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Survivorship biases can generate remarkable apparent rate heterogeneities through time in otherwise homogeneous birth-death

models of phylogenies. They are a potential explanation for many striking patterns seen in the fossil record and molecular

phylogenies. One such bias is the “push of the past”: clades that survived a substantial length of time are likely to have experienced

a high rate of early diversification. This creates the illusion of a secular rate slow-down through time that is, rather, a reversion to

the mean. An extra effect increasing early rates of lineage generation is also seen in large clades. These biases are important but

relatively neglected influences on many aspects of diversification patterns in the fossil record and elsewhere, such as diversification

spikes after mass extinctions and at the origins of clades; they also influence rates of fossilization, changes in rates of phenotypic

evolution and even molecular clocks. These inevitable features of surviving and/or large clades should thus not be generalized to

the diversification process as a whole without additional study of small and extinct clades, and raise questions about many of the

traditional explanations of the patterns seen in the fossil record.
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The patterns of diversity through time have been of continuous in-

terest ever since they were broadly recognized in the 19th century

(e.g., Phillips 1840). In particular, both major radiations (such as

the origin of animals (Budd and Jensen 2000) or angiosperms

(Sanderson and Donoghue 1994)) and the great mass extinctions

(e.g., the end-Permian (Erwin 1993) or end-Cretaceous (Friedman

2010; Hull et al. 2011)) have attracted much attention, with an

emphasis on trying to understand the causal mechanisms behind

these very striking patterns. For example, the “Cambrian Explo-

sion” and “Great Ordovician Biodiversification Event” have both

been discussed at great length, with mechanisms as diverse as the

cooling of the Earth to bombardment with cosmic rays or secular

changes in developmental mechanisms being suggested (Smith

and Harper 2013). However, in the midst of this search, the ef-

fects of survival biases on creating the patterns under considera-

tion have hardly been considered. The last decades have also seen

a great deal of interest and work on mathematical approaches to

diversification and extinction (e.g., Stadler et al. 2014; Wang et al.

2013; Lieberman 2001; Ezard et al. 2012; Etienne et al. 2012),

including some that touch on the topics considered by this article

(e.g., see especially Mooers et al. 2011; Stadler and Steel 2012;

Ricklefs 2007; and Stadler 2013), but there is hardly any literature

on the dynamics of clade origins from the perspective of survival

biases and their effect on the fossil record. In this article, then, we

wish to explore the basis for such biases and then consider how it is

exported to various important aspects of the observed large-scale

patterns of evolution, with particular (but not exclusive) focus on

the sort of data that can be extracted from the fossil record. In the

following analyses, we calculate diversification over an interval

of 0.1 Myrs and plot graphs with an interval of 2 Myrs. We term

the (often unvarying) rate of a particular type of event (extinction

or speciation) in a model as the “background” rate; and the rate

of such events measured during a particular interval of time as

the “observed” rate. For example, the background rate of rolling

a six using an unbiased 6-sided die is 0.17; but if in seven trials

five sixes happened to be rolled, the observed rate would be 0.71.
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Our mathematical models are implemented in R (R Core Team

2017) and the code for this article is available in the Supporting

Information.

The “push of the past”
Nee and colleagues (Nee et al. 1994b; Harvey et al. 1994) summa-

rized the general mathematics of stochastic birth-death models as

applied to phylogenetic diversification (see also especially Rick-

lefs 2007). In such models, each lineage has a certain chance of

either disappearing (“death,” the rate of which is usually labeled

“μ”) or splitting into two (“birth,” rate “λ”). Many models that

consider diversity in this way have used constant birth and death

rates that have revealed much of interest about phylogenetic pro-

cesses (Nee 2001; Nee 2006). As Nee et al. (1994b) pointed out,

conditioning clades on survival to the present generates two bi-

ases in the rate of diversification through time: the “push of the

past” (POTPa) and the “pull of the present” (POTPr).

The POTPa emerges as a feature of diversification by the fact

that all modern clades (tautologically) survived until the present

day. This singles them out from the total population of clades

that could be generated from any particular pair of background

birth and death rates: clades that happened by chance to start off

with higher net rates of diversification have better-than-average

chances of surviving until the present day. As Nee et al. (1994a)

put it, such clades “got off to a flying start”; and they accumu-

late species faster than one would expect. Once clades become

established, they are less vulnerable to random changes in the

observed diversification rate, and this value therefore tends to re-

vert to the background rate through time. Long-lived clades thus

tend to show high observed rates of diversification at their origin,

which then decrease to their long-term average as the present is

approached. It is important to note that such an effect is only seen

in the rates of appearance of total species through time, not in the

rate of appearance of lineages. A similar effect should apply to

now extinct clades (such as trilobites) that nevertheless survived

a substantial length of time. This effect is analogous to the “weak

anthropic principle,” which contends that only a certain subset of

possible universes, that is those with particular initial conditions,

could generate universes in which humans could evolve in or-

der to experience them. Similarly, to ask the question why living

clades appear to originate with bursts of diversification that then

moderate through time is to miss the point that this pattern is a

necessary condition for (most) clades to survive until the present

day.

The “pull of the present” (POTPr) is, conversely, an effect

seen in the number of lineages through time that will eventu-

ally give rise to living species, which is effectively what is be-

ing reconstructed with molecular phylogenies. As the present is

approached, the number of lineages leading to recent diversity

should increase faster than the background rate of diversifica-

tion because less time is available for any particular lineage to

go extinct. Thus, the POTPa affects reconstructions of diversity

through time; and the POTPr affects the number of ancestral

lineages through time (Fig. 1A).

Despite the theoretical considerations above, molecular phy-

logenies, far from showing a pronounced POTPr, typically show

either no change in observed diversification rate as the present is

approached, or even show a marked slow-down in rate—the oppo-

site effect to what might be expected. Why this might be the case

has been the subject of intensive research over the last few years,

with various models being proposed, the most important of which

are the “protracted speciation” model of Etienne et al. (2012), and

various proposals that carrying capacities of environments lead to

“diversity-dependent diversification” (DDD) (see Rabosky 2013

for review; see also Cusimano and Renner 2010 for skepticism

about the reality of the effect). Diversification patterns thus poten-

tially show two sorts of slow-down: one after the initial burst of

diversification; and one as the present day is reached. This article

deals with the first of these effects. When clades had themselves a

recent origin, these two effects can of course be confounded, so in

our discussion we largely confine ourselves to old clades whose

“beginning” and “end” are clearly separated.

Although the POTPa is a known effect (although sometimes

confused with the “Large Clade Effect” that we discuss below

(e.g., Wahlberg et al. 2009; cf Ricklefs 2007)), and emerges nat-

urally from conditioning clade survival to the present (see e.g.,

Stadler 2010; Stadler et al. 2015), it has had no penetration into

the paleontological literature, where it is most important. In this

article, therefore, we wish to show how influential an effect it and

related effects are, and discuss its implications for general discus-

sions about the reasons behind typical patterns of diversification

seen in the fossil record and molecular phylogenies, including

guidelines for how it and related effects might be detected.

Mathematical Analysis
In this section, we extend on the approach of Nee et al. (1994b)

by explicitly conditioning the birth-death model on the number

of extant species in the crown group, and considering the full

distribution of clade abundances over time rather than just the

central expectation.

ESTIMATING THE NUMBER OF EXTANT AND

SURVIVING CLADES THROUGH TIME

As noted by previous studies (Nee et al. 1994b; Strathmann and

Slatkin 1983), in the classic birth-death model with speciation

rate per species λ and extinction rate per species μ, the number of

extant species, nt in a surviving clade at a given time t from the
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Figure 1. An example diversification with 10,000 living species, an extinction rate of 0.5 per species per million years and a diversification

time of 500 Myrs. The implied speciation rate is 0.5107 per species per million years and thus the underlying diversification rate is 0.0107

per species per million years. (A) Diversity plot through time. As in all other figures, the blue line is the number of species at time t and

the red line the number of species that will give rise to living species. Shading gives 95% confidence areas. Note large POTPa and POTPr.

(B) Observed diversification rate at beginning of diversification (note scale of 100 Myrs). (C) Implied diversification rate correlation with

diversity generated by this distribution.

origin at time zero, obeys the following zero-truncated geometric

probability distribution

P(nt ) = G(nt − 1; 1 − at )

≡ (1 − at )a
nt −1
t (1)

with

at = λ(1 − exp(−(λ − μ)t))

λ − μ exp(−(λ − μ)t)
(2)

It is also useful to introduce the survival probability, s�t : the

probability that a lineage with one originating species will survive

for a duration of time �t ,

s�t = λ − μ

λ − μ exp(−(λ − μ)�t)
(3)

For the limiting case where λ − μ → 0, see Strathmann and

Slatkin (1983). Nee et al. (1994b) proceeded by conditioning the

distribution of nt on the tree surviving until some future time, T .

Here, we also condition on there being nT extant species at time

T . By Bayes’ rule:

P(nt | nT ) = P(nT | nt )P(nt )

P(nT )
(4)

Two terms in this equation are given immediately from equation

(1). We can evaluate the remaining term, P(nT | nt ), by recogniz-

ing nT as a sum of mt i.i.d. geometric random variables obeying

equation (1) over a time period T − t , where mt is the (unknown)

number of species at time t that will give rise to surviving lin-

eages. This implies that P(nT | mt ) follows a truncated negative

binomial distribution (with nT taking a minimum value of mt ):

P(nT | mt ) = NB(nT − mt ; mt ; 1 − aT −t )

≡
(

nT − 1

nT − mt

)
(1 − aT −t )

mt anT −mt
T −t (5)

The number of lineages that survive depends on the probability,

sT −t for a lineage to survive from time t to time T , and follows a

binomial distribution:

p(mt |nt ) = B(mt ; nt , sT −t )

≡
(

nt

mt

)
smt

T −t (1 − sT −t )
nt −mt (6)

Combining the previous equations, and summing over the un-

known value of mt , we are left with the following expression for

the number of living species at time t , conditioned on the number

of species in the present:

P(nt | nT ) = G(nt − 1; 1 − at )

G(nT − 1; 1 − aT )

nt∑
mt =1

B(mt ; nt , sT −t )

× NB(nT − mt ; mt ; 1 − aT −t ) (7)

where the relevant probability mass functions are as defined

above. We can further evaluate the conditional probability of

mt – the number of species at time t that will have at least one

descendant at time T . Here, we integrate over possible values of

nt :

P(mt | nT ) = NB(nT − mt ; mt ; 1 − aT −t )

G(nT − 1; 1 − aT )

∞∑
nt =1

B(mt ; nt , sT −t )

× G(nt − 1; 1 − at ) (8)

What sort of expectations should we have about the size and

duration of the POTPa? By looking at a small initial interval of

time �t from the origin and considering both the probability that

the clade has diversified to two species in this interval and the

2 2 7 8 EVOLUTION NOVEMBER 2018



PERSPECTIVE

probability that it will survive to the present, we can estimate the

initial observed rate of diversification for surviving clades:

P(n�t = 2 | survive to T ) = P(survive to T | n�t = 2)P(n�t = 2)

P(survive to T )

= 1 − (1 − sT −�t )2

sT
P(n�t = 2) (9)

� (2 − sT )λ�t

where we have assumed that sT −�t � sT for small �t . It follows

that the initial rate of diversification, R0, in the POTPa can be

estimated by:

R0 = (2 − sT )λ. (10)

If we look back to the origins of major clades, we expect sT to

be small for geologically significant periods of time, and thus for

these examples the rate can be further approximated as,

R0 � 2λ. (11)

(we note that similar results concerning the interior branch lengths

of reconstructed trees have been derived by Stadler and Steel

2012).

It is important to note that at the precise origin of a clade that

will survive to the present, the observed extinction rate is neces-

sarily zero, since any extinction event would terminate the clade.

Thus at this point the observed speciation and diversification rates

are the same.

The result above shows us that if we know λ and μ, we can

immediately calculate that the expected POTPa should produce a

decline in observed diversification rate from about 2λ as an initial

value down to λ − μ as deduced from the fossil record. However,

the broad confidence intervals on this value place the 95% range

on this value widely: for example, in Figure 1 over the first million

years, the initial rate could be as low as 0 and as high as 3 (i.e., 6λ).

Thus slowdowns seen in rates of diversification that begin with a

wide range of values and quickly decline (largely being over by the

time of the establishment of the crown group), with reconstructed

rates in the stem lineage being significantly higher than in the

generated plesions (i.e., extinct branches), are attributable to the

POTPa. For the case of the birds discussed below, one would

expect (in the fossil record) an observed initial diversification rate

of about 1.25, that is about 20 times faster than the background

rate. Another example is provided by the study of diversification

rates in placental mammals (Raia et al. 2013) that simulates a

best fit homogeneous model with parameters λ = 0.7,μ = 0.6,

and λ − μ = 0.1. A POTPa would be consistent with a decline

in rates from 1.4 to 0.1 over 5–10 million years, which closely

matches their reconstruction of phenotypic rates (that they show

to be correlated to diversification rates in their data). Thus, the

calculated POTPa corresponds closely to real-world examples.

Even though the POTPa as an average effect quickly declines

in time, the survivorship bias that gives rise to it must persist along

the surviving lineages: every clade that will survive to the present

commences with one original species, which is vulnerable to ex-

tinction. As the survival rate typically remains low until close to

the present, it follows that the constant renewal of the surviving

stem lineages follows a quasi-fractal pattern of repetition. A fur-

ther notable feature is that as the present day is approached, and

the survival probability thus tends to one, the observed rate of

speciation along surviving lineages declines back toward λ.

An example plot displaying the various parameters that gov-

ern this analysis is given in Figure 1A. (cf Nee et al. 1994b). This

plot is for a clade that has 10,000 living species/lineages; which

emerged about 500 million years ago, and which has an average

lineage duration of 2 million years (i.e., μ = 0.5).

The blue line gives the number of species at any particular

time; and the slope of the blue line is the observed diversification

rate governed by the time elapsed and total number of taxa at the

Recent, nT . Conversely, the red line gives the number of lineages

that gave rise to living species/lineages. We take as the rate of

speciation the maximum likelihood estimate of λ, given μ, T and

nT , which in this case is 0.5107 (rates in this article are given

to a maximum of four decimal places). Thus the rate of diver-

sification (λ − μ) is c. 0.0107 per species per million years. As

can be seen, the slopes of the two lines diverge at the beginning,

representing the push of the past, and at the end, representing

the pull of the present, both of which are large in this case. If

there had been a deterministic (i.e., nonstochastic) radiation of

species from the Cambrian onwards with the net diversification

rate of 0.0107 species per species per million years, then instead

of 10,000 there would have been only about 210 species of this

taxon today. Figure 1B shows the implied large spike in the initial

observed diversification rate, owing to the POTPa, with the initial

observed diversification rate (∼1) being 100 times the underlying

average. Note also that this effect generates a (noncausal) cor-

relation between diversity and diversification rate (Fig. 1C): as

diversity increases, (average) rate of diversification decreases.

How realistic are the numbers in our example? The size (and

thus importance) of the POTPa depends on the rate of extinction

relative to the other parameters. Extinction rates have proven

difficult to estimate from both molecular phylogenies (notably

Rabosky 2010; but see also Beaulieu and O’Meara 2015; and

Rabosky 2016) and the fossil record (see e.g., discussions in Alroy

1999; Alroy 2014; Wagner and Lyons 2010; and Hagen et al.

2017). Nevertheless, the fossil record in particular shows that

extinction rates must be relatively high, as most species across

a wide range of taxa only last a few million years at most in

the record (e.g., Crampton et al. 2016). For example: extinction

rates over all marine invertebrates have been broadly estimated

at c. 0.25 per species per million years (Barnosky et al. 2011;

EVOLUTION NOVEMBER 2018 2 2 7 9



PERSPECTIVE

Raup 1991), and for Cenozoic mammals at up to 2 per species per

millon years (Barnosky et al. 2011; Ceballos et al. 2015). Even

highly conservative (i.e., low) estimates of background extinction

rates, which partly equate species with genera in the fossil record,

suggest rates in excess of 0.13 (de Vos et al. 2015; cf Harnik et al.

2012; see Alroy 2014, however, for a critique of the methodology

used in the latter, which produces a notable downwards bias).

An example clade would be the birds, that, although may have

had their crown group origin some 120 Ma (Jetz et al. 2012; but

see also Prum et al. 2015 and Ksepka et al. 2017 for a more

compressed view of bird evolution), nevertheless seems to have

undergone a mass extinction along with the other dinosaurs 66 Ma

(Longrich et al. 2011). Such a clade thus took approximately 66–

70 Myrs to radiate into 10,000 species. Assuming a (probably

conservative) extinction rate of 0.5 based on other land vertebrates

(Loehle and Eschenbach 2012); taking 70 Ma, this would imply

a speciation rate of 0.6068 and a diversification rate of 0.1068 (cf

Jetz et al. 2012). Of course, all these numbers are approximate,

but our aim with them is to show that the patterns we discuss

in this article arise from very typical empirical values seen in

analyses of extinction and diversification. Assuming that birds

are a “typically” sized clade (see below), this would imply a

notably enhanced rate of diversification with initial rate of 1.214

species per species per million years that would decline over about

5–10 million years (cf Ksepka et al. 2017).

Although the parameters we have explored in this article

thus seem to be typical of diversifications over a large range of

species numbers and time, we wish to stress the important point

that the clades that emerge from them that survive for long periods

are rare. In our example, although the living clade survived for

500 Myrs, the median survival time of an average clade generated

by these parameters is only 2 Myrs. Furthermore, only 2.1% of

clades thus generated will survive for 500 Myrs. These numbers

emphasize how unusual long surviving clades are, even when

there is a net positive diversification rate: survival rates for other

diversification scenarios are given in Figure 4. The POTPa gen-

erally has the paradoxical effect of making high extinction rates

increase observed rates of diversification and numbers of living

species—in the rare clades that managed to survive.

CROWN GROUP ORIGINS

We now turn our attention to estimating the origin time of extant

crown groups. First we consider the definition of a “randomly

selected” crown group used by Raup (1993): the group emerging

from the common ancestor of two randomly selected extant

species.

Assume that we have selected one species at random from

nT extant taxa. We now select a second. What is the probability,

W (t | nT ) that we select one that shares a common ancestor with

the first at time t? If there are mt lineages at time t that will

survive to the present, then each of these must give rise to at least

one extant species, leaving nT − mt remaining extant species that

do not inevitably have to join up with the other mt − 1 ancestor

species. Each species from this remaining set will have a 1/mt

probability of sharing an ancestor with the first selected, thus:

W (t | mt , nT ) = nT − mt

nT mt
. (12)

To obtain the desired probability, W (t | nT ) requires a posterior-

weighted summation over the possible values of mt :

W (t | nT ) =
nT∑

mt =1

W (t | mt , nT )P(mt | nT )
nT∑

mt =1

nT − mt

nT mt
P(mt | nT ),

(13)

where the posterior distribution on mt is calculated as above.

W (t | nT ) represents a cumulative distribution function for the

timing of crown group origins for randomly selected pairs of

species, looking backwards in time. The corresponding proba-

bility density function, w(t | nT ), is given by differentiation of

W (t | nT ):

w(t | nT ) = −dW

dt
. (14)

Compared to Raup’s model (which can be most closely approxi-

mated by the Yule process (see below), although he did not include

a stochastic component) our model delays the average time of ori-

gin of Raupian crown groups because of the effect of the POTPr

of allowing a longer period of lower early lineage diversification

rates. Nevertheless, it remains true that randomly selected pairs of

taxa will also tend to have early origins (Fig. 4F, I). As can be seen

(Fig. 4C), the Yule process forces crown-groups defined in this

way to emerge very early. Budd and Jackson (2016) simulated the

origin of the first crown groups in clades conditioned on survival,

a topic of much interest in “Cambrian Explosion” literature (e.g.,

Erwin 1993). In simulations that start with one lineage and go

on to diversify to the Recent, the time the simulation begins can

be taken as the origin of the total group, and the emergence of

the crown group (for the entire clade) when mt (the number of

lineages at any time t that will give rise to living descendants) is

equal to two (i.e., the basal split of the crown group is formed).

Since this state can only be reached from a previous state of

mt = 1, the probability density u(t) that the first crown emerges

at time t can therefore by calculated by considering the rate of

change in the probability that mt = 1:

u(t) = −d P(mt = 1 | nT )

dt
. (15)

As summarized in Nee et al. (1994b) and Figure 1A, we can see

that mt in the early stages of diversification essentially depends

on λ − μ: mt � exp([λ − μ]t). Thus a simple approximation for
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Figure 2. (A) Illustration of the rate of plesion creation along the surviving lineages (black solid line) and the mean number of plesions

created along each stem group (red dashed line) through time. As rate of plesion creation is almost flat for most of the time, it follows that

the decline in number of plesions per stem group depends on the stem groups decreasing in size temporally. (B) Observed diversification

rate (red) and probability density functions of the first crown group (black, solid) and origin times for pairs of random living species

(black, dashed) against time. All plots for a diversification over 500 Myrs in total, nT = 10, 000, λ = 0.51, and μ = 0.5 (i.e., the same

example as Fig. 1). Note the likely emergence of the first crown group as the POTPa decays.

the expected length of time it takes for the first crown-group to

emerge is given by:

ln(mt ) � (λ − μ)t. (16)

Thus tcg , the time in millions of years ago that the first crown

group is expected to have emerged is simply

tcg � T − ln 2

λ − μ
, (17)

where T is the time elapsed since the origin of the total group. As

an interesting aside, the underlying diversification rate λ − μ is

thus approximated by:

λ − μ � ln 2

T − tcg
. (18)

The combination of the POTPa and the dependence of tcg

on λ − μ means that stem and crown groups exhibit different

characteristics of diversification and diversity, as the first crown

group tends to emerge as the effect of the POTPa fades away. An

example of this is given in Figure 2B.

The Push of the Past and the Fossil
Record
OVERVIEW

Within a particular total group, then, stem groups are character-

ized by high observed diversification rates and low diversity; and

crown groups by low diversification rates and increasing diversity

(cf Fig. 1C). The interaction between the crown group and the

POTPa allows us to understand why it is that the crown group

emerges just as the POTPa dies away: the POTPa is an effect seen

when there are few (surviving) lineages and as soon as there are

two rather than one, the likelihood of the clade surviving until the

present is considerably increased.

It is important to note that the high rates of observed diversifi-

cation in stem groups are not general features, as we are applying

a homogeneous model of diversification. Rather, unusually high

observed diversification rates are concentrated in the stem lineage

that leads to the crown group(s) (cf Stadler and Steel 2012). Stem

groups should thus generate a high number of so-called “plesions”

(i.e., extinct sister groups to crown groups (Budd 2001; Craske

and Jefferies 1989)) that themselves will diversify and go extinct

at approximately the background rate governed by λ − μ. From

equation (10) we can see that the rate of speciation along most of

the stem lineages, and thus the rate of production of plesions, re-

mains close to 2λ, although the rate slowly declines until close to

the Recent, when it precipitously drops to λ. Similarly, lengths of

stem-groups also decrease, over a longer timescale, as the present

is reached (see Fig. 2A for graphical treatment). Such effects

should be observable and inferable from the fossil record by plot-

ting speciation and extinction rates using appropriate methods for

extracting these values (e.g., Alroy 2000; Alroy 2014).

This analysis gives us a remarkable perspective on the fossil

record (Fig. 3), which is after all considered on methodological

grounds, as taxa in cladograms are only ever terminals, to be com-

posed entirely of plesions (Budd 2003; but see also Gavryushkina

et al. 2014) except for fossils of extant species. Average rates

of speciation (and, as we shall argue below, rates of phenotypic

evolution) typify the clouds of plesions that are constantly being

generated (and dissipating) at a high rate; but underlying them,

and hidden from view, are stem lineages that speciate at twice the

normal rate. It is only briefly, at the beginnings of radiations and
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Figure 3. A small section of a tree at a time distant from the present. Red branches represent lineages that survived until the present,

and where they diverge represents the birth of a new crown group. Green branches represent plesions that do not survive until the

present. As per the results presented herein and in Stadler and Steel (2012), the stem lineages species generate plesions at a rate close

to 2λ and the plesions themselves speciate at rate λ: the crown groups form at rate λ − μ.

after the great mass extinctions (see below) that these obscuring

clouds are stripped away, and we get to peer at the underlying

hyperactive stem lineages. Once again though it must be stressed

that this pattern only emerges as a result of our perspective in

the Recent, which allows us to distinguish stem lineages from

plesions.

DIVERSIFICATION SCENARIOS

Armed with the mathematical analysis and example above, we are

now in a position to analyze various scenarios that might play out

in patterns of diversity and the fossil record. In each, we wish to

examine: (i) the size of the POTPa effect; (ii) the distribution of the

timing of crown group origins; and (iii) the relative proportions

that the stem and crown groups take up of the total group.

THE YULE PROCESS

The Yule process (Yule 1924) governs diversification processes

with no extinction, that is that μ = 0. Of course this is not real-

istic over geologically significant time periods, but nevertheless

is important to show the contrast between this and more realistic

models. Furthermore, it can be used to model surviving lineages

through time, that have no extinction.

Under the no-extinction model, as all species give rise to

living lineages, it is clear that the blue and red lines of Figure 1

are coincident (Fig. 4A) irrespective of the error on each. There

is neither a pull of the present nor a push of the past (Fig. 4B),

and the slope of the line simply gives the diversification rate

through the time required to lead to the observed nT . The rate of

diversification is completely constant along the mean, since the

diversification rate has been selected to generate nT (i.e., 1000

species in this case). Nonetheless, as the confidence region shows,

early fluctuations in this process are possible, which we consider

further later. Another feature of the no-extinction model is that

total and crown groups are nearly coincident for any particular

clade, as stem-groups grow by extinction (Budd 2003). A lag at

the beginning is possible though, before the first speciation event

takes place.

MODELS WITH NET DIVERSIFICATION

AND EXTINCTION

Figure 4D–F and G–I model two net diversification models; one

with μ = 0.1 and the other with μ = 0.5, both with the best-fit

implied λ (the maximum-likelihood value given T, nT and the

selected value of μ). As can be seen, increasing μ increases the

POTPa.

If μ is set very low (e.g., μ = 0.01 for T = 500 Myrs and

nT = 1000), then the POTPa can be much reduced. However,

such models imply very implausible species longevities (a typi-

cal species would be expected to survive 100 Myrs in this model,

numbers that are not realistic for the Phanerozoic. They may, how-

ever, be more appropriate to the Proterozoic (Butterfield 2007)).

Models with the same background diversification rate can

have high and low turnover (e.g., λ = 0.6, μ = 0.5, or λ = 0.2,

μ = 0.1). As models with larger diversity fluctuations in will be

more vulnerable to extinction than ones with small ones, it follows

that high turnover scenarios require a larger POTPa to escape the

early period of vulnerability.

Mass Extinctions
We have chosen for simplicity a diversification model that is

diversity-independent and has homogeneous rates of extinction

both through time and for taxon-age (cf Van Valen 1973). Nev-

ertheless, the handful of mass extinctions through time have had

a large impact on diversification patterns (Benton and Emerson

2007). The most important are perhaps the end-Permian (with
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Figure 4. Patterns of diversification and stem- and crown-group formation for different (constant) diversification parameters. For each

column T = 500 Myrs and nT = 1000. All rates given per species per million years. Shading gives 95% confidence areas. Row one gives

plots of diversity and diversity that gives rise to extant species through time; row two gives observed average diversification rates

through time over the first 100 Myrs (i.e., the POTPa effect); row three gives probability density function plots for the appearance of the

first crown group (red) and for crown groups defined by random pairs of living species. (A–C) Yule process with μ = 0 and λ = 0.014.

(D–F) low μ net diversification with μ = 0.1 and λ = 0.109. (G–I) high μ net diversification with μ = 0.5 and λ = 0.505. For the second

column, median clade survival time is 10.5 Myrs and 8.2% of clades would survive 500 Myrs; for column 3, the corresponding numbers

are 2 Myrs and 1%. Note different time scale on second row.

c. 80% of all species going extinct (Stanley 2016)) and the end-

Cretaceous (c. 68% loss (Stanley 2016)). Such events could be

considered as simply “resetting the clock”—that is if evidence

exists that extinction was extremely severe in a particular clade,

then T should be considered to restart at that point. Some overall

patterns of diversification suggest that the only truly important

mass extinction in this regard is the end-Permian one (Sepkoski

1998; Aberhan and Kiessling 2012), which divides Phanerozoic

time more or less into two, with large, but largely uncommented,

POTPa effects at the beginning of each. One interesting effect is

that the bigger a mass extinction, the bigger the subsequent POTPa

would be, assuming something survives to the present. Even so,

these big pushes can never make up for the lost diversity, even if

they compensate for it to some extent. For example, for a diversi-

fication that started 500 Ma, and that would have generated 1000

living species without any disturbance, and with a background ex-

tinction rate of 0.5 (and implied maximum-likelihood speciation

rate of 0.504), a mass extinction 250 Ma down to only one species

and the subsequent POTPa and reradiation would only generate

240 living species—it is a rerun of the original radiation but in half

the time. On the other hand, without any POTPa, this reradiation

would be expected to generate only three living species.
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Figure 5. The impact of number of remaining species on a pos-

textinction POTPa on a clade that had diversified for 250 Myrs

to generate 1000 species, assuming clade survival to the present,

with baseline diversification λ − μ = 0.01. The curves from bot-

tom to top represent background extinction rates of μ = 0 (Yule

process), 0.1, 0.3, and 0.5 per species per million years.

It is possible to model the POTPa with a standing diver-

sity, and show how the size of the POTPa declines as surviv-

ing diversity increases. We modelled this by plotting number of

survivors against immediate observed diversification rate postex-

tinction (Fig. 5) for different rates of background extinction for

a radiation that took 250 Myrs to generate 1000 species. As can

be seen, extinctions can indeed generate a large POTPa, but the

number of remaining species for the clade needs to be reduced to

a few percent of their original numbers. Thus, really large POTPa

effects after a mass extinctions are likely to be contingent on large

extinctions preceding them in the clade in question. It should be

noted that individual clades can be reduced to just a few surviving

species, even when overall extinction rates during a mass extinc-

tion are relatively moderate (such “dead clades walking” however,

are likely to be common: see for example comments in Jablonski

2002).

Another POTPa-like bias may also be having an effect, which

is the effect of the POTPa on fossilization rates themselves. One of

the controls on the preservation probability of a taxon is its true (as

opposed to fossil record) temporal duration, and thus its extinction

rate (Foote 1997; Foote and Raup 1996). When diversity drops

to a low level, survivorship over the next short interval of time is

compromised, with the implication that only taxa that experience

unusually high rates of diversification are likely to survive—and

thus enter the fossil record. Figure 6 shows there is a strong

relationship between survivorship on a million or submillion year

scale and diversification rates. In brief: taxa straight after a mass

extinction or at the beginning of a radiation have an unusually

poor chance of entering the fossil record, as their diversity is
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Figure 6. Expected observed initial diversification rate as a func-

tion of clade survival time for different values of underlying ex-

tinction rate, μ in a neutral model. As μ increases, a bigger and

bigger POTPa is required to ensure the clade survives the first few

million years.

so low and their chance of almost instant extinction is so high.

However, the taxa that by chance experience high rates of early

diversification are much more likely to survive long enough to

generate a discoverable fossil record. Such an effect may at least

partly lie behind the observation that fossilization rates seem to

be depressed after mass extinctions (notably the end-Permian

(Twitchett 2001)). Thus, one interesting aspect to this pattern in

the record, that such “recoveries” seem to be delayed, with clades

sometimes taking millions of years to show increased rates of

diversification (see e.g., discussion in Sepkoski 1998), may be

partly explicable by this effect too: early survivors are simply

such low diversity that they tend to go extinct faster than they can

enter the fossil record.

THE “COPERNICAN” NATURE OF HOMOGENEOUS

BIRTH-DEATH MODELS

The various cases we have considered above show that the POTPa

is in general a very important factor that cannot be neglected

in trying to understand diversity patterns of the past. The most

important control on the size of the POTPa is the extinction rate

(compare Figs. 4E and H) although time to the Recent also has

some effect. Thus, when significant time periods have passed, the

POTPa is always large unless the background extinction rate is

extremely low (cf Ricklefs 2007)—much lower than seems to be

typical for at least Phanerozoic taxa, which typically have a life

time of a few million years (Sepkoski 1998).

Because of the nature of the homogeneous model we are

using, we wish to stress its “Copernican” aspect, that is that diver-

sification is on average the same at all times. Each stem lineage
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Figure 7. (A) Diversification when an exceptionally large clade is generated with the parameters of Figure 1 (here, 10 x larger than

expected). An early lineage effect is introduced as this is where fluctuation in actual rates is most likely. (B) Calculated decline of lineage

rate (thus in red) through time. Note that it lasts considerably longer than the POTPa although is of smaller effect (here initially c. 10 x

the background rate of λ − μ). (C) Implied lineage diversification rate correlation with lineage diversity generated by this distribution.

The dashed line in (B) and (C) indicates the expected background rate (0.01) in each case.

will be characterized by a high POTPa, but as diversification con-

tinues, its distorting effect on average diversification rates in sur-

viving lineages will be diminished by two factors. The first (which

is small until the POTPr is reached) is that as time advances, each

lineage has less time to survive until the present. The second is

that as diversification proceeds, more average or even below av-

erage diversification-rate lineages will be present, and thus the

overall average rate of diversification will be swamped by their

diversification rates. In the first stem group, so few lineages are

present that the implied POTPa on the stem lineage will have

a disproportionate effect on average diversification rates. Such

controls produce the characteristic decline in average actual di-

versification rates through time, even though an observer at any

particular time would not notice any difference whatsoever.

The Large Clade Effect: An Analogy
to the POTPa in Reconstructed
Phylogenies
So far, we have considered the effect of survivorship biases in the

blue line of Figure 1. Our exploration of the POTPa shows, how-

ever, that when conditioned on survival, it remains nearly constant

at along the surviving lineages at close to 2λ until the Recent

is approached. Hence, it largely cannot account for long-term

declines in phenotypic and molecular rates along the lineages (see

below) or lineage production rates themselves. However, survival

alone is not the only characteristic of a clade that can lead to sta-

tistical biases. As we have shown, the birth-death model can also

be conditioned on the number of extant species in the Recent, nT .

Therefore we can ask about the characteristics of outliers within

the set of surviving clades, specifically those with a larger-than-

expected present diversity (Ricklefs 2007). Such outliers represent

those clades that are held up as the most “successful” examples of

their type and, erroneously as we shall see, are often presented as

“representative” of their particular time of origination. As Pennell

et al. (2012) observed through simulation analysis, larger than

average clades are statistically more likely to show a slowdown

relative to smaller clades. To illustrate this, we recalculated the

example shown in Figure 1, but conditioned it to generate 100,000

instead of 10,000 species (Fig. 7). Under such rare conditions,

more lineages need to be generated than normal, and the most

likely moment to do this (as can be seen in the confidence

regions of Fig. 1A) is at the beginning, when overall numbers of

lineages are small and statistical fluctuations more noticeable in

effect.

Under such circumstances, a lineage effect is produced

(Phillimore and Price 2008; Pennell et al. 2012), which could

be called the large clade effect (LCE). Although it is smaller than

the classical POTPa (in the example of Fig. 7 the rate of speciation

along the lineages increases to 2.2λ from 2λ), it has the effect of

speeding up the appearance of new living lineages near the be-

ginning, and thus makes crown groups emerge (even) earlier. The

lineage through time plot thus takes on a characteristic inverted

“S” shape that is often seen in plots of molecular phylogenies

(e.g., Etienne et al. 2012; Harmon et al. 2003). Like the POTPa, it

has a quasi-fractal organization—within a given clade, larger sub-

clades will experience greater early diversification than smaller

subclades. As we discuss below, this effect thus influences rates

of evolution in large clades, and will be particularly prominent

if such clades have happened to attract more than average atten-

tion, as has indeed been suggested (Ricklefs 2007). A correlation

with lineage diversity is also generated Figure 7C, which in our

example can be seen for about the first 20 lineages.
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The initial magnitude of the LCE can be explicitly calculated

in terms of the relative magnitude of the clade relative to its ex-

pected size conditioned on the background speciation and extinc-

tion rates, E(nT | survive). To determine the initial rate relative

to the background value R = λ − μ, we consider the probability

that the new clade with one lineage diverges into two lineages

within a small unit of time, both a priori and conditioned on the

final clade size. Recalling that the distribution of nT conditioned

on mt is negative binomial, we have:

R0

R
= P(m�t | nT )

P(m�t )

= P(nT | m�t )

P(nT )

=
(

nT − 1

nT − 2

)
(1 − aT −�t )2anT −2

T −�t

(1 − aT )aT
(19)

� (nT − 1)
(1 − aT )

aT

= nT − 1

E(nT | survive to T ) − 1
� nT

E(nT | survive to T )

Thus we can see that the expected size of the initial LCE, and

thus the magnitude of the later slowdown, is proportional to the

eventual clade size. It should be noted the clade containing any

randomly chosen species is expected to be twice the average

clade size, and thus there is a consistent bias toward this effect

appearing.

Effects of the POTPa and LCE on
Rates of Phenotypic and
Molecular Change
The rate of phenotypic change through time is another pattern

that has seen a great deal of interest (e.g., Westoll 1949; Lloyd

et al. 2012; Lee et al. 2013; Ruta et al. 2006; Brusatte et al. 2010;

Bronzati et al. 2015; but see also Harmon et al. 2010). A classical

pattern of rates of phenotypic change is that rates are elevated

at the origin of a clade and then show an exponential decline

(e.g., Erwin 1993). Such a pattern looks, of course, like a POTPa

effect, but this effect would seem to rely on a correlation between

rates of phenotypic change and diversification. While this seems

both intuitively reasonable and has much theoretical backing, this

pattern has been difficult to demonstrate and indeed some studies

have failed to reveal it (e.g., Adams et al. 2009; Hopkins and

Smith 2015; but see also Rabosky and Adams 2012 who review

the topic in general). Our model can account for such patterns

by considering the fossil record to consist of plesions that are

generated by a rapid rate of speciation in an underlying but unseen

stem lineage. In principle at least, each of these speciation events

(at least as recognized in the fossil record) should be accompanied

by a set of diagnostic synapomorphies that accumulate within the

stem lineage twice as fast as they do in the plesions that arise

from it. This effect does rely on some sort of correlation between

phenotypic change and diversification rates. However, in at least

the fossil record, where distinct taxa are recognized solely on the

phenotypic differences, some such connection must exist.

As the survivorship bias that leads to the POTPa remains

more or less constant along long stretches of the lineages until

the present is reached, it follows that it should not generate a

“slow-down” in measured rates of either phenotypic or molecular

change along the lineages (i.e., measured along the red line of

Fig. 1) when the present is far away. Average phenotypic rates

of change should however decline through time when measured

over all fossil taxa (i.e., measuring the rate of phenotypic change

in the blue, rather than red, line of Fig. 1). The notable study

of lungfish evolution through time by Lloyd et al. (2012) recon-

structed rates of phenotypic evolution through time and indeed

noted such a decline (see their Fig. 4; note that it also shows char-

acteristic postextinction spikes; cf Raia et al. 2013 that shows a

similar decline through time). However, as the authors note, the

(reconstructed) stem lineage leading up to the extant lungfish re-

tains high rates of phenotypic change much later than the initial

rapid decline in overall rates, while the plesions appear to show no

such pattern (the authors do not differentiate between the two in

their analysis of the decline in rates). Study of bird and dinosaur

phenotypic change rates also strikingly shows a similar concen-

tration of change along the stem leading to the extant taxa (Benson

et al. 2014). This pattern is exactly what the model we develop

here would predict, as it confines the POTPa to the stem lineages,

and suggests that their documented decline of phenotypic rates of

evolution is a striking consequence of the POTPa (compare their

Fig. 1 with our Fig. 3). Clearly, it would be possible to test this

pattern in other groups too. The POTPa should not, however, af-

fect rates of molecular evolution because this cannot be measured

in the blue line, only in the red.

The LCE, conversely, should affect rates measured along the

lineages, but in a subtle way. For a big LCE, for example the 10 x

larger than expected effect of our Figure 7, the rate of speciation

along the lineages is initially increased only very modestly, that

is in this instance from 2λ to 2.2λ. However, the initial rate of

appearance of lineages increases from λ − μ to 10 (λ − μ). The

implication of both together is that even if rates of speciation are

correlated with rates of molecular and phenotypic change, neither

of the latter should noticeably increase as a result of the LCE.

However, the amount of that approximately constant change in

large clades that is curated into the present along the lineages

is disproportionately sourced from the early stage of the clade’s

history, when the LCE is in effect, at a rate proportional to the

size of the LCE. In other words, when more early species survive

to become lineages, more of the total amount of phenotypic and
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molecular change that took place during that interval of time is

captured by those lineages and thus survives to the present, rather

than being lost to the unobservable plesions.

Thus, the initial change per unit time per lineage should

be increased proportionally to the size of of the LCE for both

molecular and phenotypic change. This can give rise to large

effects, which can be seen in the study of Lee et al. (2013), where

large initial rates for both phenotypic and molecular evolution

can be seen as measured along the lineages. We note that the

initial effect seen in Lee et al. (2013) is approximately 10× the

normal rate and lasts until about 17 lineages have been created,

very similar to our calculation in Figure 7C.

One implication of this finding is that in unusually large

clades, one should expect a concentration of rapid molecular evo-

lution in early lineages, and, if not corrected for, will create the

effect of making molecular clocks overestimate origination times.

Such an effect could in principle account for the continuing dis-

crepancy between molecular clock estimates for the origin of the

animals and the fossil record, for example Lee et al. 2013 (but

only in large clades, such as the arthropods (Lee et al. 2013)—

and, of course, the animals themselves). Thus, although various

studies have shown that rates of molecular change may or may

not be correlated with diversification rates (e.g., Barraclough and

Savolinen 2001; Bromham 2003; Davies et al. 2004; Pagel et al.

2006; Lanfear et al. 2010; Goldie et al. 2011), our model sug-

gests that it is not diversification rates per se, but rates of lineage

creation, that are correlated with (curated) amounts of molecular

change.

Rate Heterogeneity
A question that arises from this analysis is: “when is it appropriate

to attribute heterogeneities in frequencies of events to intrinsic

survivorship biases such as the POTPa and LCE rather than to

adopt models where background probabilities vary exogenously

through time?” To take an example from the fossil record: some

extinct taxa, notably the trilobites (e.g., Bell 2013), indeed show

a very rapid initial diversification, followed by a fairly drawn-out

decline and final extinction. It is clear that such a decline cannot

be realistically modeled by keeping the same background rate of

diversification through time—it implies that the most appropriate

background diversification rate has actually turned negative (cf

Stanley et al. 1981). One should note here however, that given that

the trilobites experienced several mass extinctions, these singular

events may have successively reduced their diversity to the point

where they became vulnerable to stochastic extinction, even with

net positive diversification rates.

Several recent software packages (e.g., RPANDA (Morlon

2016) and TreePar (Stadler 2011b)) have been developed for de-

tecting statistically significant rate shifts of this sort within clades

(Stadler 2013; see also Arbour and Santana 2017; Jetz et al. 2012

for examples of examination of rate shifts in different clades).

How do the effects we outline here intersect with them? We have

shown above the expected sizes of both the POTPa and LCE,

which are themselves rate heterogeneities that arise from ho-

mogeneous models when conditioned on either/or survival and

clade size. Nevertheless, there is a difference between such het-

erogeneities and those seen from more complex models, because

the heterogeneities that emerge from survivorship bias are strictly

local as opposed to global in effect. However, it remains currently

unclear how they could be disambiguated from each other. Gen-

uine DDD should improve the survivorship of early clades and

thus leave fewer plesions, but this effect will resemble the LCE

(see Fig. 7 for the apparent diversity dependent diversification

under such conditions).

For a particular surviving clade, inferred diversification rate

variation that falls within the expectations of the POTPa out-

lined here should not be generalized as pointing to a time-specific

period of enhanced diversification, for example after mass ex-

tinctions. Furthermore, given such patterns are inevitable, they

should not be taken on their own as evidence for a particular

generative mechanism, even if one thinks on other grounds that

such mechanisms are probable. Conversely, evidence of diversi-

fication bursts should be taken more seriously when it occurs in

short-lived clades (e.g., in the fossil record) or if it occurs across

a whole clade that is already well-established.

The LCE, conversely, can by definition only be measured in

the lineages. We have given an expression above for its expected

size, which depends on the size of a clade relative to a base-line

expectation for a given background rate of diversification. We

note here, however, that there are two problems with estimating

clade size. The first of these is relatively straight-forward, and

relates to our inability to count all living species. This has been

accounted for by for example Stadler (2011a) where it is assumed

that every species could be identified with a fixed probability (for

sampling of higher taxa only, see Stadler and Bochma 2012). The

second issue, which is more serious, concerns the nature of the

species-level birth-death model we have been using. For the past,

this model is an appropriate representation of the outcomes of the

evolutionary process, and abundance of species is an appropri-

ate measure of diversity. However, as we approach the present,

the validity of this model arguably breaks down, as species lose

their singular identity and become more accurately represented

by individuals, sub-populations and nascent new species (see e.g.,

Etienne and Rosindell 2012; Stadler 2013). This break-down is at

least partly likely to account for the apparent lack of an observed

POTPr in molecular phylogenies, which has been attributed to

various types of background rate heterogeneity (Stadler 2013).

Although this topic is clearly an active area of research, one ap-

proach as far as detection of the LCE is concerned would be to
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compare the relative present sizes of otherwise equivalent clades

of similar ages. The LCE would predict that their early rates of

lineage diversification and the size of their subsequent slowdown

would be proportional to their current clade size. The general

stochasticity of the whole process can of course lead to a very

wide range of possible outcomes and a suitably large sample of

clades would be required to reliably detect the effect. Simulation

of large numbers of clades, with a range of both POTPa and LCE,

and taking into account the possible disturbing effects of mass ex-

tinctions, may assist in fully understanding the range of possible

outcomes of rate heterogeneity that can arise from homogeneous

models.

The intersection of background rate heterogeneity and sur-

vivorship biases raises important issues about the generalizabil-

ity of theories about diversification. Clades that survive until the

present day are biased by the POTPa, and of those, the large clades

will be further biased by the LCE. Thus, large living clades repre-

sent a very unrepresentative sample of clades in general, and their

features will not be universal to the entire population of clades that

have been generated by the evolutionary process. These unusual

clades can of course be modeled with specific models that de-

scribe the rate shifts that must exist in them. Such models could be

used to systematically generate similar large, surviving clades, but

would likely fail to generalize to the more numerous, smaller and

nonsurviving clades. Thus, analyzing only large, surviving clades

to the exclusion of smaller and extinct clades will not demonstrate

whether the properties of the studied clades results from survivor-

ship biases, exogenous rate variation, or both. Indeed, the very

simplicity of birth-death models and their powerful application

suggests that the data we have are not in general sufficient to dis-

tinguish between the various ecological and evolutionary events

that eventually give rise to them. As Nee remarked some years ago:

“It is well known that completely different mechanisms can gen-

erate the same pattern: the distribution of parasitic worms among

people is the same as the distribution of word usage in Shakespeare

– the negative binomial. This means that the patterns themselves

cannot inform us about mechanism and some other techniques are

needed” (Nee 2002).

Summary
In this article, we have explored the patterns of diversification

that can be generated by a retrospective view of a purely homoge-

neous model of diversification. These patterns can be substantial

and highly nonhomogeneous, and it is essential to understand

these “null” hypotheses before considering causal explanations

for any residuals (cf Stadler and Steel 2012). Patterns of diversi-

fication through time have been much discussed in the literature

(e.g., Hopkins and Smith 2015), with a common pattern being

seen that diversification rates are high at the beginning of major

evolutionary radiations, in both raw diversity counts and lineages

through time plots. Various mechanisms for such effects have been

proposed (such as filling empty ecological niches or unusual or

flexible developmental evolution). The question that the analysis

above poses is, however: are such patterns inevitably generated

by the push of the past and/or the large clade effect? We have

shown that the POTPa is strongest when background extinction

rates are high, and that in likely scenarios for the evolution of

large clades, it eventually accounts for nearly all of modern di-

versity. Furthermore, the POTPa impacts other many aspects of

diversification dynamics, including recovery from mass extinc-

tions. Indeed, the universality of such processes extends beyond

evolutionary biology, with similar patterns being observed, for

instance, in the size- or age-dependent growth of companies (see

e.g. Reichstein and Dahl 2004 and references therein). Even under

homogeneous models, large clades can be generated at the edge of

likely distributions that possess another characteristic, the “large

clade effect,” which generates distinctive patterns in phenotypic

and molecular evolution.

Harvey et al. (1994), when briefly describing the POTPa,

commented that “If these statistical effects are not fully appre-

ciated, it could be tempting to misinterpret such a higher early

slope as evidence for lineage birth rates being higher, and/or lin-

eage death rates being lower, at earlier times” (p. 526). Here, we

have attempted to quantify both the size of, and controls on this

effect, and to show just how important it in patterns of changes of

rates of evolution through time including: dependency of rates of

diversification on diversity; initial bursts of diversification at the

origin of clades and the effects of mass extinctions. Although it

seems natural to take the history and diversification of large and

ultimately successful clades such as the arthropods as proxies for

evolutionary radiations as a whole (e.g., Briggs et al. 1992; Lee

et al. 2013) including after mass extinctions, our analysis shows

this to be particularly fraught with difficulties: the history of life

was written by the victors.
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