reduction in the printing quality [11–14].

Throughout the jetting process, the fluid is subjected to a complex extensional deforma-

tion with rapidly varying strain rates. The breakup is driven by the capillary pressure within

the thread and is resisted by inertial, viscous or elastic stresses in the fluid, depending on the

fluid characteristics and the deformation history. The relative importance of these resisting
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FIG. 1. (a) Image of an unexcited jet from the nozzle to breakup at approximately 30 mm from the

nozzle for a 0.1 wt% PEO solution from a nozzle with an inner radius Rn = 75 µm at We = 4.0.

(b) Image of an excited jet for a 0.001 wt% PEO in water/glycerol 60/40 wt% solution from a

nozzle with an inner radius Rn = 100 µm at We = 4.0. The scale bar in both images represents 2

mm. (c) The radius of an instability of jet (a) as a function of time. The growth of the instabilities

is illustrated with a representative picture for each of the regimes.

stresses determines the temporal evolution of the jet and can be expressed by dimensionless

numbers [8, 15]. One is the Ohnesorge number that compares the viscous and inertial effects

Oh =
η√
ργR

, (1)

where η is the viscosity, ρ is the density, γ is the surface tension and R is a characteristic

radius. The Ohnesorge number can be considered as the ratio between the viscous time

scale ηR/γ and the Rayleigh time tR =
√

ρR3/γ, which is the characteristic time scale of
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an inviscid jet. Others are the intrinsic Deborah number that represents the ratio of the

characteristic relaxation time λ of the fluid to the Rayleigh time

De =

√

λ2γ

ρR3
(2)

and the elastocapillary number, Ec = GR/γ, which is the ratio between the elastic modulus

of the solution and the capillary pressure. With the general relation between modulus,

relaxation time and polymeric viscosity η = Gλ, it is easily shown that for for polymeric

fluids three dimensionless groups are interrelated via Oh = EcDe. It should be noted that

the dimensionless groups can be determined as a global or a local number by using either the

initial or the local value of the radius. The global number is often used to make an initial

estimate of the overall thinning dynamics, whereas the local number can be used to predict

at which radius a transition from one thinning regime to another is to be expected. Another

important dimensionless group compares the relevant thinning velocity to the jet velocity

v0 to indicate the transition between dripping and jetting dispersion [8]. For low viscous

fluids, the Weber number is defined as the squared ratio of the convective time R0/v0 to the

Rayleigh time

We =
ρv20R0

γ
. (3)

The weakly viscoelastic jets, that are the subject of this paper, exhibit global De ≈ 1 and

Oh ≪ 1, so viscous stresses can usually be neglected in the following analysis. The temporal

evolution of a single instability of the jet is shown in Figure 1c, where a characteristic picture

is included for each of the four regimes that govern the thinning of the jet. After exiting

the nozzle, the jet initially remains almost cylindrical and instabilities slowly arise at the

wavenumber associated with the highest growth as predicted by linear stability analysis.

The amplitude of this instability grows exponentially and the fluid deformation becomes

too large for the linear analysis to remain valid. However, non-linear similarity solutions to

simplified momentum equations can predict the subsequent thinning of the filament that is

formed between the two beads. In the second regime, the capillary pressure is dominantly

resisted by the inertia of the accelerating fluid elements, resulting in an evolution of the

minimal radius Rm when approaching the breakup time tp that is described by the inviscid

similarity solution [16–18]:
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Rm = 0.64

(

γ

ρ

)1/3

(tp − t)2/3 . (4)

The rapid decrease of the filament radius locally induces large strain rates that stretch

the polymer molecules in the thread. As a result, the elastic stresses eventually grow large

enough to dominate in the third regime the thinning dynamics and an exponential thinning

of the jet in time is observed. This elasto-capillary regime continues until the polymer chains

reach in a fourth regime their finite extensibility limit and the elastic forces cease to grow,

which results in a fast breakup [19].

Monitoring this third (exponential) thinning regime of a liquid filament offers a convenient

way for measuring sub-micron relaxation times in extension. The most popular device to

measure these extensional properties in polymer solutions is currently the Capillary Breakup

Extensional Rheometer (CaBER, Thermo Scientific) that monitors the thinning of a liquid

filament that connects two static circular endplates. For this configuration an analysis of

this third regime bridge has shown that the filament radius decreases indeed exponentially

in time [20–22] as

Rm =

(

GR4
0

2γ

)1/3

e−t/3λ, (5)

with a distinct time scale of 3 times the extensional relaxation time λ of a viscoelastic

solution in this so-called elasto-capillary (EC) balance regime, which allowed in the past to

conveniently determine λ for a broad variety of (polymeric) fluids [23–28].

The CaBER’s detection limit is, however, only 1 ms for low viscous fluids [29]. This

restriction is induced by the initial stretching step to create the filament that shifts the po-

sition of the narrowest part of the filament away from the position of the laser micrometer.

Different studies [14, 30–33] have worked on improving the detection limit of these capil-

lary thinning experiments to λ = O(100 µs) by monitoring the breakup with a high-speed

camera and by optimising the initial stretching distance and velocity. Still, considering

that even a limited amount of viscoelasticity has a profound impact on, for instance, the

drop-on-demand inkjet printing process [10], it is crucial to have reliable methods to push

beyond this limit in order to measure faster relaxation times.
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Unlike the filament thinning setup, a continuous jet does not require an initial axial

deformation and it should therefore be a more appropriate experimental configuration for

measuring relaxation times in the microsecond range. A jetting rheometer was originally

proposed by Schummer and Tebel [6], who perturbed the jet at set frequencies and captured

the thinning behaviour with high-speed photography. Although the theory on the non-

linear behaviour of viscoelastic jets was in its infancy, the extensional behaviour of polymer

solutions could be compared by determining the evolution of the apparent extensional viscos-

ity. In the following decades, the characteristic ’beads-on-a-string’ structure was simulated

and the exponential necking of the ligament connecting the beads was linked to material

parameters with various non-linear constitutive models [20, 21]. These results were first ap-

plied to extract a relaxation time with a free jetting rheometer by Christanti and Walker [34].

Recently, McKinley and co-workers [35, 36] introduced the Rayleigh Ohnesorge Jetting

Extensional Rheometer (ROJER) as a new technique to specifically probe the extensional

behaviour of weak viscoelastic liquids. In this setup, the cylindrical jet is excited by a

piezo-actuator to create a controlled disturbance and the thinning dynamics are visualised

with stroboscopic imaging. By selecting a wavenumber that is larger than the most unstable

one, the formation of secondary beads between the large droplets is suppressed, resulting in

a more precise measurement of the filament radius [37]. Relaxation times down to values as

small as 60 µs have been determined with this setup by fitting the 3λ timescale of eq. (5)

to the exponential decrease of the radius [36, 38].

However, the use of eq. (5) to extract the relaxation time is questionable in light of the

findings of a recent study by Clasen et al. that focussed on the dripping to jetting transition

regime at We ≈ 1 of weakly elastic solutions of dilute high molecular weight polymers [39].

While for dripping (We ≪ 1) the timescale 3λ has been confirmed [18], with increasing

velocity and We ≥ 1 eventually a jet develops with a beads-on-a-string morphology where

the beads are swallowed by a large terminal drop, which periodically grows and pinches off

[39]. Under these conditions, where the elasto-capillary balance is yet to be established, the

thread between the beads should theoretically thin at a different rate, Rm ∼ exp(−t/2λ),

and experimentally observed radii appear to follow this new scaling [39].
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Naturally, the question arises whether this new time scale of 2λ describes other jetting

experiments as the ROJER technique or if the so far also for jetting experiments employed

time scale of 3λ [34, 36, 37, 40] remains correct at higher jet velocitiesWe ≫ 1. Quantitative

experiments of viscoelastic fluids are scarce [2] and the only direct comparison of relaxation

times obtained with jetting and regular capillary thinning experiments on the same fluid

that has recently been reported by Harlen and co-workers [41]. A reason for this scarcity of

experimental data is that the two experiments are probing very different time scales. Despite

the fact that jetting rheometry is a suitable measurement technique for weakly viscoelastic

liquids, for increasing elasticity the jet quickly becomes too long for resolving the filament

radius over the complete exponential thinning regime. This problem does not arise for static

thinning filaments in CaBER type devices that are thus suitable for the detection of longer

relaxation times. On the other hand, CaBER devices reach their limits for the investigation

of short relaxation times due to a fast filament breakup, that is, however, easily captured in

a jetting experiment.

A direct and quantitative comparison of the ROJER and CaBER technique to probe the

applicable relaxation time scaling laws (which is the aim of this paper) requires the selection

of model fluids that exhibit relaxation times that are located near the lower detection bound-

ary of the capillary thinning device. Such a set of model polymer solutions is introduced in

Section II as well as the employed experimental techniques. The experimental observations

of the static capillary thinning and jetting experiments are presented in Section III and dis-

cussed in Section IV, utilizing a numerical and analytical analysis of the filament thinning

to demonstrate that there is indeed a difference in the thinning rates in the exponential

thinning regime that needs be taken into account in order to extract the correct relaxation

time from a ROJER experiment.

II. MATERIALS AND METHODS

A. Samples

The model fluids consist of a series of dilute solutions of polyethylene oxide (PEO, Sigma

Aldrich, Bornem, Belgium) with a weight average molecular weight Mw of 106 g/mol in

water. A first set of solutions with three different weight concentrations c of 0.05, 0.075
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and 0.1 wt% are prepared by allowing the polymer to dissolve in distilled water on a rolling

bench for 24 hours. The samples are shielded from light and all experiments are performed

within 72 hours after preparation to minimise degradation of the polymer molecules. The

relevant physical and rheological parameters of this first set of model fluids at a temperature

of 22◦C are summarised in Table I. The static interfacial tension γ is measured using a Pt/Ir

Wilhelmy plate connected to an electrobalance (KSV Instruments, Helsinki, Finland). The

addition of PEO causes a decrease of the surface tension to a value of 62.4 mN/m, which

is independent of the polymer concentration. The shear viscosity η is measured with an

Ubbelohde viscometer with a capillary with a diameter of 0.53 mm (Schott Instruments)

and the same capillary was used to determine the intrinsic viscosity [η] of the polymer. The

value of [η] was found by extrapolating a linear fit of 6 data points of a concentration series

of aqueous PEO solutions with relative viscosities ηr between 1.25 and 2.5. The intrinsic

viscosity is used to evaluate the critical overlap concentration c∗ of the polymer coils with

the expression provided by Graessley [42]: c∗ = 0.77/[η]. The c∗ values in Table I are all in

the dilute regime, so that their viscoelastic properties are dominated by the hydrodynamic

interactions of the isolated polymer coils and the solvent. For dilute solutions the elastic

modulus G is only a function of the number density of the polymer chains in solution

n = cNA/Mw:

G = nkBT =
cNAkBT

Mw

, (6)

where NA is the Avogadro number, kB is the Boltzmann constant and T is the absolute

temperature [43]. The finite extensibility parameter L, representing the ratio of a fully

extended polymer coil to its equilibrium length, can be described in terms of molecular

parameters as [30]:

L =
√
3

(

j sin2 (θb/2)Mw

C∞Mu

)1−ν

, (7)

where θb is the average bond angle in the monomer, j is the number of bonds of a monomer

of molar mass Mu, and C∞ is the characteristic ratio for a given polymer-solvent system.

The values for PEO are θb = 109.4◦ (for which the C-C bond angle was taken), j = 3,

Mu = 44 g/mol, and C∞ = 4.1 [44].

To extend the results obtained with the model fluids to different molecular weights and

solvent viscosities, a second series of solutions is used to quantitively compare CaBER and
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jetting experiments in which the jet is excited by a piezo-actuator for the higher viscous

solutions. The samples consist of dilute solutions of PEO with average molecular weights of

3× 105, 6× 105,and 106 g/mol in water-glycerol solutions, with 25 and 40 wt% glycerol con-

tents respectively. According to the evaluated c∗, all solutions are in the diluted regime and

the reduced concentrations vary between 0.007 and 0.33. Shear viscosities are determined

with a stress-controlled rheometer (AR-G2, TA Instruments) and a double-wall Couette ge-

ometry. The static surface tension is measured using the pendant drop method (CAM 200,

KSV Instruments). The relevant physical properties of these solutions are summarised in

Table IV.

B. Capillary breakup experiments

The necking of a single liquid bridge is monitored with the CaBER-1 extensional rheome-

ter (Thermo Haake GmbH, Karlsruhe, Germany).The experiments are executed at an am-

bient temperature of 22◦C with circular disks of radius R0 = 2 mm and with an initial

gap distance of L0 = 2 mm. These small disks are chosen to reduce gravitational sagging.

Gravitational effects lead to a weak axial flow, such that more than half of the initial sample

volume is found below the mid-plane. Since the analysis of the filament thinning always

presumes an axial symmetry, this drainage should be minimised. For the CaBER exper-

iment the Eötvös or Bond number Eo = Bo = ρgR0L0/γ, which expresses the ratio of

gravitational to capillary forces, has an initial value of Bo ≈ 1 for the given dimensions.

During the thinning process, the radius filament radius and thus the local Bond number

will decrease, so the filament is eventually only drained by capillary forces [45]. The fluid

samples are carefully loaded between the plates with a syringe to avoid air bubbles in the

fluid.

The unstable liquid bridge is created by stretching in a linear motion over a timespan

of 50 ms. The initial gap is kept fixed at L0 = R0 = 2 mm, and the final gap height

equals L1 = 5 mm, which is only slightly above the upper stability limit L1 = 2.25R0 of a

liquid cylinder [46]. This small stretch step creates very short filaments with an inherently

high axial curvature, so that initially the self-similar scaling laws do not apply, as they are

based on a slenderness approximation [30]. As the filament gets thinner, it evolves to a

slender shape and the extracted radii can eventually be used to determine the extensional
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FIG. 2. Schematic image of the experimental setup for the jetting tests.

flow properties from the appropriate similarity solution.

The evolution of the minimal filament radius Rm is not monitored with the laser mi-

crometer of the CaBER. The laser micrometer only captures the mid-point radius, which is

not necessarily the minimal radius for low viscous, complex fluid threads [29]. Instead the

thinning dynamics are determined with a high-speed camera (Fastcam SA2, Photron, USA)

to better capture the heterogeneous nature of the filament near breakup. The camera is

connected to a tube lens system equipped with 5x microscopic objectives (Olympus, Japan)

to obtain high resolution images (1.9 µm/pixel). Illumination is provided with a fiber optic

illuminator Fiber-Lite DC-950 (Dolan-Jenner Industries, Boxborough, MA, USA) and a 50

mm condenser lens. Images are taken at a rate of 3000 fps with a shutter time of 10 µs and

are analysed with the self-written, Matlab-based image processing algorithm EdgeHog [31].

C. Jetting experiments

Figure 2 shows the experimental setup used to study jet breakup of a polymer solution.

A syringe containing 50 ml of the sample fluids is placed in a syringe pump (Harvard

Apparatus, Holliston, MA, USA) to deliver fluid at a constant flow rate, and is connected

with a flexible tube to a nozzle (Nordson EFD precision tips). In a first set of jetting
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experiments with the model fluids, two different nozzles with diameters of 0.15 mm and 0.25

mm are used throughout the experiments and the most unstable perturbation is allowed to

grow naturally on the jet surface. For the second set of experiments with higher viscous

water-glycerol solutions, a 0.20 mm nozzle clamped against a piezoelectric stack actuator

(Pst 150, APC International) is used in order to force a controlled disturbance on the jet.

Frequency, shape and amplitude of the periodic perturbation are specified through a function

generator (1250 Frequency Response Analyser, Schlumberger) and a voltage amplifier (S-

100 MK II, Thomann). The thinning dynamics of the jet are visualised with a high-speed

camera (Fastcam SA-2, Photron, San Diego, CA, USA) connected to one of two employed

lens systems. The first lens system tube lens / microscopic objective assembly is the same as

employed for the CaBER in order directly compare variations in the filament shape evolution

between the two experiments. Consequently, the field of view of this lens is limited to 1.46 x

2.37 mm and the jet was captured with multiple images. For this the nozzle is mounted on a

two-dimensional linear stage driven by a micrometer screw, allowing a precise displacement

of 50 mm in the vertical direction. The second lens system is a lower magnification 55

mm focal length telecentric lens (TEC-M55 Computar, CBC, Tokyo, Japan) with a spatial

resolution of 9.5 µm/pixel and a maximum field of view of 15 x 15 mm2 and used to to

capture the breakup mechanism of jets with higher velocities.

All experiments are executed according to the same protocol: first a stable flow is ensured

by waiting 90 s and the jet is subsequently captured by taking a series of pictures of its

different sections. The images are taken at rates ranging from 3000 to 3600 frames/s with a

shutter time of 2.7 µs. A typical image of a jet thinning without application of an external

frequency and thus asperities developing at the natural frequency is shown in Figure 1a. A

slight non-equidistance between the beads arises from ambient nose. Figure 1b depicts then

a jet excited with its natural frequency and equidistant beads.

The image processing is carried out with a self-written Matlab-based algorithm. The

edges of the jet are detected with a robust Canny edge detector [47] and the local jet radius

is used to determine the position of the instabilities in each frame. For each instability, the

minimal radius Rm is determined with sub-pixel accuracy using a modified Marr-Hildreth

algorithm [31, 48]. Because the jet velocity can be determined from the flow rate and the

initial jet radius, the minimal radii of the same instability can be tracked over the subse-

quent images, so that the minimum radius is directly linked to a location on the jet, ususally
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TABLE I. Physical and rheological properties of the model fluids from the CaBER experiments at

a temperature of 22◦C. The relaxation time λ is obtained from fitting eq. 5 to the experimental

data of Fig. 3

c/(wt%) [η]/(ml/g) c/c∗ η/(mPa.s) ρ/(kg/m3) γ/(mN/m) G/(Pa) λ/(ms) Oh De L

0.05 621 0.40 1.31 998 62.4 1.08 0.97± 0.03 0.0052 0.24 121

0.075 621 0.60 1.51 998 62.4 1.62 1.36± 0.05 0.0061 0.34 121

0.1 621 0.80 1.72 998 62.4 2.16 1.78± 0.11 0.0069 0.45 121

expressed as a distance from the nozzle. The temporal evolution of each single instability

is thus separately obtained. The presented data extracted from each single instability evo-

lution is then averaged over at least 10 single experiments for each flow rate. It should be

noted that this procedure is different from the ROJER experiments performed by McKinley

and coworkers [36, 40], where they used a stroboscopic technique with a slight difference

between a multiple of the strobing frequency and the excitation frequency of the jet to ob-

serve the instabilities and their Rm at slightly varying positions (distances from the needle).

Their approach is, however, not following the same instability along the jet as the strobing

frequency is much lower than the excitation frequency. Our approach on the other hand

allows to observe also an unexcited jet, as slight variations in the natural frequency of in-

stability development, as observed for example in Figure 6a, do not matter when tracing a

single instability over multiple images.

III. EXPERIMENTAL RESULTS

A. Capillary breakup experiments

The extensional flow properties of the model fluids are first characterised with CaBER

experiments. The large spatial and temporal resolution of the setup allows an accurate

determination of the characteristic relaxation time of the fluids, which is used in the next

section to evaluate the time scales during the jet breakup. Figure 3 shows the evolution of

the minimal radius of the filament during the experiment for the three solutions of PEO. The

initial type of decrease of the filament radius is predicted by the global Ohnesorge numbers
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FIG. 3. Temporal evolution of the minimal filament radius during capillary breakup experiments

of three polymer solutions. The dashed line indicates a power law fit of the inertia-capillary regime

(eq. (4)) and the straight lines represent an exponential fit used to extract the dominant relaxation

time λ (eq. (5)).

in Table I, which are calculated using the estimated radius at the cessation of stretching

that was determined by a lubrication solution for a Newtonian fluid

Rm = R0

(

L1

L0

)−3/4

, (8)

with L0 and L1 the initial and the final gap respectively [49]. By comparing the char-

acteristic thinning velocities of the viscosity and inertia dominated regimes, the boundary

between the two regimes is located at a critical value Oh∗ = 0.2077 [30]. The values for the

model solutions in Table I are far below this critical value, so the capillary pressure is initially

only resisted by fluid inertia. The fluid continues to accelerate and appears to approach a

finite-time singularity at the pinching time tp, as described by eq. (4) and represented by the

dashed line in Figure 3. The increasing strain rate in the fluid neck is eventually high enough

to stretch the polymers and to generate a build-up of elastic stresses that start to dominate

the fluid inertia and suppress the singularity. This transition marks the onset of the elasto-

capillary (EC) regime where the filament radius decreases exponentially in time following

eq. (5) resulting in a constant strain rate, which is inversely proportional to the longest re-

laxation time λ. In order to better distinguish the differences in elasto-capillary regime, the
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(a) 

(c) 

(b) 

0 3 6 9 12 15 -3 

FIG. 4. Capillary thinning and breakup of a filament in a CaBER setup for aqueous PEO solutions

of (a) 0.05 %, (b) 0.075 % and (c) 0.1 %. The shifted time t − tp is displayed and the scale bar

represents a distance of 200 µm. The dashed line indicates the resolution limit of the lens.

curves in Figure 3 are shifted by tp along the time axis, so that the initial inertia-capillary

regimes collapse for the three fluids. For lower polymer concentrations, the transition oc-

curs at smaller radii, suggesting that a higher strain is necessary to reach sufficiently high

elastic stresses. The characteristic relaxation time λ of each solution is extracted from the

thinning rate in the elasto-capillary regime using the 3λ time scale of eq. (5). The relax-

ation time increases with polymer concentration and the values are listed with the standard

deviation (obtained from at least 10 different experiments for each concentration) in Table I.

The onset of the EC regime can also be seen in the shape of the filament in Figure 4.

The asymmetric shape that characterises inertia resisted thinning disappears at the start

of the EC regime and a cylindrically shaped filament emerges. The shape remains axially
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uniform for the two highest concentrations, whereas the 0.05 % solution shows significant

necking at both the top and the bottom droplet, generating a large bead in the middle of

the filament. Criteria for the occurrence of a central satellite bead in viscoelastic filaments

were introduced by Wagner et al. [50], based on the asymmetry induced by the selfsimi-

larity of the pinching process. Small differences in radius and hence in capillary pressure

between the short filaments above and below this central bead impel the bead to coalesce

with one of the two fluid reservoirs. The formation of a central bead was also observed

by Tirtaatmadja et al. [18] during dripping experiments on a series of dilute solutions of

PEO with varying molecular weight in glycerol-water mixtures. The bead disappeared for

the higher molecular weight samples, which exhibited higher relaxation times λ and thus

higher Deborah numbers. Bhat et al. [15] found a comparable trend in simulations of

the breakup of viscoelastic filaments. Satellite beads only appeared in the case of sufficient

inertia (Oh < 1) and moderate elasticity (De < 0.3). In fluids with a comparable Ohnesorge

number as our model fluids, bead formation is more pronounced for lower Deborah numbers,

which agrees with our observations. Moreover, the presence of the bead does not appear

to affect the thinning dynamics, as no deviations from the exponential decay are observed

in Figure 3. The minimal radius can be tracked for all solutions until a value of 5 µm. At

this point the filament morphology changes dramatically, forming a characteristic blistering

structure as described by Oliveira et al. [51] and Sattler et al. [52], caused by a relaxation

of the fully stressed state into a partially relaxed state of the filament before pinching off.

B. Jetting experiments

Following the study of the CaBER breakup behaviour of the three polymer solutions and

the characterisation of the relaxation times in the elasto-capillary balance, jetting flows of

the model fluids are examined in three sets of experiments. In a first set, the three PEO

solutions are emitted at approximately the same jet velocity (We ≈ 8). Despite the fact

that the same flow rate is chosen for all solutions, small differences in the initial radius R0

of the jet after exiting the nozzle cause slight variations in the actual jet velocity. A higher

polymer concentration increases the initial jet radius and hence lowers the actual jet velocity

expressed by the Weber number (see Table II). As shown in Figure 5, all fluids exhibit a

16



FIG. 5. Development of the minimal filament radius during the exponential thinning regime in a

regular CaBER capillary thinning experiments, and in jetting experiments at We ≈ 8 and from a

nozzle of 0.15 mm diameter for three PEO solutions. The evolution of the radius is presented in

the same way as Figure 3. In the inserted graph, the radius is rescaled with the radius REC at

the onset of an exponential thinning, and the time is rescaled with the relaxation time λ obtained

with the CaBER, to emphasise the different time scales in both experiments.

similar thinning behaviour as in the regular CaBER capillary thinning experiments. Only

the initial radius of the filament is notably smaller, because the jet originates from a nozzle

with an inner radius Rn = 75 µm. Similar to the CaBER experiments, the jetting tests

exhibit an exponential thinning of the radius at intermediate times:

Rm ∼ e−t/θ. (9)

The more concentrated solutions thin at a lower rate, revealing an increase of the time

scale θ in the exponential thinning regime. However, it is striking that the minimal jet

radius Rm decreases faster for the same sample in comparison to the CaBER experiments.

The different thinning rate in the exponential regime of both experiments is emphasised

in the insert of Figure 5 where the time is rescaled with the relaxation time λ that was

obtained during the CaBER experiments, and the radius with the radius REC at the onset
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TABLE II. Overview of the parameters of the jetting experiments with the three PEO solutions.

c/(wt%) Q̇/(ml/min) R0/(µm) We θ/(ms) θ/λ

0.05 3.17 80 8.9 2.0± 0.1 2.1± 0.1

0.075 3.17 82 8.3 2.7± 0.1 2.0± 0.1

0.10 3.17 85 7.2 3.7± 0.1 2.1± 0.2

of an exponential thinning. Using these scalings the filament radii of the three solutions

measured using the CaBER devise exhibit the same slope of −1/3 log(e) in the inset.

In contrast, the jetting experiments display a steeper slope, which is approximately the

same for all samples. This observation demonstrates that the time scale θ in the exponential

regime of the jetting experiments is proportional to the relaxation time λ. To accurately

determine this scale, at least ten instabilities are followed in time for each sample to obtain

an average value of θ, which is listed with the standard deviation in Table II. The time scale

is determined with a reduced accuracy of only two significant digits because the fits of the

exponential decay are less precise than for the CaBER experiments. This lower precision is

caused by the lower resolution of the telecentric lens that is used for the jetting experiments.

The ratio of the time scale with the relaxation time θ/λ is determined for each sample and

an approximation of the standard deviation of the ratio of two normally distributed variables

is included in Table II [53, 54]. A time scale θ ≈ 2λ is observed during the jetting of all

samples. As a result, the reference slope of −1/2 log(e) agrees quantitatively with the decay

measured using the ROJER.

Further jetting experiments are conducted to investigate the effect of the Weber number.

The 0.1% PEO solution is examined for a range of Weber numbers, and the evolution of the

minimal filament radius Rm is shown as a function of the distance from the needle in Figure

6b. The lowest flow rate (We = 1.3) was chosen close to the dripping-jetting transition and

some of the beads still appear to coalesce just before breakup at this flow rate (see Figure

6a). This experiment is thus performed at the boundary of the gobbling regime for which a

thinning with a time scale of 2λ was initially proposed [39].
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FIG. 6. Thinning dynamics of the 0.1 % PEO solution jetted from a nozzle of 0.15 mm diameter

for different Weber numbers. (a) Images of the different jets with the Weber number in the bottom

corner. (b) Development of Rm of single filament instabilities for different Weber numbers, each

followed over the whole field of view of 15 mm and represented as a function of the distance from

the needle. For this the imaging system was moved along the jet to focus on the exponential

thinning regime before filament breakup.
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The evolution of the minimal radius Rm is followed during the exponential thinnning

regime for all flow rates using the optical setup that is able to capture a section of the jet

with a length of roughly 15 mm. However, for small Weber numbers this field of view is

sufficient to monitor the complete non-linear thinning dynamics of the jet, including the

inertia resisted regime. A single frame can capture a segment of the jet from origin of the

capillary instability until the late stages of the exponential thinning regime. As the Weber

number increases, the initial straight segment lengthens, which is shown in the images as

well as in the position of the onset of the he exponential thinning in Figure 6b. Additionally,

the length of the exponential thinning regime increases due to the higher jet velocity and

the jet becomes too long to track the complete thinning of an instability for intermediate

flow rates (We > 5).

Further increasing the flow rate results in the acquisition of even fewer data points and

eventually the exponential regime can only be partially captured in a single image for high

flow rates (We > 15). Since the diameter of larger filaments can be determined more

accurately, we focus on the beginning of the exponential thinning regime for these flow

rates. Jetting experiments could be carried out until the Weber number reaches a value

of 70. At this highest jet velocity, the instability can only be followed for seven consec-

utive frames, which is the lower boundary for reliably fitting the exponential thinning regime.

The same data set of jetting experiments is presented in Figure 7 as a function of time

after exiting the nozzle, rescaled with the relaxation time λ from the CaBER measurements.

All jetting experiments exhibit the same thinning behaviour in the exponential regime.

The average slope of the decreasing radii in the exponential thinning regime agrees with

the reference slope of −1/2 log(e) for all We (see Table IV). Note that only part of the

exponential thinning regime can be observed for the two highest flow rates, yielding a larger

standard deviation.

We now investigate the effect of nozzle radius. The initial jet radius R0 is larger than

the nozzle radius for all our jetting experiments due to the extrudate swell effect. The swell

is more pronounced for more concentrated samples since these have longer relaxation times

and thus display stronger elastic behaviour. The swelling further depends on the needle size
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FIG. 7. Thinning dynamics of the 0.1 % PEO solution for different Weber numbers. The data

points in Figure 6b are shown as a function of the ratio of time to the relaxation time λ obtained

with the CaBER. The radii appear to collapse in the exponential thinning regime for different

Weber numbers and the slope in this regime corresponds to the reference slope, representing a

thinning with a time scale of 2λ.

FIG. 8. Comparison of the thinning dynamics of a 0.1 % PEO jet with two different nozzles at

We ≈ 3.

21



TABLE III. Overview of the jetting experiments with the 0.1 % aqueous PEO solution from a

nozzle of 0.15 mm diameter. The jet velocity is varied from a value near the dripping-jetting

transition (We = 1.3) to the experimental limit of the setup (We = 70).

Q̇/(ml/min) R0/(µm) We θ/(ms) θ/λ

1.60 95 1.3 1.8± 0.1 2.0± 0.2

1.90 93 2.0 1.8± 0.1 2.0± 0.2

2.22 91 2.9 1.9± 0.2 2.2± 0.2

2.54 89 4.0 1.8± 0.1 2.1± 0.2

2.85 88 5.3 1.8± 0.1 2.1± 0.2

3.17 85 7.2 1.8± 0.1 2.1± 0.2

3.70 83 10 1.9± 0.1 2.1± 0.2

4.23 81 15 1.8± 0.1 2.1± 0.2

5.29 79 25 1.9± 0.1 2.1± 0.2

6.34 78 38 2.0± 0.2 2.3± 0.3

8.46 77 70 2.0± 0.2 2.2± 0.3

because the shear rate near the needle wall rapidly increases as the needle radius decreases.

Figure 8 compares the evolution of the minimal filament radius Rm for jets of the same

0.1 % PEO solution exiting from two different needles. The initial jet radius R0 is clearly

different for both experiments and appears to scale with the nozzle radius Rn. Additionally,

the larger nozzle causes the IC regime as well as the exponential thinning to start at a larger

radius. The time scale θ of the exponential decrease of the jet radius is, however, identical

for both nozzle sizes with θ ≈ 2λ.

Lastly, the observation of the thinning timescale θ ≈ 2λ for jets is verified for a range

of polymer molecular weights, concentrations, and solvent viscosities. These jetting ex-

periments are performed on solutions of PEO with Mw = 3 × 105 to 1 × 106 g/mol) in

water-glycerol glycerol mixtures of different compositions and concentration from 0.001 to

0.1 wt % (exact compositions and resulting viscosities are given in Table IV), while ap-

plying a periodic disturbance to be able to measure the higher viscosity solutions. The

imposed frequency is always chosen approximately 100-200 Hz higher than the frequency
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FIG. 9. Scaled relaxation times λ/λZimm as function of reduced concentration c/c∗ for different

PEO molecular weights and solvent viscosities as detailed in Table IV. For jetting experiments,

the Weber numbers vary between 15 and 25 and the imposed frequency is in the range 3 to 5 kHz.

The jetting relaxation times are determined with eq. (9) and θ = 2λ whereas the λ obtained with

the CaBER use θ = 3λ.

corresponding to the most unstable wavelength, calculated from the dispersion relation for

viscoelastic jets derived by [4]. A typical image of such a jet is given in Fig. 1b. The

relaxation times are calculated from the jetting experiments using the new time scale in eq.

(9) of θ = 2λ. The results are presented in Fig. 9, scaled for convenience with the Zimm

time λZimm = 0.463ηS [η]Mw

NAkbT
to compare different molecular weights and solvent viscosities on

the same master curve as function of the reduced concentration, in agreement with the cor-

relation λ
λZimm

∼
(

c
c∗

)m
initially proposed by [18]. Fig. 9 shows the scaled relaxation times

for both jetting and for separately conducted CaBER experiments (using θ = 3λ) on the

same solutions. The experimental data shows a very good agreement, evidence that the new

time scale for jetting experiments of θ = 2λ is also recovered for different molecular weights

up Mw = 106 to and different solvent viscosities, as well as when a controlled disturbance is

applied.
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TABLE IV. Composition of the solutions for jetting experiments with different molecular weight

of PEO, concentrations and solvent viscosities used in Fig. 9 .

Mw/(kg/mol) c/(wt%) c/c* water/glycerol ratio η / mPa s ρ/(kg/m3) γ / (mN/m)

300 0.100 0.340 75/25 2.30 1059.2 62.0

600 0.053 0.010 75/25 2.12 1059.2 62.5

600 0.010 0.053 60/40 3.61 1098.8 63.4

600 0.025 0.133 60/40 3.60 1098.8 63.4

1000 0.005 0.037 75/25 1.99 1059.2 62.5

1000 0.001 0.007 60/40 3.57 1098.8 63.3

1000 0.005 0.037 60/40 3.57 1098.8 63.4

To summarise, we have detected a significant difference between the thinning rates of

regular capillary breakup and jetting experiments. Contrary to the generally employed

assumption that the final thinning dynamics of these free-surface flows are similar, the

experiments presented in this section clearly demonstrate that a weak viscoelastic jet (as

utilized in a ROJER experiment) breaks up faster than a capillary bridge of the same liquid

in a CaBER experiment. The difference is mainly situated in the exponential thinning

regime, where in the ROJER experiment a different time scale for the exponential decrease

of the filament radius is observed:

Rm ∼ exp(−t/2λ). (10)

This new time scale θ = 2λ was already suggested for capillary jets near the the dripping-

jetting transition (We ≈ 1) [39], but it is here demonstrated that this scaling is valid for

low to moderate Weber numbers up to We = 70.

IV. DISCUSSION

To determine the origin of this difference in breakup dynamics, an analytical and numer-

ical analysis of the thinning filament is conducted for both setups. We start our analysis

from a simple zero-dimensional force balance that is introduced in the following section.
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A. Stress balance for a viscoelastic filament

We start our analysis from the Navier-Stokes equation for an incompressible fluid by

assuming that the filament or jet is a slender axisymmetric volume. The flow in the slender

filament is then described with the full leading order momentum balance, taking the full

description of the curvature into account, as introduced by Eggers and Dupont [55], including

an inertial term as well as a polymeric stress contribution [22]:

∂

∂τ

(

h2v̄
)

+
∂

∂z̄

(

h2v̄2
)

=
∂

∂z̄

(

h2

(

K + 3Ohs
∂v̄

∂z̄
+ ∆̄σp +

ḣ2

2

))

− h2Bo =
1

π

∂F̄z

∂z̄
, (11)

To identify the relative importance of the different terms in this balance, the parame-

ters have been non-dimensionalised by introducing the dimensionless radius h = R/R0 (and

the dimensionless derivative thereof ḣ, utilizing the dimensionless time τ = t/tR, where

tR =
√

ρR3
0/γ is the Rayleigh time scale), the dimensionless velocity v̄ = vtR/R0 and axial

coordinate z̄ = z/R0, the dimensionless axial force F̄z = Fz/(γR0), and the dimensionless

polymeric normal stress difference ∆σ̄p = ∆σpR0/γ, where ∆σp = σp,zz − σp,rr. The Ohne-

sorge number Ohs is based on eq. (1) but uses the solvent viscosity and is related to the

other dimensionless groups as

Ohs =
EcDe

ηsp
(12)

with ηsp = (η − ηs)/ηs. K is the curvature term that is defined as [22, 56, 57]

K =
1

h
√

1 + (∂h/∂z̄)2
+

∂2h/∂z̄2

(1 + (∂h/∂z̄)2)3/2
. (13)

Since we focus on the elasticity controlled thinning regime, in which the filament forms a

uniform cylindrical column with a constant radius R, the mean curvature reduces here to

K = 1/h. Full curvature can be included in the following analysis and does not change the

physical picture. Gravitational acceleration is negligible for the small dimensions of the jet

considered here, which can be easily determined from the Bond number Bo = ρgR0
2/γ, so

that we drop this term on the right hand side of eq. (11) for the following analysis.

The left hand side of eq. (11) is the material derivate of a Lagrangian element of the fluid

filament, whereas the term in brackets on the right hand side represents the axial force Fz

acting on a cross-section of the filament. A simple integration, dropping the inertial terms

on the left hand side, results in the stress balance:
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F̄z

πh2
=

1

h
+

ḣ2

2
− 6Ohs

ḣ

h
+∆σ̄p. (14)

In addition to the polymeric stress contribution ∆σ̄p [22], the expression contains also an

inertial contribution ḣ2/2 that arises from the moving boundary of the free surface [18, 45].

This can be understood by recognising that in the actual axial force of eq. (11)

F̄z

πh2
= −P̄ + 2Ohs

∂v̄

∂z̄
+ σ̄p,zz +

2

h
(15)

the non-dimensional isotropic pressure P̄ = PR0/γ can be replaced by the radial components

of the stress boundary condition at the free surface

−P̄ + 2Ohs
∂v̄

∂r̄
+ σ̄p,rr = −1

h
+

ḣ2

2
(16)

The total axial force in eq. (14) is thus composed of the bulk contributions of isotropic

pressure and axial viscous and polymeric contributions, as well as a line tension term 2/h.

It is the radial boundary condition that contains, in addition to the surface pressure 1/h, the

inertial term ḣ2/2 arising from the movement of the boundary, as introduced in a similar

manner by Tirtaatmadja et al. [18]. With the general relation of the axial and radial

velocities to the extensional deformation rate for an incompressible cylindrical fluid filament

of ∂v̄
∂z̄

= −2∂v̄
∂r̄

= −2ḣ/h, inserting eq. (16) into (15) directly results in in eq. (14) with the

stress difference ∆σ̄p = σ̄p,zz − σ̄p,rr, the characteristic Trouton ratio Tr = 3 that appears

in the front factor 6 of the viscous term, and the radial thinning rates ǫ̇τ = −2ḣ/h. The

combination of the line tension 2/h of eq. (15) and the surface pressure −1/h of eq. (16)

results in the sign of the single term 1/h in eq. (14) as explained in [22].

In order to describe the evolution of the elastic stress term σ̄p,zz in eq. (14), Entov and

Hinch [21] employed an elastic dumbbell constitutive model (FENE-P) to express the elastic

nature of the dilute polymer solution [58]. The FENE model assumes that the polymer

solution consists of a Newtonian solvent containing a dilute suspension of polymer chains

that are modelled as non-linear elastic springs with a maximum extensibility L2. Entov and

Hinch [21] have used this model to demonstrate that only the slowest relaxation mode of

the entire molecule and the associated timescale is relevant in capillary breakup. We will

therefore consider only a single relaxation mode in the following. The elastic deformation

of the polymer coils is described with the conformation tensor A and the polymeric stress
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that is generated by deforming these dumbbells is expressed in tensorial form as

σp = G (ZA− I) . (17)

The parameter Z is the correction term accounting for the non-linearity and the finite

extensibility L of the dumbbell as

Z =
L2

L2 − tr(A)
(18)

with tr(A) the trace of the conformation tensor.

The elastic deformation of the polymer coils under flow is correlated to the creation of

polymeric stress by the microstructural evolution equation:

DA

Dt
−A∇v −∇vTA = −1

λ
(ZA− I) , (19)

that utilizes the upper-convective derivative to describe the confirmation changes in the

dumbbell. Due to the radial symmetry and the uniaxial extensional flow field, the tensorial

evolution equation (eq. (19)) reduces to a set of two differential equations, one for the axial

(Azz) and one for the radial (Arr) components:

Ȧzz = −4
ḣ

h
Azz −

1

De
(ZAzz − 1) (20)

Ȧrr = 2
ḣ

h
Arr −

1

De
(ZArr − 1). (21)

In these equations, the dotted symbols Ȧzz and Ȧrr represent the dimensionless time deriva-

tive of the respective polymer stretch, and the relaxation time is captured by the dimen-

sionless Deborah number of eq. (2).

Inserting the expression of eq. (17) for the polymeric normal stress difference ∆σp =

σp,zz −σp,rr in its dimensionless form into eq. (14) results in the following expression for the

stress balance :
F̄z

πh2
=

1

h
+

ḣ2

2
− 6Ohs

ḣ

h
+ EcZ(Azz − Arr). (22)

where the scaling of the elastic modulus of the dilute solution with the initial capillary

pressure returns again the dimensionless (global) elastocapillary number,

Ec = GR0/γ (23)

The dimensionless numbers for the 0.1% PEO model solution are listed in Table V for both

the CaBER and jetting experiments, where the latter values are calculated with R = 85 µm.
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TABLE V. Dimensionless numbers of the CaBER and jetting experiments for the 0.1 % PEO

solution.

R0/(µm) Ohs De Ec

CaBER 1000 0.0040 0.445 0.0029

Jetting 85 0.0137 18.0 0.0346

The microstructural evolution equations (20) and (21) coupled with the stress balance (22)

form a set of ODEs that can be solved to determine the evolution of the filament diameter

in the CaBER experiment.

An elegant analytical solution for the evolution equation itself has been presented by

Entov and Hinch [21], assuming that the axial stretch of the polymer chain is large (Azz ≫ 1

& Azz ≫ Arr). This assumption implies that only eq. (20) needs to be solved of the two in

order to describe the increase of elastic stresses. Furthermore, they assumed that during the

EC balance the deformation is still small compared to the maximal extension (Azz ≪ L2), so

that the finite extensibility does not play a role and Z ≈ 1. Both these assumptions refer in

principle to the phenomenological description of the polymer deformation state in the third

thinning regime in the discussion of Figure 1c. Under the assumption that the initial value

of the axial stretch equals one (A0
zz = 1), a solution for the polymeric stretch was derived as

Azz =
1

h4
exp

(

− τ

De

)

. (24)

Inserting this into eq. (22) (with the required assumptions that Azz ≫ Arr and Z ≈ 1) gives

then a simplified stress balance for the third thinning regime of Figure 1c

F̄z

πh2
=

1

h
+

ḣ2

2
− 6Ohs

ḣ

h
+

Ec

h4
exp

(

− τ

De

)

(25)

that will be used in the following to obtain analytical solutions for the thinning dynamics

of the CaBER or ROJER experiments in this regime.

B. Tensile force of a viscoelastic filament in CaBER vs ROJER type experiments

In order to determine the evolution of stresses and thinning dynamics of the filament

from the stress balance of eq. (14) (or (22) or (25)), the (unknown) axial tension Fz and its
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evolution needs to be determined. In the case of a uniform cylindrical viscous filament (so

dropping inertial terms and polymeric contributions when integrating eq. (11)), assuming

that the bulk stresses in eq. (14) are balanced by only the surface pressure, this axial tension

F̄z is equal to the line tension contribution 2πh or dimensional Fz = 2πγR and thus linearly

dependent on the filament radius R.

For a viscous filament generated by a CaBER experiment the filament is connected to two

fluid drops on the stationary end plates. These drops act as quasi-static reservoirs that soak

up the fluid drained into them from the thinning filament. They also diminish the no-slip

boundary condition at the end plates, which would otherwise induce a radial shear flow near

the ends of the radially-contracting fluid thread [59]. The curvature at the transition to the

droplets disturbs uniformity and adds an extra contribution to the axial tension (in addition

to the line tension), which can only be compensated in eq. (14) by a change of the extension

rate in the viscous term. McKinley et al. [45] showed that the observed thinning dynamics

of a viscous filament do indicate a linear relation of the axial tension to the minimal radius,

however, with a different front factor such that Fz = 2XπγRm. Furthermore, they showed

that their observed factor was close to the one theoretically predicted by Papageorgiou

[60] from a similarity analysis of the evolution of a viscous filament connected to spherical

enddrops, which gave X = 0.7127.

For a viscoelastic liquid (that incorporates the polymeric stress), Entov and Hinch [21]

assumed again a cylindrical filament but neglected the line tension term h/2 in eq. (15)

and consequently set the total axial tension in the jet to be equal to the bulk contribution,

which they assumed to vanish. While this gave the correct scaling of the filament thinning

dynamics, Clasen et al. [22] showed later that for a quantitative description of the filament

evolution the correct Fz needs to be evaluated. They solved the stress balance with an

asymptotical analysis in the centre of the thread and on the end drops, and a complete

expression for the tensile force is obtained with a similarity analysis in the corner region

where the filament is attached to the end drops. This analysis showed that the tensile force

in the filament for a CaBER experiment evolves as F̄z = 3πh or

Fz = 3πγRm, (26)

so that axial tension is also linearly related to the filament diameter in the viscoelastic

CaBER case, albeit again with a different front factor.
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FIG. 10. Control volumes of the viscoelastic jet. Dotted line: control volume with stationary

boundaries in the uniform part of the jet (1) and after the last connected drop (2). Dashed line:

control volume with boundaries moving with the velocity of the jet in the uniform part (1) and

the mid-filament point between two asperities forming on the jet (3).

Both the analysis of Entov and Hinch [21] as well as the one from Clasen et al. [22]

(and follow-up simulations by Bhat et al. [61] or Ardekani et al. [37]) that conclude in the

axial force of eq. (26) do not distinguish between a single liquid bridge and a continuous

jet. We have, however, shown different exponential thinning dynamics between these two

experimental setups in Section III, and will demonstrate in the following that this can be

explained by a difference in the axial force in the jetting case compared to the single liquid

bridge.

A different approach for acquiring an expression for the tensile force in a jet was already

suggested in the research on the gobbling phenomenon [39]. Following this, we cannot

evaluate the tensile force solely based on a single Lagrangian element, but have to consider

the entire jet.

The axial force in a jet can be estimated by integrating the one-dimensional momentum

equation (eq. (11)) over a control volume that is shown in Figure 10. One boundary of

the control volume is located at a stationary location right below the point where the jet is

attached to the nozzle, so in the stable section where the jet is still uniform (indicated as

(1)). The other boundary is positioned right after the the final droplet forming on the jet

(indicated as (2)). The integrated equation is given by

∂

∂τ

(
∫ z̄2

z̄1

(

h2v̄
)

dz̄

)

+ h2v̄2
∣

∣

∣

∣

z̄2

z̄1

= h2

(

K + 3Ohs
∂v̄

∂z̄
+ ∆̄σp +

ḣ2

2

)

∣

∣

∣

∣

z̄2

z̄1

=
F̄z

π

∣

∣

∣

∣

z̄2

z̄1

. (27)

By averaging this equation over a time interval that is substantially longer than the time

between two beads passing across any given cross-section of the jet, the first term on the
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left-hand side can be dropped. Moreover, following the approach of Clanet and Lasheras [62]

for describing the momentum loss in a jet, the time averaging implies that the convective

term can be rewritten in function of the flow rate Q̄ = v̄h2 through the jet into the control

volume at (1), and the detaching droplets leaving at (2)

h2v̄2
∣

∣

∣

∣

z̄2

z̄1

=
Q̄v̄

π
− Q̄v̄drop

π
. (28)

This change in momentum of the detaching droplets is balanced by the net force on the

control volume. As the connectivity between droplets at (2) is lost, the tension across the

boundary at (2) is zero, so that the that the force on the right-hand side of eq. (27) is just

F̄z

π

∣

∣

∣

∣

z̄2

z̄1

= h2

(

K + 3Ohs
∂v̄

∂z̄
+ ∆̄σp +

ḣ2

2

)

− 0. (29)

Since in this uniform section of the jet at (1) the inertial, viscous and elastic contribution

on the right-hand side of eq. (30) can be neglected, and since the straight jet shape implies

h2K = 1, it follows that the net force on the control volume and thus the tension in the jet

at (1) is
F̄z

π
= 1, (30)

or in dimensional form

Fz = πR0γ. (31)

The velocity of the jet within the control volume remains constant up to the last connected

drop. This can be experimentally observed from the constant jet diameter in the initial,

uniform part of the jet, as well as from the constant velocity of the Lagrangian asperities

that develop eventually into the droplets, and the minimum filament radius in-between.

Figure 11 shows exemplarily such a constant velocity of the asperities along the jet. It

is only the last connected drop that experiences a deceleration to v̄drop from the constant

tension in the remaining filament, up to the point where the connecting filament breaks. A

constant velocity of asperities/droplets along the jet, a well as a deceleration of only the

final droplet has also been observed by Clasen et al. [39] for lower Weber numbers and jet

velocities close to the jetting/dripping transition. In their case the low velocities caused the

final drop not only to be decelerated by the constant tension, but also to be reaccelerated

towards the nozzle, while still maintaining a constant velocity along the jet.
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FIG. 11. Control volumes of the viscoelastic jet. Dotted line: control volume with stationary

boundaries in the uniform part of the jet (1) and after the last connected drop (2). Dashed line:

control volume with boundaries moving with the velocity of the jet in the uniform part (1) and

the mid-filament point between two asperities forming on the jet (3).

This constant velocity of the jet and asperities allows to draw a second control volume

(dashed line in Figure 10) where the first boundary position (1) is the same as for the

previous case, but where the other boundary (indicated as (3) in Figure 10) is located at

a minimum between two droplets, and where both boundaries move now with the same

constant velocity of the Lagrangian fluid elements at (1) and (3). In this case since there

is no momentum in- or out-flux, the net force from eq. (27) on this control volume is zero.

Since this implies that the tensile forces at the boundaries (1) and (3) are balanced, and

since eq. (30) showed that the tensile force in the uniform part of the jet at (1) is constant,

the tensile force at the minimum (3) will be constant at any position of the minimum along

the jet, and equal to πR0γ.

32



C. Analytical solutions for the thinning dynamics in a CaBER type experiment

Inserting now for the CaBER case the force of eq. (26) in its dimensionless form F̄z = 3πh

into the stress balance of eq. (25)) gives

3

h
=

1

h
+

ḣ2

2
− 6Ohs

ḣ

h
+

Ec

h4
exp

(

− τ

De

)

. (32)

With the assumption that, once elastic contributions grow sufficiently large, the inertial

and viscous term can be neglected, the stress balance reduces to the elasto-capillary (EC)

balance:
2

h
=

Ec

h4
exp

(

− τ

De

)

. (33)

Solving this for the radius finally yields:

h =

(

Ec

2

)1/3

exp
(

− τ

3De

)

. (34)

This is the result that Clasen et al. [22] obtained, which is, apart from the prefactor of 2−1/3

(that arises when using the correct force of eq. (26)), equivalent to the original solution

of Entov and Hinch [21]. Furthermore, this is also equivalent to eq. (5) that was used to

process the CaBER experiments. According to this expression, the ligament radius will

only reach zero at an infinite time, since the finite extensibility of the polymer molecules is

not taken into account. Entering eq. (34) into eq. (24), the elastic stretch as well as the

polymeric stress appear to be growing unrestrictedly. However, when the axial stretch Azz

approaches the squared finite extensibility parameter L2, the non-linear correction term Z

will lead to an upper bound of the polymeric stress and the finite extension will determine

the final breakup of the filament.

D. Elastic balance in the ROJER

To assess the thinning rate of the jet in the elasticity dominated regime, the expression

for the constant force of eq. (31) in its dimensionless form F̄z = π inserted into the stress

balance of eq. (25) generates the stress balance for the viscoelastic jet:

1

h2
=

1

h
+

ḣ2

2
− 6Ohs

ḣ

h
+

Ec

h4
exp

(

− τ

De

)

, (35)
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This stress balance is different from the balance for the gobbling phenomenon [39], since the

inertial term is taken into account instead of only the viscous dissipation. Different from

the stress balance for the capillary breakup of a single bridge of eq. (32), an additional term

1/h2 appears in the stress balance originating from the constant force along the jet. This

constant force will grow increasingly important close to breakup as the area of the liquid

column rapidly reduces.

Similar to the analysis for the CaBER experiment we can first simplify the stress balance

in this regime by neglecting the inertial and viscous term to

1

h2
=

1

h
+

Ec

h4
exp

(

− τ

De

)

. (36)

Furthermore, approaching small filament dimensions also the capillary pressure term 1/h in

eq. (35) becomes subdominant in comparison to the now constant force term 1/h2, so that

the dominant balance is established between the axial stress and the elastic stress (called

’AE balance’ in the following):

1

h2
=

Ec

h4
exp

(

− τ

De

)

, (37)

While it is initially unintuitive not to directly have a Laplace pressure term 1/h in the

balance that drives the capillary thinning, it should be noted that is still the line tension of

the jet that sets the constant tension that is eventually balancing polymer elasticity. Solving

now for the radius evolution of the jet during the AE balance regime one obtains:

h =
√
Ec exp

(

− τ

2De

)

. (38)

This is the same expression that was found for the gobbling phenomenon, where the viscous

term was neglected in the stress balance instead of the inertial term [39]. Like in the previ-

ous analysis for the CaBER, the radius decreases exponentially in the elasticity dominated

regime, however, the time scale in the AE balance regime is different form the EC balance.

The creation of new surface near the nozzle generates a constant tensile force in the jet,

which changes the thinning dynamics. The introduction of this constant force into the stress

balance changes the dimensionless time scale from 3De to 2De, which is the value that was

observed throughout all jetting experiments.
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FIG. 12. Experimental filament profiles of the 0.005 wt% PEO solution of Mw = 1000 kg/mol in

water/glycerol 60/40 during the different free-surface experiments, with the times for each profile

indicated in the legend. The profiles R are shown as a function of the axial coordinate z for the (a)

CaBER and (c) excited jetting experiments, respectively. The rescaled edge profiles of the corner

region exhibit a similar shape for (b) the CaBER experiments, whereas (d) the rescaled jetting

profiles of a ROJER type experiment do not show the same self-similarity.

Verifying a different tensile force during jetting is challenging (compared to during a

CaBER experiment, which has been done byWillenbacher and co-workers [63]). However, we

can analyse the shape of the corner region, where a filament is attached to the neighbouring

drops. When the tensile force decreases exponentially in time, as it does for a single liquid

bridge since Fz(t) ∼ Rm(t), simulations and experiments have shown that this corner should

reveal a self-similar structure [22, 61]. To examine the existence of this similarity region, all
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lengths are scaled with a characteristic length scale, the minimal radius Rm, giving

R∗ =
R

Rm

(39)

z∗ =
z − z0
Rm

. (40)

The axial origin z0 is asymptotically located in the corner region. These rescaled free surface

profiles are shown next to the original profiles in Figures 12a and 12b for CaBER capillary

breakup experiments of the 0.1 % PEO solutions. The experimental profiles converge in

both cases onto a master curve with increasing thinning time, demonstrating the self-similar

structure of the corner. This suggests that the tensile force is exponentially decreasing as

expected for the CaBER experiment.

Also the profiles of an excited jet experiment on the same solution are rescaled, using

the same scales. To obtain sufficient resolution in the corner region, the thinning jet was

visualised with the same microscopic objective that was used for the CaBER experiments.

Due to the limited field of view of this setup, a low Weber number of We = 2.9 was chosen

to be able follow a sufficient number of instabilities within the observation window. Figure

12c shows a sequence of free surface profiles of the jet. The consecutive corner regions are

rescaled in Figure 12d and do not form a master curve. The absence of a similarity region

for both jetting experiments suggests a different tensile force in the thread that does not

decrease exponentially in time as in the CaBER experiments, and leads to different thinning

rates in both experiments.

E. Numerical simulations

The combination of the full stress balance of eq. (22) with the evolution equation (Eqs.

(20) - (21)) (and the respective axial force for either the CaBER or the ROJER case)

makes an initial value problem that can be used to describe the complete thinning of the

inertia-elastic filament. This simple model is used to explore the transitions between dif-

ferent thinning regimes in both CaBER and jetting flows. By solving the microstructural

evolution equation, the growth of the axial stretch Azz provides insight in the polymer de-

formation in the uniaxial extensional flow field. The equations are solved in Matlab with an

implicit BDF-solver (routine ode15s) to cope with the stiffness of the system. The transition

from the inertia to the elasticity dominated regime causes an abrupt change in the polymeric
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FIG. 13. Numerical simulation of capillary breakup in the jetting and CaBER setup with the

dimensionless parameters listed in Table V. (a) The evolution of the filament radius, (b) the axial

stretch of the polymer chains and the evolution of the stresses for L = ∞ in (c) the CaBER and (d)

the jetting setup, in which the insert focusses on the transition from the IC to the elastic balance

regime.

deformation, so the absolute and relative tolerances are chosen at a low value of 10−10. It

should be noted that the approach for these simulations is different from earlier works [19],

as it explicitly includes the inertial term ḣ2/2 in eq. (22), which is necessary in order to cap-

ture the initial thinning regime before the onset of the exponential thinning regime, which

is dominated by inertia (as indicated by the low global Ohnesorge numbers in Table I and V).

A first set of results of the numerical simulation for both setups are presented in Figure

13, using an ideal state of undeformed polymer coils as the initial conditions at the start

of the experiments, so that the initial value of the three dimensionless variables are all
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equal to one: h0 = 1, A0
zz = 1 and A0

rr = 1. A reference radius R0 is chosen to resemble

the experimental observation and therefore the dimensionless groups in Table V are used

for the calculations. Figure 13a compares the evolution the dimensionless filament radius

h as a function of time, which has been scaled with the relaxation time to emphasise the

different time scales in the exponential thinning regime. When finite extensibility effects

are neglected (L = ∞), the time scales of 3λ and 2λ are recovered over a long period for

the CaBER and ROJER type experiment respectively, in agreement with the experimental

observations and the analytical derivation in Section IVC and IVD.

For the CaBER simulations, the transition for the IC to an EC regime can be explained

by the temporal evolution of the stress contributions in eq. (33) that is shown in Figure

13c. Initially, the polymer chains are close to the equilibrium conformation and the inertial

acceleration balances the capillary pressure in the fluid column. This balance results in

a fast decay of the radius, inducing strong stretching of the polymer as shown in Figure

13b. The elastic stress in the column rises quickly to balance the capillary pressure and the

inertial contribution drops to a negligible value. As a result of this elasto-capillary balance,

the growth of the axial deformation of the chains suddenly slows down to an exponential

increase with a time constant corresponding to three times the relaxation time of the fluid:

Azz ∼ exp(t/3λ).

The respective elastic and capillary stresses in Figure 13c match this exponential increase.

If the finite extensibility effects are included in the analysis, at later times a deviation from

the exponential decrease of the filament radius is observed in Figure 13a at h ≈ 0.02, which

corresponds to an axial stretch Azz ≈ 0.1L2. As the axial deformation approaches the finite

extensibility parameter, the non-linear correction term Z increases considerably, resulting

in a sudden breakup.

The numerical simulations for the CaBER are also compared with experimentally ob-

tained filament radii in Figure 14. The model solution for the CaBER case using R0 = 1

mm displays a very similar shape as the experimental curve, however the onset of the EC

regime occurs at a higher radius. This inconsistency in the transition radius was also en-

countered in previous studies [18, 64]; the IC regime typically demonstrates necking near

the end droplets, and cannot be described with a zero-dimensional model that furthermore
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neglects the gravitational component in eq. (11) in the initial regime where in the CaBER

case the Bond number is still close to unity. Furthermore, recent studies by Prabhakar and

co-workers [65, 66] showed that a stretch-induced changes in hydrodynamic screening will

effect the thinning dynamics even before the onset of the coil-stretch transition as described

by our simplified model. A better agreement of 0-D models to the experimental EC regime is

usually found by choosing a smaller value for the reference radius R0 as done in Figure 14a.

While decreasing the reference radius results in a poor description of the inertia-capillary

regime, it capturing the thinning dynamics in the EC regime well.

In the jetting simulations of a ROJER type experiment in Figure 13a, again using un-

deformed polymer coils as an initial state, the filament radius decays initially much faster

in comparison to the CaBER case before reaching an exponential thinning regime, and also

initially much faster than what is experimentally observed for the ROJER experiments for

example in Figure 5. This fast decay originates from the different stress balance of which

the evolution of the different relevant terms is shown in Figure 13d. The term driving the

filament breakup is the stress from the constant axial force as indicated in eq. (36). This

term scales with the inverse square radius and therefore increases more quickly than the

capillary stress, and it is thus this contribution that balances the inertial stresses as can be

seen in the insert of Fig 5d. Moreover, this larger axial driving stress requires the polymer

chains to be stretched much further from their initial undeformed state to produce sufficient

elastic stress to eventually balance this axial stress. When this happens, Figure 13b shows

that at this point the axial deformation of the initially undeformed chains is 3 orders of

magnitude larger than at the onset of the EC balance in the CaBER case for. Still, once

this balance is reached, the axial stretch and the elastic stress increase exponentially when

L = ∞, and with the experimentally observed smaller time constant: Azz ∼ exp(t/λ). How-

ever, including finite extensibility effects in the jetting experiment, an exponential decrease

of the filament radius is not observed. As can be seen in Fig. 13b when setting L = 121

for the jetting case, the initial polymer deformation Azz in the inertial regime is already

close to the maximum stretch L2, so that it is directly followed by a non-linear elastic stress

build-up, leading to a very fast breakup of the filament.

These two discrepancies of the ROJER simulations in comparison to experiments, the

too late onset of the elastic balance regime and the too strong deformation of the polymer
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FIG. 14. Comparison of the experimental evolution of the minimal radii with numerical simulation.

(a) For the CaBER setup, an agreement between experiment and model is found by lowering the

initial radius R0. (b) The jetting simulations are matched to the experimental observations by

changing the initial axial stretch A0
zz of the polymer molecules.

at this onset to observe an exponential thinning, indicate that the initial assumption of

undeformed polymer coils is not correct. Indeed, a deformation of the polymer coils when

passing through the contraction flow at the nozzle entrance, as well as in the relatively

high shear rates experienced inside the nozzle, that persists in the jet when exiting the
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nozzle, has been previously discussed for jet thinning dynamics of polymer solutions [39, 67].

Furthermore, it is probable that the polymer chains are partially oriented and elongated after

exiting the nozzle. At this point, the velocity field in the jet undergoes an abrupt change

from a Poiseuille flow inside the tube to a plug flow in the initial straight section of the jet.

This stick-slip singularity at the nozzle exit results in potentially large initial elastic stresses

in the jet [68]. Since the Deborah number in Table V is sufficiently large (De ≫ 1), effects

of this initial configuration can propagate along the jet while the fluid column begins to

exhibit the linear instabilities [39].

Such a pre-stretch at the nozzle exit can be included in the jetting model by changing the

initial chain confirmation (A0
zz > 1, A0

rr = A
0−1/2
zz ). By incorporating this additional elastic

contribution, the initial axial stress in the jet is

Fz

πR2
0

=
γ

R0

+ EcZ
(

A0
zz − A0−1/2

zz

)

. (41)

The initial confirmation A0
zz and the associated initial stress are new initial values for

the numerical simulations of the coupled differential equations for the jet (Eqs. (20), (21),

(22) and the constant axial force F̄z = π). A0
zz becomes thus an extra parameter to fit the

experimental observations. The results for ROJER simulations that include a predeforma-

tion of the polymers at the nozzle are compared to experimental thinning data in Figure

14b. By employing a larger pre-stretch A0
zz = 1000, an axial-elastic balance is immediately

established at the initial radius and the appearance of an initial inertia-capillary thinning

and fast initial decay of the filament radius is suppressed. A more consistent description is

acquired by reducing the initial axial stretch to A0
zz = 125. The modelled radius shows a

more gradual drop from the initial value and subsequently approaches the experimental data

points. The driving axial stress is not solely balanced by the elastic stress for times t < 2λ,

leading to a fairly long transition zone where the capillary term still affects the thinning.

The elastic stress only matches the driving stress after this period and then an exponential

decrease of the filament radius is retrieved. It should be noted that time scale observed in the

exponential AE regime is in all cases the new time scale of two times the relaxation time, in-

dependent of the pre-deformation value for A0
zz, and matching the experimental radius decay.

During the AE balance, the polymer chains are still stretched at a faster rate than in

the CaBER case (see Figure 13b). Hence, breakup occurs slightly sooner than in the ex-
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periments, when finite extensibility effects are included in the model. However, in both

the CaBER and the jetting case, the finite extensibility of the polymer chains affects the

thinning dynamics sooner in the simulations than in the experiments. A comparable differ-

ence between the modelled and experimental finite extensibility effects is also encountered

in other studies on capillary breakup of similar polymer solutions [69, 70]. Two possible

explanations have been proposed for the earlier onset of these finite extensibility effects. The

former assumes a difference between the theoretical finite extensibility L that was calculated

based on molecular parameters (see eq. (7)) and the experimentally observed L [71]. The

latter states that pre-averaging of the connector vector Q in the Peterlin approximation of

the FENE model overpredicts the elastic stresses in a uniaxial extensional flow compared

to the full FENE model [72].

V. CONCLUSION

In this paper, we have investigated the instability growth and the resulting breakup of

weak viscoelastic jets with low Ohnesorge numbers. Jetting experiments were executed for

three model solutions over a range of Weber numbers from the dripping-jetting transition

at We = O(1) to long stable jets at We = 80, which corresponds to the experimental

limit of our setup. We have focused on this important elasticity controlled thinning regime

where the minimal radius of the instability decreases exponentially in time. The thinning

dynamics during this regime are compared with CaBER capillary breakup experiments of

single liquid filaments and a different time scale for the exponential decay is identified for

both free-surface flows. Whereas the generally employed time scale θ = 3λ is observed for

the CaBER experiments, the jetting experiments exhibit a time scale θ = 2λ, which was

previously only suggested for jets in the vicinity of the dripping to jetting transition. This

new scaling remains valid for all examined Weber numbers (We > 1) .

Both time scales are explained with a stress balance over the viscoelastic filament. The

different scaling in the jet is attributed to a constant axial force in the jet, which is caused

by the creation of new surface under the nozzle. This results for the jet in a balance of the

constant axial force and elasticity (AE balance) during the exponential thinning regime,
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in contrast to an elasto-capillary (EC) balance in the CaBER experiment in this regime.

Numerical simulations of the jet breakup with the FENE model are in agreement with

the experimental observation by selecting a proper value for the initial deformation of the

polymer molecules A0
zz. Additionally, the experimental profiles of the corner region where

the filament is connected to the droplet are rescaled according to the scales proposed by

Clasen et al. [22]. The self-similar structure present in the CaBER experiments is not ob-

served during the jetting experiments, indicating that the axial force is indeed not decaying

with the filament radius. The existence of a different scaling in the exponential thinning

regime in a continuous jet is not only of fundamental interest, but it also strongly affects the

result interpretation of new jetting rheometers as the ROJER [36], resulting in a 50 percent

increase of the extracted relaxation time.
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