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SUMMARY

The mechanical response of cells to stimuli tightly couples bio-chemical and bio-mechanical processes
which describe fundamental properties such as cell growth and re-orientation. Cells interact continuously
with their external surroundings, the extra cellular matrix (ECM), by establishing a bond between cell
and ECM through the formation of focal adhesions. Focal adhesions are made up of integrins which are
mechanosensitive proteins and responsible for the communication between the cell and the ECM. The
governing bio-chemo-mechanical processes can be modeled by means of a continuum approach considering
mechanical and thermodynamic equilibrium to describe cell contractility and focal adhesion growth. The
immanent multi-physical character of cell mechanics involves important aspects such as the coupling of
fields of different scales and corresponding interface conditions which are sensitive to the solution of the
governing numerical problem. These aspects become even more relevant when considering a feedback loop
among the multi-physical solutions fields.
In this contribution, we consider solution properties and sensitivity aspects of a non-linear mechanical
continuum model for the prognosis of stress fiber growth and re-orientation incorporating a
mechanosensitive feedback loop. We provide the governing equations of a Hill-model based stress fiber
growth which is coupled to a thermodynamical approach modeling the focal adhesions. Furthermore, a
variational formulation including the algebraic equations is derived for staggered and monolithic solution
approaches, and the reaction-diffusion equation which models the feedback mechanism. We test both
schemes with regard to reliability, accuracy and numerical efficiency for different model parameters and
loading scenarios. We present algorithmic aspects of the considered solution schemes and reveal their
robustness with regard to model refinement in space and time, and finally provide an assessment of their
overall solution performance for multi-physics problems in the context of cell mechanics.
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1. INTRODUCTION

The process of growth and reproduction in biological life cycles is tightly connected with the bio-

chemical and mechanical properties of cells and their response behavior. Cells are the basic units

of living organisms which constantly transfer and exchange material and information with their

surroundings. Some of the fundamental mechanisms of these processes have been understood fairly

well by numerous in-vitro experiments revealing e.g. the dependencies between cell stiffness and

cell proliferation under changing loading conditions [1, 2, 3, 4], or the ability of cells to respond

to external mechanical cues [5, 6]. In addition to biological experiments, mathematical models have

been developed to bolster in-vitro experiments, to allow for a prediction of in-vivo behaviour of cells

[7, 8, 9, 10, 11] and to support the identification of essential cell properties.

The immanent multi-physics nature of these models requires the consideration and coupling of

bio-chemical and mechanical phenomena described by a set of partial differential equations of

different nature with implications for the numerical solution process. In particular, from the field

of fluid-structure interaction a number of well-documented research studies exists [12, 13] which

address carefully the numerical aspects and properties of different multi-physical solution procedures,

including bio-medical applications [14, 15]. Surprisingly, little attention has been paid to solution

aspects and properties in the field of cell mechanics revealing the robustness, reliability and accuracy

of the governing coupled problem. Only a few papers report about the solution scheme which generally

follows a staggered approach with partially fixed solution fields in every time step [9]. For small time

steps these schemes ensure a sufficient level of robustness and accuracy, but may fail for larger time

steps which can be necessary to efficiently cover the large time scale of calcium growth which affects

the mechanical equilibrium.

In this article, we extend a recently introduced model describing cell contractility and corresponding

focal adhesion growth [16], to a geometrically non-linear formulation in order to account for

large displacement effects as commonly observed in in-vitro experiments. Moreover, we carefully

study different solution methods for the bio-chemo-mechanical equations to reveal essential solution

properties with regard to robustness and accuracy. The solution methods that we have considered,

staggered and monolithic, follow different ways of coupling the governing equations. Such solution

methods along with a consistent large displacement analysis are universal for a large class of coupled

problems in general [15] and bio-mechanical problems in particular [17]. To this end, we provide a

consistent variational formulation and the corresponding algebraic equations tailored to the different

solution methods. The basic differences of the solution schemes are considered in terms of algorithmic

aspects and are illustrated with a number of numerical experiments, including model refinement in

space and time. Furthermore, we study the sensitivity of the solution with regard to parameter variations

representing different model properties and apply cyclic loading to understand the mechanisms of the

stress fiber generation.

The structure of the manuscript is as follows. In section 2, we briefly introduce the bio-chemo-

mechanical model to provide the set of equations which governs the cell contractility, the related stress

fiber growth and the feedback loop. More importantly, we provide a concise summary of the essential

solution strategies considered in this contribution, namely the staggered and monolithic solution

approaches. In section 3, we present in compact form the basic terminology of a geometrically non-

linear continuum formulation as used in the contractility model. We derive the governing variational

equations and corresponding discrete equations for the staggered and monolithic solution approaches.

Algorithmic aspects of the two methods are presented and discussed in section 4 and implemented and

tested with a number of numerical tests, presented in section 5. We summarize and conclude the main

findings in section 6.

2. BIO-CHEMO-MECHANICAL CELL MODEL

We start with a brief summary of the coupled bio-chemo-mechanical model which relates cell

contractility and focal adhesion growth considering a feedback loop. The model was discussed in

detail in [16]. It is included here for completeness, and we limit ourselves to the formulation of the

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2018)
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SOLUTION SCHEMES IN CELL-MECHANICS 3

model’s key constituents. We introduce the terminology used for the extension to a large displacement

formulation and consider different solution schemes for the coupled equations.

2.1. Coupled ‘cell contractility - focal adhesion growth’ model

The model essentially comprises of two governing equations, representing the mechanical equilibrium

in terms of a force equilibrium of the cell, and focal adhesion growth connecting cell and extra-cellular

matrix (ECM). In addition, a calcium growth model is considered which connects the focal adhesion

formation to the current stress fiber concentration in the cell through cytoplasmic calcium and so

establishes a feedback loop [16]. In the following, we assume the model behaviour to represent a

state of plane stress.

2.1.1. Mechanical equilibrium Consideration of the balance equations provides the mechanical

equilibrium including total stress in the cell Sij and the external force Ti which is exerted by the

focal adhesion on the cell

b Sij,j = Ti i, j = 1, 2 (1)

where b is the cell thickness. The total stress is split additively into an active stress and a passive

stress contribution, Sa
ij and Sp

ij , respectively. The active stress originates from the contracting actin

filaments in the cell’s cytoskeleton whereas the passive stress results from the resistance offered

by the cytoplasm. The mechanical equilibrium, eq. (1), represents a 2-dimensional homogenization

of the anisotropic stress fiber contraction in the state-of-plane-stress cell model. The underlying

growth model, briefly summarized in the following, is formulated in terms of a directional stress fiber

concentration.

Active stress The active stress is characterized by effects of the strain ε and the strain rate ε̇, as

κ :=
σa(φ)

σ0(φ)
= f(ε) g(ε̇) (2)

σ0(φ) = η(φ)σmax (3)

where σa(φ) is the directional active stress and σ0(φ) is the isometric stress expressed in terms of the

maximum allowed stress σmax and a fiber angle φ dependent stress fiber concentration (0 ≤ η(φ) ≤ 1).
The growth model follows from the corresponding concentration rate:

η̇(φ) =







(1− η(φ))C kf − (1− κ) η(φ) kb if κ < 1

(1− η(φ))C kf if κ ≥ 1
(4)

with kf and kb being rate constants related to the association and dissociation of stress fibers,

respectively and C represents the cytoplasmic calcium concentration. For details about the growth

model and its influence on the equilibrium equations, we refer to KESHAVANARAYANA ET AL. [16].

The growth of active stress is assumed to follow a Hill type growth [18] depending on the strain rate

g(ε̇) =
1

1 +
Sexp√

(S2

exp+1)









1 +
k̄v

ε̇
ε̇0

+ Sexp
√

(

k̄v
ε̇
ε̇0

+ Sexp

)2

+ 1









(5)

where, k̄v is the Hill constant, ε̇0 is the strain rate sensitivity, ε̇ is the strain rate and Sexp is an expansion

parameter with significance for cyclic cell loading only. For cyclic loading we use Sexp = 1, else

Sexp = 0.
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The stress-strain relation is expressed in analogy to the characteristics of cables which are stiff in

tension but which have no stiffness in compression

f(ε) =















exp

(

−
(

ε
ε0

)2
)

if ε < 0

exp

(

−
(

ε
ε0

)2
)

+
(

ε
ε1

)2

if ε ≥ 0.

(6)

in which ε is the strain, ε0 and ε1 are constants characterizing the decay of contraction of the cell and

passive strain hardening, respectively [16, 10].

Passive stress The passive stress is assumed to follow a linear elastic behavior

σp = E ε (7)

where ε is the axial fiber strain and E is the Young’s modulus of the cell.

2.1.2. Thermodynamic equilibrium For cells to adhere to the ECM, focal adhesions have to form a

bond with the cell membrane. In this regard, proteins forming focal adhesions can be assumed to be

made up of low affinity integrins µL and high affinity integrins µH , where integrins are mechanically

sensitive proteins. As shown in Figure 1, low affinity integrins do not form a bond between the cell

and the ECM, while high affinity integrins do form a bond. It is assumed that these integrins satisfy

thermodynamic equilibrium, thereby resulting in the mutual conversion of integrins when necessary.

cell

substrate

integrins in bent state
(low affinity integrins)

integrins in straight state
(high affinity integrins)

ligands

Figure 1. Low and high affinity integrins.

The chemical potential of low and high affinity integrins is

µL = µR
L + k T ln

(

ξL
ξ0

)

(8)

µH = µR
H + k T ln

(

ξH
ξ0

)

+Φ− F̄ ∆ (9)

where µL and µH are the chemical potentials of the low and high affinity integrins, respectively.

Furthermore, µR
L and µR

H are the reference chemical potentials while ξL and ξH are the concentrations

of the low and high affinity integrins, respectively. The Boltzmann constant is denoted by k and

the absolute temperature by T . Furthermore, ξ0 denotes the reference number of integrins [19]. The

contribution (F̄ ∆) represents the work done by the bond while being stretched by ∆. The bond energy

is denoted by Φ and is assumed to depend quadratically on the stretch [16]. Finally, the requirement of

thermodynamic equilibrium results in the identity

µH = µL (10)

which leads to the ratio α of the integrin concentration

α :=
ξH
ξL

= exp

(

µR
L − µR

H − Φ+ F̄ ∆

k T

)

(11)

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2018)
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with the total number of integrins being conserved at

ξ0 = ξH + ξL . (12)

The conservation of integrins allows the conversion between low and high affinity integrins based on

their potential expressed as

ξH =
ξ0 α

1 + α
. (13)

Thus, high affinity integrins exert a force on the cell, which depends on the stretch ∆ experienced by

the bond and the bond stiffness, λs:

T̄ = ξH F̄ = ξH λs ∆ . (14)

2.1.3. Calcium concentration Together with the mechanical equilibrium which affects the focal

adhesion formation, a calcium growth model is included to describe the evolution of calcium

concentration in the cell. The governing equations include a reaction-diffusion equation representing

the growth of IP3 (inositol 1,4,5- triphosphate), followed by a rate equation to determine the calcium

growth [20]. The reaction-diffusion equation establishes a mechanosensitive feedback loop considering

the IP3 growth which regulates the calcium concentration in the cell’s cytoplasm:

˙̄S = ms k T
∂2S̄

∂x2
i

− kd S̄ +
αc

b
max(0, ξ̇H)− S̄ ε̇(φ) (15)

where S̄ is the IP3 concentration, xi (i = 1, 2) is the spatial coordinate in the plane and ms represents

the mobility of IP3. The reaction terms involve the rate constant kd for the hydrolysis of IP3 into IP2, a

non-dimensional proportionality constant αc and the rate value ξ̇H representing the change of the focal

adhesion concentration. The strain rate of the stress fibers at an angle φ is represented by ε̇(φ). For

details about the growth model and the related mechanosensitive feedback loop including appropriate

boundary and initial conditions, we refer to [16]. The growth of calcium depending on the available

IP3 concentration follows from the rate equation:

Ċ = λf

S̄

S̄0
(1− C)− λb C (16)

where C represents the calcium concentration and λf and λb are the forward and backward rate

constants, respectively.

2.2. Staggered vs. monolithic solution approach

The mechanical equilibrium, eq. (1), and the focal adhesion growth, eq. (13), constitute a coupled

multi-physics model for the analysis of cell contractility and related stress fiber growth through focal

adhesion formation. The solution of the governing equations requires to consider the influence of one

solution field on the other, and vice versa. The coupling can be performed in a staggered or in a

monolithic approach, depicted in Fig 2.

In a staggered approach, cf. Figure 2(a), the problem is solved in consecutive steps. The mechanical

equilibrium assumes the focal adhesion formation, in terms of its high affinity integrin concentration

(ξH), to be constant as obtained at the end of the previous time step tn−1. The ξH concentration of the

current time step tn is used to evaluate the displacement field u of the following time step, tn+1. Using

the new displacement solution, the stretch is evaluated to update the ξH concentration. The coupling

of u and ξH is done explicitly, which limits the size of the time step that can be used to ensure a stable

and reliable solution.

Alternatively, the monolithic solution approach, cf. Figure 2(b), couples the governing equations

(1) and (13) in a common system of equations to allow for the simultaneous solution of the unknown

displacements u and high affinity integrin concentrations ξH . Thus, both solution fields are assumed

to be varying and thereby equilibrium is established together in an iterative solution scheme. In

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2018)
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6 P. KESHAVANARAYANA, M. RUESS, R. DE BORST

use ξH(tn−1)

solve u

use u(tn)
solve ξH

use ξH(tn)

solve u

use u(tn+1)
solve ξH

. . . tn tn+1 . . .
(a) staggered solution

solve ξH)

solve u

solve ξH
solve u

. . . tn tn+1 . . .

(b) monolithic solution

Figure 2. Solution schemes for the coupled cell contractility and focal adhesion formation.

comparison with the staggered scheme, the size of the time step used in the monolithic scheme is

of minor effect on the solution quality since both solution fields are coupled implicitly and updated in

a common step. In particular, the tight coupling of displacements and integrin concentrations ensures

a high level of robustness of the solution process as will be demonstrated in section 5.

3. GEOMETRICALLY NON-LINEAR VARIATIONAL FORMULATION

In-vitro experiments on the contractility response of cells are commonly performed with the help of a

silicon-based organic polymer substrate used as an elastic carrier material for the tested cell solution.

Appropriate experiments apply any cell loading to the substrate which is subjected to large stretches.

In the following variational formulation of the coupled governing equations, we account for the large

displacements of in-vitro tested cells and extend the linear formulation of [16] to a geometrically non-

linear formulation. To this end, we briefly introduce the non-linear elements used in the variational

formulations of the considered solution schemes. A detailed representation of the underlying non-linear

concepts can be found in e.g. [21].

3.1. Kinematics

In Figure 3, a body is depicted in an undeformed configuration at time t = 0, denoted with B0, and a

deformed configuration at time t 6= 0, denoted with B. In the following, we use the initial configuration

B0 as a reference configuration in a Total-Lagrangian Formulation.

x2

x3

x1

X

x

u

B0

B

P0

P

Figure 3. Undeformed reference configuration B0 and deformed configuration B of a body.

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2018)
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SOLUTION SCHEMES IN CELL-MECHANICS 7

Material points of the reference configuration B0 are identified by a location vector X measured with

respect to a stationary reference frame (x1, x2, x3) with the basis vectors

ei =
∂X

∂xi

i = 1, 2, 3 . (17)

Material points of the current configuration B are identified correspondingly by a location vector x.

With the change of the configuration of the body, the displacement state u and the deformation gradient

F follow as

u = x−X (18)

F =
∂x

∂X
. (19)

Using the deformation gradient (19), the Green-Lagrange strain tensor is defined conventionally as

E =
1

2

(

F
T
F− I

)

(20)

Eij =
1

2

(

∂ui

∂Xj

+
∂uj

∂Xi

+
∑

k

∂uk

∂Xi

∂uk

∂Xj

)

i, j, k = 1, 2, 3 . (21)

3.2. Statics

The energetic conjugate stress measure to the Green-Lagrange strains are the 2nd Piola-Kirchhoff

stresses which are computed using the three-dimensional constitutive relations. A linear relation

between stress and strain rates can be established with the assumption of small strains

Ṡ = C : Ė (22)

Ṡij = Cijkl Ėkl (23)

where C is a fourth order material tensor [21]. The 2nd Piola-Kirchhoff stresses refer to the known

reference configuration B0 without having a physical interpretation. The true stresses of the deformed

body are the Cauchy stresses τ which refer to the unknown current configuration B. They are

determined from the 2nd Piola-Kirchhoff stresses by the transform

τ =
ρ

ρ0
FSF

T (24)

where ρ and ρ0 denote the material density in the current and reference configuration, respectively.

3.3. Governing equations

In the following, we introduce a variational formulation on basis of the Principle of Virtual Work and

derive corresponding linearized equations for an incremental iterative solution with a staggered and

with a monolithic solution approach. The model considered in the analysis of the presented study, cf

section 5, refers to a square domain representing the cell and the focal adhesion distribution. Symmetry

of the solution domain is considered and therefore only a quarter of the domain is modeled as depicted

in Figure 4. The governing equations follow a coordinate representation of a plane state of stress in

which the Einstein summation convention is applied and indices take values {1, 2}.

3.3.1. Staggered solution approach In the staggered approach, the equations governing the mechanical

equilibrium and the focal adhesion growth are considered in separate solution steps. The Total

Lagrangian formulation of the virtual work of the equilibrium (1) refers all quantities to the reference

configuration B0 :

δW = 0 = b

∫

Ω0

Sij : δEij dΩ+

∫

Ω0

(ξH F̄i) δui dΩ (25)

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2018)
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8 P. KESHAVANARAYANA, M. RUESS, R. DE BORST

x2

x1

Ω
(u, ξH)

ΓD

ΓD

ΓN

ΓN

Figure 4. Solution domain Ω with symmetric Dirichlet boundary ΓD and Neumann boundary ΓN , solved
for the state variables u and ξH .

where the 2nd Piola-Kirchhoff stress Sij = Sa
ij + Sp

ij represents the sum of active and passive stress

in the stress fiber.

The equation (25) is non-linear and requires a stepwise incremental solution. A consistent linearization

of the governing equations expresses the unknown instant state of a variable â at time (t+∆t) in terms

of its known value a of the instant configuration at time t and the unknown incremental growth ∆a from

time t to t+∆t. We will use this notation in the following linearization. Neglecting all higher order

non-linear terms the linearized incremental equations follow as:

0 = δW(L∆) + δW(N∆) − δW(L) (26)

δW(L∆) = b

∫

Ω0

(

Ca
ijkl ∆EL

kl

)

δ(∆EL
ij) dΩ+ b

∫

Ω0

(

Cp
ijkl ∆EL

kl

)

δ(∆EL
ij) dΩ

+

∫

Ω0

ξH

(

∂(∆F̄i)

∂(∆uj)
∆uj

)

δ(∆ui) dΩ (27)

δW(N∆) = b

∫

Ω0

Sa
ij δ(∆EN

ij ) dΩ+ b

∫

Ω0

Sp
ij δ(∆EN

ij ) dΩ (28)

δW(L) = b

∫

Ω0

Sa
ij δ(∆EL

ij) dΩ+ b

∫

Ω0

Sp
ij δ(∆EL

ij) dΩ+

∫

Ω0

ξH F̄i δ(∆ui) dΩ (29)

where the subscripts (L∆) and (N∆) indicate the terms to be linear and non-linear in the displacement

increments (∆u), respectively, and subscript (L) denotes quantities which refer to the known instant

configuration at time t, representing the equilibrium of the previous step. The first term of (27)

represents the linearization of the active stress contribution which follows from the evaluation of the

Hill-type growth model, eq. (2), whereas the second term represents the passive stress contribution

corresponding to a linear elastic material behaviour.

Discrete equations of the staggered solution The domain is discretized with quadrilateral elements

using bi-linear Lagrange functions to interpolate the unknown displacement increments:

∆u =

n
∑

k=1

Nk(x1, x2)∆Uk = N∆U (30)

δ(∆u) =

n
∑

k=1

Nk(x1, x2) δ(∆Uk) = N δ(∆U) (31)

where Nk represent the bi-linear shape functions assembled in a matrix N and Uk the kth unknown

nodal degrees of freedom in the plane, assembled in a vector U. Taking the derivatives of (30) and

Copyright c© 2018 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Biomed. Engng. (2018)
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SOLUTION SCHEMES IN CELL-MECHANICS 9

(31) with respect to the global coordinates provides an interpolation rule for the incremental strain

coordinates and corresponding variation which are assembled in matrices BL and BN to account

for the linear and non-linear contributions, respectively. A detailed representation of the interpolation

matrices can be found in e.g. [21]. Substitution of the discretization into the governing equations (26)

and assembly (Ae) of all elements yields:

Ae{0 = δ(∆U)T (KL +KN )∆U− δ(∆U)TFint} (32)

with the element contributions:

KL = b

∫

Ω0

B
T
LC

p
BL dΩ+ b

∫

Ω0

B
T
LC

a
BL dΩ+

∫

Ω0

ξHN
T ∂F̄

∂U
N dΩ (33)

KN = b

∫

Ω0

B
T
NS

a
BN dΩ+ b

∫

Ω0

B
T
NS

p
BN dΩ (34)

Fint = b

∫

Ω0

B
T
LŜ

a dΩ+ b

∫

Ω0

B
T
LŜ

p dΩ+

∫

Ω0

ξHN
T
F̄ dΩ (35)

where, Ŝa and Ŝ
p are the active and passive stress tensors in Voigt notation and F̄ = λs ∆ denotes

the interaction force contribution which results from the bond between focal adhesion and cell, and a

corresponding stretch ∆, cf eq. (14), not to be confused with the deformation gradient F, eq. (19). The

last term of eq. (33) contains the linearization of the interaction force F̄ which is evaluated subject to

the condition:

∆̇ = u̇ (36)

which relates the evolution of stretch and displacement assuming a perfect bond of the integrins and

the cell membrane. Using a first order forward Euler approach to express the unknown stretch and

corresponding linearization renders the last integral term as:

∫

Ω0

ξHN
T ∂F̄

∂U
N dΩ =

∫

Ω0

ξH λsN
T
N dΩ . (37)

Finally, the assembled element contributions result in a linear system of equations representing the

governing incremental equations of the mechanical equilibrium:

[

KT

] [

∆U
]

=
[

R
]

(38)

where KT is the tangent stiffness matrix assembled from the linear and non-linear element stiffness

contributions and R = Fext − Fint is the residual at the beginning of the solution step for the unknown

instant configuration at time t+∆t. After each time step the known displacement field is used to

evaluate the stretch which allows the computation of the integrin ratio α and finally to update the

higher affinity integrin concentration, cf. eq. (13).

3.3.2. Monolithic solution approach The monolithic solution approach solves the mechanical

equilibrium and the focal adhesion growth in a common solution step. In addition to the chemo-

mechanical equilibrium (25), the conservation of the total number of integrins, eq. (12), must be

satisfied by the unknown high affinity integrins, which leads to a tight coupling of mechanical

equilibrium and focal adhesion growth. The virtual work expression (25) is extended by a

corresponding term from equation (13):

δW = 0 = b

∫

Ω0

Sij : δEij dΩ+

∫

Ω0

(ξH F̄i) δui dΩ

+

∫

Ω0

ξH δξH dΩ−
∫

Ω0

ξ0
α

1 + α
δξH dΩ . (39)
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The consistent linearization of the non-linear equilibrium (39) follows the principles introduced in

sub-section 3.3.1 and leads to the following contributions:

0 = δW(u)
(L∆) + δW(u)

(N∆) − δW(u)
(L) + δW(ξ)

(L∆) − δW(ξ)
(L) (40)

δW(u)
(L∆) = b

∫

Ω0

(

Ca
ijkl ∆EL

kl

)

δ(∆EL
ij) dΩ+ b

∫

Ω0

(

Cp
ijkl ∆EL

kl

)

δ(∆EL
ij) dΩ

+

∫

Ω0

ξH

(

∂(∆F̄i)

∂(∆uj)
∆uj

)

δ(∆ui) dΩ (41)

δW(u)
(N∆) = b

∫

Ω0

Sa
ij δ(∆EN

ij ) dΩ+ b

∫

Ω0

Sp
ij δ(∆EN

ij ) dΩ (42)

δW(u)
(L) = b

∫

Ω0

Sa
ij δ(∆EL

ij) dΩ+ b

∫

Ω0

Sp
ij δ(∆EL

ij) dΩ+

∫

Ω0

ξH F̄i δ(∆ui) dΩ (43)

δW(ξ)
(L∆) =

∫

Ω0

∆ξH δ(∆ξH) dΩ (44)

δW(ξ)
(L) =

∫

Ω0

ξ0
α

1 + α
δ(∆ξH) dΩ−

∫

Ω0

ξH δ(∆ξH) dΩ (45)

where the superscripts (u) and (ξ) indicate the origin of the corresponding work contribution.

Discrete equations of the monolithic solution The unknown high affinity integrins of the governing

equations are interpolated applying the same discretization that is used for the unknown displacement

field

ξH =

n
∑

j=1

Nj(∆ξH)j = N̂∆ξH (46)

δξH =

n
∑

j=1

Nj δ(∆ξH)j = N̂ δ(∆ξH) (47)

where N̂ assembles the bi-linear Lagrange shape functions in a shape vector and ∆ξH represents

scalar nodal degrees of freedom. Substitution of the discretization into the governing equations (40)

and assembly (Ae) of all elements yields:

Ae{0 = δ(∆U)T (Kuu
L +K

uu
N )∆U+ δ(∆U)TKuξ ∆ξ (48)

+δ(∆ξ)TKξξ ∆ξ − δ(∆U)TFu
int − δ(∆ξ)TFξ

int} (49)

with the element contributions:

K
uu
L = b

∫

Ω0

B
T
LC

p
BL dΩ+ b

∫

Ω0

B
T
LC

a
BL dΩ+

∫

Ω0

ξH λs N
T
N dΩ (50)

K
uu
N = b

∫

Ω0

B
T
NS

a
BN dΩ+ b

∫

Ω0

B
T
NS

p
BN dΩ (51)

K
uξ =

∫

Ω0

N
T
F̂ N̂ dΩ (52)

K
ξξ =

∫

Ω0

N̂
T
N̂ dΩ (53)

F
u
int = b

∫

Ω0

B
T
LŜ

a dΩ+ b

∫

Ω0

B
T
LŜ

p dΩ+

∫

Ω0

ξHN
T
F̄ dΩ (54)

F
ξ
int =

∫

Ω0

ξ0
α

1 + α
N̂

T dΩ−
∫

Ω0

N̂
T
N̂ ξH dΩ (55)
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in which the (2N ×N)-matrix K
uξ is a coupling matrix relating the unknown high affinity integrins

to the unknown displacements of the chemo-mechanical problem. Its transpose K
ξu = 0, leads to

a non-symmetric system of equations. The system matrices assembled from (50) to (53) and the

corresponding system vectors assembled from (54) and (55) provide the linearized system of equations

of the monolithic solution approach:

[

K
uu

K
uξ

0 K
ξξ

][

∆U

∆ξ

]

=

[

R
u

R
ξ

]

(56)

where the incremental displacement field and the incremental high affinity integrins are solved in the

same step. The established monolithic coupling is based on a one-way dependence of the high affinity

integrins on the stretch of the focal adhesion induced bond.

3.3.3. Feedback loop mechanism The feedback loop mechanism of sub-section 2.1.3 relates the

calcium growth to the stress fiber formation in the cell and requires an independent solution of the

reaction-diffusion equation (15) with the variational representation:

∫

Ω

˙̄S (δS̄) dΩ = −D

∫

Ω

∂S̄

∂xi

∂(δS̄)

∂xi

dΩ+R (57)

with R = −kd

∫

Ω

S̄ (δS̄) dΩ− ε̇

∫

Ω

S̄ (δS̄) dΩ+
αc

b
max(0, ξ̇H)

∫

Ω

δS̄ dΩ

in which the variation of the IP3 concentration (δS̄) is chosen as appropriate test function, and

D = (ms k T ) is the diffusion coefficient while R denotes the reaction terms. The analysis domain

considers no-flux conditions along the Neumann boundary ΓN and an initial domain IP3 concentration

s0 including the Dirichlet boundary ΓD where s0 is the reference IP3 concentration, cf Table I:

−D
∂S̄

∂xi

ni = 0 ∀ xi ∈ ΓN (58)

S̄ = s0 ∀ xi ∈ Ω ⊃ ΓD . (59)

The change of the IP3 concentration with time on the left-hand side of eq. (57) is resolved in terms of

a first order forward Euler approach:

˙̄S =
S̄(t+∆t)− S̄(t)

∆t
:=

S̄ − S̄t

∆t
(60)

in which ∆t is the time step increment and S̄t is the known primal field variable of the previous time

step.

The spatial discretization follows the bi-linear approach introduced in the sub-section 3.3.2 using

the interpolation approach (46) and (47) with the shape functions N̂ and their corresponding spatial

derivatives N̂,x resulting in the governing algebraic equations:

Ae{0 = δS̄T (MS̄ +KS̄) S̄+ δS̄T (Ft + FξH ) } (61)

with the element contributions:

MS̄ =

∫

Ω

(

1

∆t
+ kd + ε̇

)

N̂ N̂
T dΩ (62)

KS̄ =

∫

Ω

D N̂,x N̂
T
,x dΩ (63)

Ft =

∫

Ω

S̄t

∆t
N̂ dΩ (64)

FξH =

∫

Ω

(αc

b
max(0, ξ̇H)

)

N̂ dΩ . (65)
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The governing linear system of equations is solved in each time step to provide the current IP3

concentration S̄ which is used to predict the calcium production that initiates the focal adhesion growth.

The calcium growth, eq. (16), is solved by an embedded Runge-Kutta scheme, a single-step approach

which approximates the solution considering two Runge-Kutta estimates of different order to allow for

a control of the truncation error with adaptive step-size [22].

4. ALGORITHMIC ASPECTS

The governing algebraic equations of section 3.3 reveal the essential differences between the

staggered and the monolithic approaches, and how the coupling of the chemo-mechanical equations

is established. The different schemes have direct effect on the structure and algebraic properties of the

governing system of equations, and thus on the single solution steps including stability and robustness

of the solution. In the following section, we illustrate the different nature of the schemes from an

algorithmic perspective and highlight some of the solution properties which are further addressed in

the example section.

Data: model geometry and material parameter values as provided in Table I [16]

Result: nodal displacements u and high affinity integrin concentrations ξH and corresponding

increments at time t = tend, assembled in a common solution vector V := [U; ξH ] and

∆V := [∆U; ∆ξH ], respectively.

% model setup and initialization

setupAnalysisModel();

t = 0;

% incremental time step loop

while t < tend do

% mechanosensitive feedback update: evaluate IP3 concentration using an embedded

% Runge-Kutta method , eq. (15)

S̄ = IP3Production(ms, k, T, αc, kd, b, ξ̇H , ε̇(Φ));

% evaluate calcium concentration, eq. (16)

C = calciumConcentration(S̄, S̄0, λf , λb);

% evaluate stress fiber concentration, eq. (4)

η = stressFiberConcentration(λf , λb, C, κ, φ);

% Newton-Raphson iteration until stopping criteria is satisfied

while δi > εr δ
t do

% solution of the governing system of equations (56), quantities refer to time t+∆t
K

i−1 ∆V
i = F

i−1
ext − F

i−1
int ;

% solution update in iteration i of time step t+∆t
V

i = V
i−1 - ∆V

i;

% update of the convergence parameters

δi = max( abs(Ui - Ui−1) );

δt = max( abs(Ui - Ut) );

% increment iteration step

i = i+ 1;
end

% increment time step

t = t+∆t;
end

Algorithm 1: Monolithic solution scheme for the analysis of the chemo-mechanical cell response.
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The algorithmic structure of the monolithic and staggered solution schemes is depicted in Algorithms

1 and 2, respectively. Both schemes start with entering a time step loop and the computation of

the stress fiber concentration η, used to update the isometric stress σ0 and thus the active stress σa

in the mechanical equilibrium. The stress fiber concentration η requires an update of the calcium

concentration in the cell and thus the evaluation of the current IP3 concentration, eq. (15), which is

solved by an embedded Runge-Kutta-method [22] establishing the feedback loop between the focal

adhesion formation and the stress fiber generation.

Data: model geometry and material parameter values as provided in Table I [16]

Result: nodal displacements u and high affinity integrin concentrations ξH and corresponding

increments at time t = tend.

% model setup and initialization

setupAnalysisModel();

t = 0;

% incremental time step loop

while t < tend do

% mechanosensitive feedback update: evaluate IP3 concentration using an embedded

% Runge-Kutta method , eq. (15)

S̄ = IP3Production(ms, k, T, αc, kd, b, ξ̇H , ε̇(Φ));

% evaluate calcium concentration, eq. (16)

C = calciumConcentration(S̄, S̄0, λf , λb);

% evaluate stress fiber concentration, eq. (4)

η = stressFiberConcentration(λf , λb, C, κ, φ);

% Newton-Raphson iteration until stopping criteria is satisfied

while δi > εr δ
t do

% solution of the governing system of equations (38), quantities refer to time t+∆t
K

i−1 ∆U
i = F

i−1
ext − F

i−1
int ;

% solution update in iteration i of time step t+∆t
U

i = U
i−1 - ∆U

i;

% update of the convergence parameters

δi = max( abs(Ui - Ui−1) );

δt = max( abs(Ui - Ut) );

% increment iteration step

i = i+ 1;
end

% update high affinity integrins using equations (11) and (13)

ξH = f(ξ0,∆(U))

% increment time step

t = t+∆t;
end

Algorithm 2: Staggered solution scheme for the analysis of the chemo-mechanical cell response.

The monolithic scheme solves the unknown displacement field and high affinity integrins using an

incremental iterative Newton-Raphson method. In each iteration step, the tangent matrix and inner

forces are updated with the total displacements to account for the non-linear cell deformation. In

contrast, the staggered scheme solves only for the unknown displacement field within the Newton-

Raphson iteration using the high affinity integrin concentrations of the previous time step. The integrins

of the current step are updated in a follower step on basis of the current displacements.
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Both algorithms use a convergence criteria which is exclusively based on the computed total

displacements which is a natural choice for the staggered scheme but also a reasonable choice for the

monolithic scheme since the high affinity integrins are directly dependent on the stretch and therefore

dependent on the displacement field. An error constant εr of order 10−3 appeared sufficient in all

computations to ensure robustness and reliability of the non-linear analysis.

5. NUMERICAL EXPERIMENTS

In the following, we study the interaction of the mechanical response of the cell and the focal adhesion

growth using the bio-chemo-mechanical cell model. In particular, we analyze the solution properties of

the staggered and monolithic solution approaches. We consider performance aspects for the different

solution methods with respect to stability and numerical reliability. To this end, we consider a model

refinement in space and time. Next, we study the robustness of the two solution methods for different

model configurations considering variation of dominant model parameters. Finally, we consider a

substrate supported cell model subject to cyclic loading and analyze the stress fiber reorientation over

time.

parameter symbol unit value

Passive elastic modulus E kPa 0.08
Poisson’s ratio of cell ν 0.3
Tensile strength of stress fibers σmax kPa 20
Maximum stretch ∆max m 1.30e− 7
Focal adhesion bond stiffness λs N/m 1.50e− 5
Boltzmann constant kb m2 kg s−2 K−1 1.38e− 23
Temperature T K 310
Difference between reference chemical potentials

of high and low affinity integrins

∆µ m2 kg s−2 5 kb T

Reference integrin concentration ξ0 integrins/m2 5.0e+ 15
IP3 mobility constant ms s/kg 1.0e+ 10
IP3 diffusion proportionality constant αs 10
IP3 de-phosphorylation rate constant kd s−1 5.0e− 4
Reference IP3 concentration s0 molecules/m3 1.0e+ 21
Forward rate constant of Calcium release λf s−1 1.0
Backward rate constant of Calcium release λb s−1 0.5

Table I. Applied model parameters following [23].

5.1. Convergence properties

We study the analysis domain depicted in Figure 4 with the model properties provided in Table I. The

parameters were chosen according to a model setup proposed in DESHPANDE ET AL. [23] to mimic the

experimental results of TAN ET AL. [24]. In the following we denote this choice of parameters as base

configuration. Symmetry boundary conditions were applied along the left and lower boundary and zero

traction boundary conditions were applied along the right and upper domain boundary. The model is

loaded by an initial IP3 concentration s0 which triggers the growth of the feedback loop coupled active

stress and focal adhesion.

The focal adhesion growth is expected to form towards the boundary of the cell. Accordingly, the

initial finite element mesh was refined adaptively towards the domain boundary and three different

meshes were considered, cf. Figure 5. It is noted that the same discretization was used for both sub-

models, the elasticity problem and the focal adhesion growth problem. The total time span of the

simulation, needed to account for a steady-state solution, varies for the different model parameters

between 200s and 4000s. The time step size was chosen in the interval [0.5s, 4.0s].
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Figure 5. Finite element meshes with 64 elements (mesh 1), 256 elements (mesh 2) and 576 elements (mesh
3).

ξH

1.000

0.750

0.500

0.006

t = 20s t = 100s t = 500s

Figure 6. Focal adhesion growth on the deformed cell at different time steps (scale factor = 14).

The expected focal adhesion growth is evident from the results shown in Figure 6. It represents the

temporal evolution of the focal adhesion formation on the deformed cell at different time steps of the

parameter base configuration.
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Figure 7. Mesh refinement for focal adhesion growth - base configuration.

The stress fiber growth for the base configuration is depicted in Figure 7, indicating convergence

for both solution schemes for chosen time step ∆t = 0.5 s. The refined mesh (mesh 2) shows virtually

identical results for the staggered and monolithic solution methods. Even for the unrefined mesh (mesh
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1), the results of the two methods have a relative difference of less than 3%. The good match of the

staggered and monolithic solution scheme was observed throughout all computations which led to the

same steady-state solution, irrespective of the value of the chosen time step size.

The need for mesh refinement is evident with the results depicted in Figures 7 and 9. A linear

convergence rate was observed for all problems, showing a model error of ≈ 2% for the finest

discretization using corresponding estimates for the exact steady state solution based on a Richardson

extrapolation [25]. The convergence of the stress fiber concentration at the mid-point of the domain

boundary is given in Figure 8.
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Figure 8. Convergence of the stress fiber concentration with mesh refinement.

In Figure 9(a), the stress fiber growth is shown for a modified Hill constant k̄v, reduced from

k̄v = 10 to k̄v = 1, with the effect that the steady-state solution is obtained already after one-third

of the simulation time of the base configuration, cf. Fig. 7. An increase of the time step size from 0.5s
to 2s has no influence with respect to convergence behaviour and the value of the steady-state solution.

The dimensionless Hill constant k̄v represents a velocity coefficient which relates the stress growth

in the stress fibers to the strain rate. A raise of k̄v has the direct effect of an increasing growth rate

of the active stress σ(a) which is used in the dissociation part of the stress fiber growth. An increase

of σ(a) reduces the dissociation of stress fibers and promotes the association part of the stress fiber

concentration rate, thus lowering the overall growth rate. Conversely, the stress fiber growth activates

faster when k̄v is reduced.
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(a) modified Hill coefficient k̄v
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Figure 9. Comparison of staggered vs. monolithic schemes for different mesh refinements.
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The increase of the strain rate from ε̇0 = 2.8e− 4 to ε̇0 = 0.01 accelerates the growth of the stress

fiber concentration even more as shown in Figure 9(b). Both modifications of the base configuration

lead to an increased stress fiber concentration of about 8%, which indicates a reduction of the stress

fiber association due to an increased active stress level.
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Figure 10. Comparison of staggered vs. monolithic schemes for different time step increments, finest mesh.
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Figure 11. Oscillatory behavior of the staggered solution scheme.

Next, we consider the influence of the time step size on robustness, reliability and numerical effort

of the analysis. Time steps ∆t of 0.5s, 1s, 2s and 4s were taken and a robust solution was obtained

for the base configuration. Even for a time step ∆t = 6s convergence was achieved with both schemes

but only for the base configuration whereas in all other parameter configurations only the monolithic

scheme succeeded. The models with modified Hill-coefficient and strain rate, depicted in Figures 10(a)

and 10(b), respectively, showed a different behavior. For a Hill-coefficient k̄v = 1.0 the staggered

scheme failed to compute a steady-state solution for ∆t = 4s. The failure occurred during the Newton-

Raphson iteration which we used for the solution of the non-linear equilibrium equations. In the case

of a increased strain rate to ε̇0 = 0.01, the staggered scheme failed already for ∆t = 2s.

In sum, the robustness of the staggered scheme was weaker than that of the monolithic scheme and

showed some discretization sensitivity in terms of an oscillatory behaviour already at a time step size

∆t = 1s, cf. Figure 10(b), and aggravated for larger time step sizes as depicted in Figure 11. This

behavior was not observed in any computation with the monolithic scheme, irrespective of the chosen

time step size and mesh density.
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The higher robustness of the monolithic scheme compared to the staggered scheme is clearly visible

from the comparison of Figure 12 which shows virtually no difference in the focal adhesion growth for

the staggered solution scheme using a time step of ∆t = 0.5s and for the monolithic approach with a

time step ∆t = 4s.

ξH
1.00e+ 00

5.03e− 01

6.69e− 03

(a) staggered solution, ∆t = 0.5s (b) monolithic solution, ∆t = 4.0s

Figure 12. Focal adhesion growth for staggered and monolithic methods at t = 2000s.

5.2. Cyclic loading

Next, the model was tested for a cyclic loading of a substrate supported cell to mimic in-vitro

experiments subject to external load patterns. Cells form a bond with the substrate through focal

adhesion, which results in stress transfer from the substrate to the cell. We assume a perfect bond

between substrate and the cell. Following the experiments reported in [26], the substrate was loaded

with a constant uni-axial cyclic loading according to the load pattern shown in Figure 13, where d = 3s,

1/f = 110s and ε0 = 0.32. The evaluated stress was considered in the mechanical equilibrium, eq. (1),

including the effect of the substrate with a stiffness of 20kPa.

substrate

cell
ε ε

(a) Substrate supported cell

d d

1/f
t

ε

ε0

(b) Cyclic loading pattern

Figure 13. Cyclic loading of a substrate supported cell.

The importance of this test lies in the observation that during the unloading phase, the stress fiber

concentration along the direction perpendicular to the loading direction is higher than in the loading

direction. This behavior is visible from Figure 14 where the φ = 90◦ curves cut the φ = 0◦ curves

at the level of η ≈ 0.2 which was simulated by both solution schemes but at different conditions. In

Figure 14, the stress fiber concentration for the steady state response is depicted after 1500s in the

direction of loading (φ = 0◦) and perpendicular to it (φ = 90◦). The chosen time steps of ∆t = 4s
for the monolithic scheme and ∆t = 1s for the staggered scheme reveal differences in amplitude and

phase. The large time step size of the monolithic scheme exceeds the core length (d = 3s) of the

trapezoidal loading function which leads to a constant phase shift. For smaller time steps ∆t ≤ 2s the

response curves are congruent.
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Figure 14. Cyclic loading response with load function (in black).

The key conclusion of this test is of a qualitative nature and in accordance with observations from

in-vitro testing [26]. For the cyclic loading we observed that the temporal variation of the stress fiber

concentration is affected, i.e. the stress fiber concentration varies with the fiber angles. As the cyclic

loading progresses, the stress fiber concentration at φ = 0◦ dissociates during the unloading phase

more than that in the perpendicular direction. In contrast, we observed that during the beginning of

the cyclic loading, the stress fiber concentration is higher along the direction of loading than in the

perpendicular direction. This observation is visualized in the circular histograms of Figure 15 which

reveal a fiber re-orientation over the simulation time towards the direction perpendicular to the loading

direction, representing strain avoidance.

The computation of the stress fiber concentration at each angle and time step is computationally

intensive but can be eased by using higher time step increments as is possible with the monolithic

solver. The qualitative observation of a stress fiber re-orientation behaviour obtained with the

monolithic solver and a large time step size matches the experimental observations very well.

t = 110s t = 1980s

(a) monolithic, ∆t = 4s

t = 110s t = 1980s
(b) staggered, ∆t = 1s

Figure 15. Circular histograms – qualitative comparison of stress fiber growth subjected to cyclic loading
along the horizontal direction (←→).

5.3. Performance aspects

It is worth noting that the system of equations of the monolithic scheme, eq. (56), has a factor 1.5
more degrees of freedom than the system of equations of the staggered scheme, eq. (38), which is

solved in two independent steps considering matrices of dimensions 2N and N . Furthermore, the

monolithic scheme cannot exploit symmetry properties during the solution process. As a consequence

of the different scales involved in the solution of the mechanical response and the focal adhesion

concentration, the system matrices are extremely ill-conditioned. Despite a pre-conditioning prior to
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the solution, a severe numerical sensitivity remains which is reflected in the large number of iterations

needed by the Newton-Raphson method to obtain equilibrium in each step, cf. Figure 16. We used a

direct solver for both methods to account for sufficient stability. The higher numerical effort needed

to factorize the non-symmetric system matrix of the monolithic scheme compared to the smaller and

symmetric system matrix of the staggered scheme was easily compensated by the significantly larger

time step used in the monolithic scheme. Regarding the numerical complexity of the two solution

schemes, the monolithic method saves a factor > 3 which pays off for the considered time spans. We

observed in all computations the monolithic scheme to be more stable at a slightly fewer number of

iterations and applicable to all tested temporal and spatial discretizations.
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Figure 16. Total number of iterations per time step.

6. SUMMARY, CONCLUSIONS AND OUTLOOK

We have explored the properties of solution schemes for a bio-chemo-mechanical model which

represents the multi-physical behavior of cells including elastic deformation, focal adhesion growth

and stress fiber re-orientation due to cyclic loading. We derived two variationally consistent continuum

formulations, coupling the different physics in terms of monolithic and staggered numerical solution

schemes. The mechanical sub-model considers large displacements and a Hill-type growth model for

active stress and a linear elastic passive stress model represents the internal forces of the balance

equations. The chemical sub-model represents the potentials of low and high affinity integrins

which satisfy a thermo-dynamical equilibrium by conversion of low and high affinity concentrations

considering elastic energy and bond energy due to tensile forces applied to the bearing cell substrate.

Finally, the model was completed by a feedback loop which relates the focal adhesion growth and

the stress fiber formation through an update of the calcium concentration in the cell. Based on

the variational formulation, we derived the governing algebraic equations of the monolithic and the

staggered solution schemes and provided an algorithmic description of the two solution procedures.

Furthermore, we provided the variational and discrete reaction-diffusion model of the feedback-loop

mechanism which is solved in each analysis step.

With the two derived solution schemes, we studied the growth of the stress fiber concentration in the

cell over time and tested the numerical performance of the two methods. To this end, we considered a

continuous model refinement in space and time which revealed the need for adaptive refinement and

a good match of the two methods for small time step increments. Despite a broad agreement of the

different solution schemes with regard to accuracy and convergence behavior, we observed an overall

higher robustness and reliability for the monolithic approach. In particular, with increasing time step

size, the staggered approach repeatedly failed to provide a steady-state solution and showed a distinct

mesh sensitivity which was observed already at smaller time steps. Both numerical models ameliorate
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an ill-conditioned system of equations by a pre-conditioning. Still, the number of iterations needed to

regain equilibrium in each time step is high and suggests to revisit this issue in future implementations.

Next, we studied the variation of strain rate and the Hill constant, both having influence on the speed of

convergence to a steady-state solution but at different rates. All tests showed a widely congruent result

for a large time step monolithic solution in comparison with a small time step staggered solution, the

latter showing reliability only for small time steps. In sum, the monolithic scheme has the potential to

save a significant number of analysis steps due to the possibility to apply a substantially larger time

step. An average saving of ≈ 70% was observed with regard to the number of solution steps, with

ensuing drastic effects on the total computational effort. It is the higher stability and robustness of the

monolithic scheme compared to the staggered approach which constitutes the most notable advantage,

more so than the gain in computational times.

Finally we studied stress fiber re-orientation of a substrate supported cell subjected to uni-axial cyclic

loading to mimic experiments performed in-vitro. They confirmed the efficiency of the monolithic

approach in the context of computationally demanding time-history simulations in cell mechanics.
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14. Küttler U, Gee M, Förster C, Comerford A, Wall WA. Coupling strategies for biomedical fluid-structure interaction
problems. International Journal for Numerical Methods in Biomedical Engineering 2010; 26(3-4):305–321, doi:
10.1002/cnm.1281.

15. Markert B. Weak or Strong: On Coupled Problems in Continuum Mechanics. No. II-20 in Report / Universität
Stuttgart, Institut für Mechanik (Bauwesen), Lehrstuhl II, Institut für Mechanik (Bauwesen), Lehrstuhl II: Stuttgart,
2010. OCLC: 699868505.

16. Keshavanarayana P, Ruess M, de Borst R. A feedback-loop extended stress fiber growth model with focal adhesion
formation. International Journal of Solids and Structures 2017; 128:160–173, doi:10.1016/j.ijsolstr.2017.08.023.
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