This is a repository copy of Effects of obesity on insulin: insulin-like growth factor 1 hybrid receptor expression and Akt phosphorylation in conduit and resistance arteries.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/135150/

Version: Accepted Version

Article:
Mughal, RS, Bridge, K, Buza, I et al. (11 more authors) (2018) Effects of obesity on insulin: insulin-like growth factor 1 hybrid receptor expression and Akt phosphorylation in conduit and resistance arteries. Diabetes and Vascular Disease Research. ISSN 1479-1641

https://doi.org/10.1177/1479164118802550

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 License (http://www.creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).

Reuse
See Attached

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Figure 2. Effects of supplementation of obesity-related modulators on receptor expression in human umbilical vein endothelial cells in vitro. Data shows effects of physiological modulators on IR (A), IGF-1R (B) and hybrid receptor (C) protein expression. Representative Western blot images are shown with densitometry. All data are given as mean values ± SEM. *P<0.05 **P<0.01, ***P<0.001 vs control (basal) group (n=6 for each). Key: a; Basal (0.5% low-serum medium), b; Insulin (100nM), c; TNFa (10ng/mL), d; angiotensin 2 (1uM), e; H2O2 (50uM), f; Glucose (25mM), g; Glucose (25mM) + insulin (10nM), h; IGF-1 (100nM).