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Abstract.   Concern is growing that global climate change will have widespread impact on the 

world’s terrestrial ecosystems, but future impacts are imperfectly constrained by ecosystem 

models and direct observations.  All available data, including records of past ecological change, 

need to be utilized to assess the range of potential future outcomes.  Here we show that pervasive 

ecosystem transformations occurred in response to warming and associated climatic changes 

during the last glacial-to-interglacial transition, which was of comparable magnitude to climatic 

change projected to occur in the next 100 to 150 years under high-emission scenarios.  We used 

data from 596 published paleoecological records to examine compositional and structural 

changes in global terrestrial vegetation since the last glacial period, and to project the magnitude 

of  ecosystem transformations under different emission scenarios in the future.  Our results 

indicate that terrestrial ecosystems are highly sensitive to temperature change, and suggest that 

without major reductions in greenhouse-gas emissions to the atmosphere (i.e., in line with those 

targeted in the 2015 Paris Agreement), most terrestrial ecosystems worldwide are at risk of major 

transformation, with accompanying disruption of ecosystem services and impacts on 

biodiversity.  

----- 

A crucial question facing policymakers in addressing climate change is how different 

levels of global greenhouse-gas (GHG) emissions to the atmosphere might translate into 

ecosystem transformations worldwide.  Terrestrial-ecosystem function is governed largely by 

composition and physical structure of vegetation (1-3), and climate-change impacts on 

vegetation can potentially cause disruption of ecosystem services and loss of biodiversity (4,5).  

It is critical to assess the likely extent of ecosystem transformation as GHG emissions increase 

(6), and to understand the full potential magnitude of impacts should current GHG emission rates 

continue unabated. 

Ecosystem transformation generally involves replacement of dominant plant species or 

functional types by others, whether recruited locally or migrating from afar.  Observations from 

around the globe indicate that climate change may already be driving substantial changes in 

vegetation composition and structure (3).  Ecosystem change is accelerated by mass mortality of 

incumbent dominants (7,8), and widespread dieback events and other large disturbances are 

already underway in many forests and woodlands (9-11), with further mortality events predicted 
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under increasing temperatures and drought (3,9,10,12).  Replacement of pre-disturbance 

dominants by other species and growth-forms has been documented in many places (8,13,14).  In 

addition, evidence is accumulating for geographic range-shifts in individual species, and climate 

change is interacting with invasive species, fire regimes, land-use, and CO2 increase to drive 

vegetation changes in many regions (15,16). 

Beyond observations of recent and ongoing change, modeling studies indicate ecosystem 

transformation under climate projections for the 21st Century.  These models include dynamic 

global vegetation models (3,17), species-distribution models (18), and comparison of the 

multivariate climate distance between biomes with that between modern and future climates 

(19).  However, capacity for assessing the magnitude of ecosystem transformation under future 

climate scenarios is limited by the difficulty of evaluating model performance against empirical 

records, particularly when projected climate states are novel (19,20).   

Paleoecological records of past ecological responses to climate change provide another 

means, independent of modern observations and model projections, for gauging the sensitivity of 

ecosystems to climate change.  Several high-precision time-series studies have shown that local 

and regional ecosystems can shift rapidly, within years to decades, under abrupt climate change 

(21-23), but sites with such detailed chronologies are scarce.  Here we pursue an approach based 

on a global network of radiocarbon-dated paleoecological records of terrestrial vegetation 

composition and structure since the Last Glacial Maximum (LGM), ca. 21,000 yr BP.  Most 

postglacial warming happened between 16,000 and 10,000 yr BP, although it commenced earlier 

in parts of the Southern Hemisphere (24,25).  Global warming between the LGM and the early 

Holocene (10,000 yr BP) was on the order of 4-7o C, with more warming over land than oceans 

(25,26).  These estimates are roughly comparable to the magnitude of warming the Earth is 

projected to undergo in the next 100 to 150 years if GHG emissions are not reduced significantly 

(27).  The magnitude of change in vegetation composition and structure since the last glacial 

period provides an index of the magnitude of ecosystem change that might be expected under 

warming of similar magnitude in the coming century (28).  Although the rate of projected future 

global warming is at least an order of magnitude greater than that of the last glacial-to-

interglacial transition (25), a glacial-to-modern comparison provides a conservative estimate of 
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the extent of ecological transformation to which the planet will be committed under future 

climate scenarios (See Supplementary text). 

We compiled and evaluated paleoecological (pollen and macrofossil) records from 596 

sites worldwide (fig. S1) to determine the magnitude of post-glacial vegetation change.  We 

adopted an expert-judgment approach, in which paleoecologists with relevant regional 

experience compiled published records (table S1), and made informed judgments on the 

magnitude of the difference between glacial-age and Holocene ecosystems (see Methods).  For 

the purposes of our analyses, we defined the last glacial period (LGP) as the interval between 

21,000 and 14,000 yr BP.  Although postglacial warming was underway in many regions by 

16,000 yr BP (24), continental ice-sheets were still extensive 14,000 yr BP, and some climate 

regimes remained essentially ‘glacial’ in nature, particularly in the Northern Hemisphere (29).  

Extending the LGP window to 14,000 yr BP provides a larger array of records for the 

assessment, both in glaciated and unglaciated terrains, and renders our analysis more 

conservative (i.e., climatic and vegetation contrasts with the Holocene are likely to decrease 

between 21,000 and 14,000 yr BP). 

For each record, experts were asked to judge the magnitude of compositional change and 

structural change since the LGP as large, moderate, or low, and to provide detailed justification 

for their judgment (see Methods) (table S2).  For sites that experienced moderate to large 

ecological change, experts were also asked to assess the role of climate change (large, moderate, 

or none) in driving the observed vegetation change.  For each of these four judgments, experts 

were asked to state their level of confidence as high, medium, or low.  In assessing the role of 

climate change, experts were asked to focus specifically on whether climate change since the 

LGP was sufficient to drive the observed changes, acknowledging that other factors (e.g., human 

activity, post-glacial CO2 increase, megafaunal dynamics) may have also played important roles.  

For sites with a long history of human land-use), experts used Holocene records predating 

widespread land clearance as a benchmark for comparison with the LGP records.   

Our results indicate that the magnitude of past glacial-to-interglacial warming was 

sufficient at most locations across the globe to drive changes in vegetation composition that were 

moderate (26% of sites) to large (72%), as well as  moderate (28%) to large (67%) structural 

changes (Fig. 1, table S3).  These changes were particularly evident at mid- to high latitudes in 
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the Northern Hemisphere, as well as in southern South America, tropical and temperate southern 

Africa, the Indo-Pacific region, Australia, Oceania, and New Zealand (Fig 1a).  Compositional 

change at most sites in the Neotropics was moderate to large, but three sites showed little or no 

compositional change, all with medium to high confidence (fig. S2).  Shifts in vegetation 

structure were also moderate to large at mid-to high-latitude sites, although a few sites showed 

low change (Fig. 1b).  The Neotropics had nine sites with little or no structural change (Fig. 1b), 

all with high-confidence assessments (fig. S2).  These sites have been occupied by tropical forest 

ecosystems since the LGM, although most have undergone moderate to large compositional 

change (30,31).  For nearly all sites that experienced moderate or large ecological change, 

climate change since the LGP was judged as sufficient to explain the observed changes with high 

confidence (table S4).  Atmospheric CO2 concentrations also increased from 190 to 280 ppm 

during the deglaciation, interacting with and in some cases modulating ecological responses to 

climate change.  However, CO2 changes alone cannot account for postglacial vegetational 

changes (Supplementary Text).   

Independent of the expert-judgment process, we used the estimated anomaly in mean 

annual temperature between the LGM and the present (pre-industrial) as a proxy for the overall 

magnitude of climate change since the LGP.  LGM temperature estimates were derived using an 

assimilated proxy-data/model integration (26).  Low-change sites were largely concentrated in 

regions where the estimated temperature anomaly was relatively small (Fig. 1).  To explore this 

relationship further, we plotted the frequency distribution of the difference between estimated 

LGM and present-day mean-annual temperatures for individual sites in each of the three 

ecological-response categories.  Nearly all sites with low compositional change between the LGP 

and today are associated with small projected temperature anomalies (median 2.4oC), whereas 

sites with moderate to high compositional change have larger temperature anomalies (Fig. 2a).  

Results for structural changes are similar, although a greater number of sites with low structural 

change include larger temperature anomalies (Fig. 2b).  This difference is not surprising, because 

compositional change in vegetation can occur without an accompanying change in vegetation 

structure (Fig. 1).  Europe and eastern North America experienced unusually large temperature 

changes since the LGM, owing to depressed temperatures near the large ice sheets, and these 

regions show significant compositional and structural changes since the LGP.  However, results 

from other parts of the globe indicate that widespread ecosystem changes were driven by much 



 8 

smaller temperature changes (fig. S3).  We repeated our analysis using the TraCE-21ka model 

simulations (32,33), which yield lower magnitude of LGP-to-Holocene climate change (34); 

despite the potential conservative bias, results for compositional and structural change (fig. S4) 

were similar to those in Fig. 2.  Temperature differences between LGP and the present were 

significantly greater for sites with large ecological change than those with low to moderate 

change, using both paleoclimate estimates (26, 32) (table S2).  

 We also used our database of ecological change since the LGM to assess the global 

distribution of the probability of large compositional and structural change given GHG emission 

scenarios (Representative Concentrations Pathways (RCP) 2.6, 4.5, 6.0 and 8.5, each as 

simulated by the CCSM4 coupled climate model) (35).  The range of LGM-to-present 

temperature changes (Fig. 2) overlaps with the range of temperature changes projected for the 

coming century under these scenarios (Fig. 3a; fig. S5).  We quantified the relationship between 

temperature and ecological change using a logistic spline regression with ordered categories 

(36). We fit models for compositional and structural change using the temperature change since 

the LGM as the independent predictor variable. In both models, LGM-to-modern temperature 

change is a significant predictor of ecosystem change (p < 0.001). We then used these models to 

predict the risk of large change for the future range of projected global temperature changes (Fig. 

3b) and to map the probability of large change under RCP 2.6 and RCP 8.5 (Fig. 3c-3f) at the 

end of the 21st century (see fig. S6 for RCP 4.5 and RCP 6.0). Under RCP 2.6 the probability of 

large compositional change is less than 45% over most of the globe (Fig. 3c) and the probability 

of large structural change is generally less than 30% (Fig. 3e). In contrast, under the business-as-

usual emissions scenario, RCP 8.5, the probability of large compositional change and large 

structural change are both greater than 60% (Fig. 3d, 3f).  Analyses using the TraCE-21ka model 

yielded similar patterns (fig. S7). 

Our study uses a single variable, mean annual temperature, as a metric for the broader 

array of climatic changes that can drive vegetation change, and it compares vegetation and 

climate states separated by 10,000-20,000 years.  Future climate change, like that in the past, will 

be multivariate, involving shifts in seasonal temperatures, seasonal precipitation, climate 

extremes, and variability regimes.  As mean annual temperature increases, other ecologically 

important variables will change, often in complex or counterintuitive ways (20,37,38), and 
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ecological responses will often be episodic or non-linear (8, 13-15).  Although the temperature 

increases since the LGP provide crude analogs for ongoing and future climate changes – for 

example, boundary conditions and forcings are different now (25,39,40) – our results 

nevertheless provide concrete evidence that vegetation composition and structure are sensitive to 

changes in mean annual temperature of the magnitudes forecast for the coming century, and that 

vegetation transformations will become increasingly extensive as temperatures increase.  Under 

the RCP8.5 scenario, the rate of warming will be on the order of 65 times greater than the 

average warming during the last deglaciation (25).  Although many ecological processes (e.g., 

species migration, colonization, succession) will likely lag climate changes, ecosystem 

transformations will probably be accelerated by disturbance and mortality events, land use, and 

invasive species (7-15). 

We therefore conclude that terrestrial vegetation over the entire planet is at substantial 

risk of major compositional and structural change in the absence of dramatically reduced GHG 

emissions.  Much of this change could occur during the 21st century, especially where vegetation 

disturbance is accelerated or amplified by human impacts (7).  Many emerging ecosystems will 

be novel in composition, structure, and function (41), and many will be ephemeral under 

sustained climate change; equilibrium states may not be attained until the 22nd Century or 

beyond.  Compositional transformation will affect biodiversity, via disintegration and 

reorganization of communities, replacement of dominant or keystone species, pass-through 

effects on higher trophic levels, and ripple effects on species interactions (16,42).  Structural 

transformation will have particularly large consequences for ecosystem services (4), including 

achievement of nature-based development solutions under the United Nations’ Sustainable 

Development Goals (https://sustainabledevelopment.un.org/sdgs).  Structural changes will also 

influence biodiversity, driving alterations in habitats and resources for species at higher trophic 

levels.  Compositional and structural changes may also induce potentially large changes to 

carbon sources and sinks, as well as to atmospheric moisture recycling and other climate 

feedbacks.  Our results suggest that impacts on planetary-scale biodiversity, ecological 

functioning, and ecosystem services increase substantially with increasing GHG emissions, 

particularly if warming exceeds that projected by the RCP2.6 emission scenario (i.e., 1.5oC).   
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Fig. 1.  The degree of estimated compositional (a) and structural change (b) between the last 

glacial period and the present.  Each square represents an individual paleoecological site, and the 

color density indicates the extent of vegetation change since the last glacial period (21,000- 

14,000 yr BP).  Background shading denotes the estimated temperature anomaly between the last 

glacial maximum (LGM) 21,000 years ago and today, based on assimilated proxy-data and 

model estimates (26).   
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Fig. 2. Box plots of the estimated mean-annual temperature differences between the last glacial 

maximum and today in each of the three vegetation-change categories (low, moderate, large), for 

(a) composition and (b) structure.  Sites showing low vegetational change are associated largely 

with relatively small temperature anomalies, while moderate and large changes are associated with 

larger post-LGM temperature differences, indicating that magnitude of temperature change plays an 

important role in the magnitude of vegetation change.  The glacial temperature anomalies are based 

on (26).  Analyses using the TraCE-21ka simulation show similar patterns (fig. S4).  
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Fig. 3.  (a) Box plots of the estimated mean-annual temperature differences between today and 

future-climate simulations for individual sites (using the nearest grid-point).  Most sites show 

relatively small temperature change under the low-emissions scenario (RCP2.6), with substantially 

higher change under the high-emission scenario (RCP8.5).  (b) Probability of large change in 

vegetation composition (orange) and structure (green) as a function of temperature change.  (c-f) 

Estimated probability of large compositional and structural change by the end of the 21st century 

(average of 2081-2100) under RCP 2.6 (c,e) and RCP 8.5 (d,f). Probabilities (b-f) are estimated 

from a logistic-spline regression model fit using LGM-to-modern temperature change as a 

predictor variable and observed LGP-to-modern vegetation changes (large versus not-large) as 

the response variable. Future temperature increases are calculated as an average of 2081-2100 

under the model scenarios, minus an average of 1985-2005 from the CCSM4 historical 

simulation. Analyses using the TraCE-21ka simulation show similar patterns (fig. S7). 
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Materials and Methods 

Paleoecological Inference and Expert Judgment 

Sources of paleoecological inference concerning terrestrial ecosystem properties are 

diverse, and vary in level of detail, quality, and geographic coverage.  For this study, we used 

pollen and plant macrofossil assemblages, which are widely applied, robust proxies that provide 

direct evidence for composition and structure of terrestrial vegetation.  Our use of fossil pollen, 

plant macrofossils, or both, collectively provides broad geographic coverage within and among 

the vegetated continents and islands.  Here, we discuss the characteristics of the paleoecological 

data we use, and justify our application of a transparent process of expert judgment that builds on 

more than a century of community experience in paleoecological inference and causal 

attribution.  We describe specific procedures and protocols in the following section. 

Pollen and plant macrofossil data derive from a wide variety of depositional settings, 

ranging from sediments of lakes and wetlands to land-surfaces buried under glacial and fluvial 

deposits to rodent middens stashed in caves.  Pollen data can usually be expressed in a single 

numerical currency (percentages of a terrestrial taxon sum), but pollen percentages are 

influenced by site-specific processes (dependent on basin size, depositional environment, local 

vegetation, and regional topography, among others), and by differential pollen productivity and 

dispersal among taxa (43-49).  Pollen accumulation rates and plant macrofossils, when available, 

can help inform and constrain interpretation of pollen percentages.  Plant macrofossil data 

themselves lack a single universal currency beyond ‘presence’, so numerical comparisons among 
assemblages or sites are difficult and rare (50,51).  No formal algorithm currently allows 

incorporation of information from macrofossils, pollen accumulation rates, or depositional 

context into interpretation of pollen percentages, and many macrofossil assemblages, particularly 

from buried land surfaces and rodent middens, lack associated pollen data.  Numerical methods 

and formal tools have been developed to support vegetational inferences from paleoecological 

data, particularly pollen percentages (20,47,48,52-54).  However, most of these tools are best 

suited for relatively uniform data and site types, and most require calibration or reference data 

sets from comparable modern sites.  Such reference data sets do not exist in many regions.  

Furthermore, although the development of global databases for paleoecological inference is 

rapidly advancing (55,56), raw data for many sites and some entire regions remain unavailable, 

further hampering global application of numerical analyses. 

The sole universal approach for inferring past vegetation composition and structure from 

these diverse data types remains the informed judgment of experts with relevant training and 

experience.  Such expert judgment involves examining the available data with a particular 

question in mind, and weighing the evidence in context of broader knowledge and experience to 

arrive at a conclusion.  Although often aided by formal numerical analyses, expert judgment is 

also informed by site-specific knowledge (basin morphometry, depositional environment, 

relevant taphonomic processes), region-specific knowledge (flora, vegetation, topography, 
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comparative modern pollen/vegetation datasets), taxon-specific knowledge (taphonomic and 

assemblage-representation properties), and general knowledge of the vegetation-sensing 

properties of fossil assemblages, including potential biases and distortions (49,57). 

Attainment of expertise in paleoecology involves immersion in understanding the 

processes that intervene between source vegetation and fossil assemblages, in mastering the 

literature of paleoecological interpretation, and in identifying the idiosyncracies of individual 

sites and regions.  Interpretation of fossil pollen percentages is based on a century of intensive 

study (20,48,58,59), and paleoecologists draw on a rich literature of theoretical and empirical 

studies to guide their interpretations (43-49,52-54,57).  Interpretation of plant macrofossil 

assemblages from lakes, peatlands, and other ‘wet’ sites is also founded on theoretical and 
empirical understanding of the physical processes by which these assemblages are formed and 

what they do and do not record (50,51,60-63).  Plant macrofossils in rodent (Neotoma and other 

genera) middens represent a particular case in which the behavior and foraging preferences of the 

animals need to be considered (64-66), along with other factors (57).   

In the current study, scientists with experience in the various regions and data sources 

provided their best judgments concerning the degree of vegetational change between LGP and 

today for each site and their confidence in those judgments (see below). To ensure transparency 

and consistency, each expert also provided explicit justification for each assessment they made, 

noting the specific features of the LGP pollen or macrofossil assemblages, contrasting them with 

modern assemblages or modern vegetation, and identifying potential sources of uncertainty (e.g., 

taxonomic smoothing, depositional or dispersal processes).  Judgments of the type used in this 

study are thus the same as those incorporated into the discussions and conclusions of virtually 

every paper in the paleoecological literature.  Those judgments are often supported by numerical 

or other analytical tools, but they ultimately draw on skills and knowledge built on a century of 

paleoecological inquiry.  Such informed judgment is at the heart of scientific inference, and 

applying it in our study allows us to maximize global coverage, using multiple data sources from 

diverse depositional settings, drawing on expertise from every region of the globe for which 

suitable pollen or macrofossil data exist.  

 

Compilation of Last Glacial Period (LGP) paleoecological records 

 

Teams of regional experts (Table S1) compiled 596 published paleoecological records 

(pollen, plant macrofossil, or both) from all vegetated continents and oceanic islands with data 

within the period 21,000-14,000 yr BP (Figure S1, Additional Data table S1), which we 

operationally define as the Last Glacial Period (LGP). The sole criterion for inclusion was that a 

site have pollen or macrofossil data (or both) reliably dating to the period between 21,000 and 

14,000 yr BP. 

 

Assessment of ecological change 
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 Regional experts compared LGP records from each site with ‘modern’ vegetation or 

palaeoecological data. Magnitude of vegetational change in terms of composition and structure 

from LGP to ‘modern’ was qualitatively assessed as large, moderate, or low for each site.  For 
596 sites (85% of total), vegetational or paleoecological (pollen, macrofossil) data from the past-

two centuries were used as the benchmark for comparison. In some cases, human land-use or 

lack of suitable paleoecological data required an earlier benchmark.  The late Holocene (past 

2000-3000 yr) was used for 57 sites (10% of total), and 33 sites (5% of total) used 

paleoecological data from the early or mid-Holocene.  Typically, benchmark data from the same 

paleoecological site were used in the comparison, but experts also employed their knowledge of 

modern or natural vegetation of the respective region.  If paleoecological data from a site did not 

extend into the Holocene, experts often used Holocene paleoecological data from other, 

comparable sites in the same region.  No relationship was observed between the assessment of 

ecological change and the temporal benchmark used; each of the benchmarks used (modern, late 

Holocene, early-mid-Holocene) yielded a mix of low, moderate, and large changes in vegetation 

composition and structure.   

 

  The degree of confidence in the assessments of ecological change was rated as high, 

medium, or low. All assessments were based on the definitions in Table S2 and the instructions 

in the Instructions for Assessors (see Other Supplementary Materials).  Authors provided 

succinct but informative justifications for each individual assessment of compositional and 

structural change, sufficient to allow a paleoecologically literate reader to understand the 

empirical basis for their assignment.  A complete list of sites with accompanying metadata, 

assessments, and justifications, is provided in Additional Data table S1. 

 

Attribution of Vegetational Change 

 

 Climate change is among many mechanisms potentially capable of driving vegetational 

change.  For each site where ecological changes were assessed as moderate or large, the role of 

climate in driving those changes was also assessed (large, moderate, or none).  For this decision, 

expert judgment drew from multiple considerations, including understanding of modern 

ecosystems and communities and their controls, independent paleoclimatic evidence from 

multiple proxies (paleontological, geochemical, lithological) deriving from multiple sources (ice-

cores, marine sediments, lake sediments, paleosols, glacial deposits, fossil groundwater, 

boreholes) (67) and climate-model simulations (68,69). The inclusion of ‘none’ as a choice, 
although rarely used, was to ensure that experts considered alternatives to climate as a primary 

driver (including succession, neutral assembly, ecological drift, human activities, soil 

development, biogeochemical changes, migration, and evolution).  The degree of confidence in 

assessments of the role of climate was rated as high, medium, or low. 

 

Estimates of temperature change since LGP 

 

 Site-level changes in mean annual temperature since LGP were estimated based on two 

different datasets: the model/proxy integration of Annan and Hargreaves (2013) (26) and the 

TraCE-21ka transient climate model run (32). For each dataset the estimate of temperature 

change for the single closest grid box to each site was used. The distribution of temperature 
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changes is shown in box plots, in subsets according to degree of assessed ecological change 

(figure 2, figure S4). 

 

The main paleoclimate dataset used is the last glacial maximum (LGM) temperature 

anomaly reconstruction from Annan and Hargreaves (2013) (26). This reconstruction uses fully 

coupled GCMs from the PMIP3/CMIP5 set of models run with LGM boundary conditions and 

proxy data in a multiple linear regression framework to obtain an estimate of the surface air-

temperature anomaly from LGM to pre-industrial on a 2.5° x 2.5° grid. The proxy data include 

marine sea-surface temperature reconstructions from Multiproxy Approach to Reconstructing 

Global Oceans (70), the multiproxy deglaciation synthesis (71), and pollen-derived LGM 

temperatures from selected continental sites (72).  

 

Estimated LGM-to-preindustrial temperature change based solely on the models is 3.1-

5.9°C (26). With the data constraints, the final resulting LGM cooling estimate relative to 

preindustrial temperatures is 4.0±0.8°C. Application of the proxy data in this framework reduced 

uncertainty by arbitrating disagreements between the nine individual models and by improving 

spatial skill (26).  The influence of proxy data on the mean estimates of temperature change 

between LGP and the preindustrial period was very small (26). 

 

As an independent check on the temperature estimates and analyses, we also used the 

TraCE-21ka (simulation of the transient climate evolution over the last 21,000 years) (32,33), a 

21,000 year run of the National Center for Atmospheric Research’s Community Climate System 
Model version 3 (CCSM3) with time-evolving forcing including atmospheric CO2 

concentrations, insolation, and land ice sheets. This is the only fully-coupled, moderately high-

resolution transient simulation of the LGM to Holocene climate evolution. We estimated the 

LGP to late Holocene temperature change from TraCE by subtracting the average temperature 

for 0-6ka from the average temperature from 14-21ka. These large windows were chosen with 

the intention of smoothing out noise in the transient simulation and getting a coarse estimate of 

temperature change at each grid point. The estimate of LGM-to-late-Holocene temperature 

change from TraCE at the grid point nearest to each paleoecological site is plotted in figure S4, 

an expanded version of Figure 2.  

 

The boxplots suggest a relationship between the degree of ecosystem change and 

temperature change. We tested for statistical significance of this relationship using the Wilcoxon 

rank-sum test.  The temperature change experienced by sites with Large ecological change was 

statistically significantly different from that at sites with Moderate and Low ecological change 

(table S3). The temperature differences between sites with Moderate versus Low ecological 

change were not statistically significant. Results were similar for the paleo-temperature estimates 

from the Annan and Hargreaves reconstructions and from TraCE (Table S3).  

 

Projections of future temperature change 

For each LGP paleoecological site we also obtained estimates for the projected future mean 

annual temperature change under various emissions scenarios. We used the difference between 

the average temperature for the last 20 years (2081-2100) of the future simulations under four 

different representative concentration pathway (RCP) scenarios and the average temperature for 

the last 20 years of the historical simulations (1985-2005) at the nearest grid point using 
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simulations of the Community Climate System Model version 4 (CCSM4) run for CMIP5 and 

included in IPCC AR5 (35,73). All four RCPs – RCP 8.5, 6.0, 4.5, and 2.6 (also known as RCP 

3.0-PD) – were used in our analysis.  

 

These RCPs represent net radiative forcing of 8.5, 6.0, 4.5, and 2.6 W/m2 at the end of the 

21st century (35). RCP 8.5 is a “business-as-usual” scenario that ends up with ~1370 ppm CO2 

equivalent and global average temperature increase of approximately 5°C.  RCP 6.0 is a 

stabilization scenario where radiative forcing is stabilized shortly after 2100.  The CO2 

equivalent at 2100 is 936 ppm and the resulting global average temperature increase is 3-4°C. 

The RCP 4.5 and 2.6 scenarios represent aggressive emissions cutting. RCP 4.5 results in 650 

ppm CO2 equivalent and a global average temperature increase of 2.4°C by 2100. This scenario 

represents aggressive emission stabilization without overshoot. The most aggressive mitigation 

pathway is RCP 2.6. This scenario results in 490 ppm CO2 equivalent and a global average 

temperature increase of 1.5°C at 2100. The emissions in this scenario peak at a radiative forcing 

of 3.0 W/m2 in the mid-21st century and decline to 2.6 W/m2 by 2100 (35). 

 

The distributions of projected temperature change at our LGP paleoecological sites are 

shown as box plots in main text figure 3A and figure S5. 

   

Estimating risk of future ecological change 

 

We used our database of LGM-to-modern ecological change and associated temperature 

change to project the risk of future ecosystem transformation under different emission scenarios 

(see above). We developed a regression model between temperature change and ecological 

change using a logistic spline regression, also known as a generalized additive model (GAM). 

These models were fit in R using the mgcv package (36,74). We fit one model for compositional 

change and one for structural change. For both models the independent variable was the 

temperature change from the LGM to present at the closest grid box to each site from Annan and 

Hargreaves 2013 (Fig. 3) or TraCE-21ka (fig. S7). Ecological change served as the dependent 

variable. We used the ordered categorical family of GAMs where Small/No change is coded as 

1, Moderate change is coded as 2, and Large change is coded as 3. The smooth terms of both 

models are highly significant (p<0.001).   

We used these regression models to predict the probability of large, moderate, and low 

compositional and structural change for the full range of LGM-to-present temperature changes 

(0-30°C) and for the full range of future projected temperature changes (0-12°C)  (fig. S7). The 

results in figure S7 are from the same GAM plotted on different x-axes. We also mapped these 

probabilities spatially for all of the representative concentration pathways (Figure 3, fig. S6).  
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Supplementary Text 

 

Confidence by region 

In fig. S2 we plot the confidence (low, medium, high) for assessment of compositional 

and structural change for the entire data set and for each individual region.  Confidence for large 

compositional and structural change was high for nearly all regions; confidence was lower for 

sites assessed as having moderate and (especially) low change.  The lower confidence associated 

with moderate to low change derived largely from poor taxonomic resolution in pollen 

assemblages, and from uncertainties associated with long-distance pollen transport, which may 

respectively mask vegetational changes and confound interpretations (43-49).  These pollen 

considerations also resulted in moderate confidence for many high-latitude Northern Hemisphere 

pollen sites (Northern Eurasia, North America).  (In unforested vegetation (particularly tundra, 

but also some grassland and steppe) low pollen productivity (low NPP, prevalence of insect-

pollinated plants with poor pollen dispersal) renders pollen assemblages susceptible to high 

relative influx of pollen (particularly tree pollen) from distant sources.  Vegetation in such 

regions is also often dominated by grasses (Poaceae), sedges (Cyperaceae), composites 

(Asteraceaea), chenopods (Chenopodiaceae), and other taxa that cannot be differentiated 

palynologically below the family level.) 

Many North American sites were assessed as having medium confidence for structural 

change (in contrast to high confidence for compositional change); most of these were rodent-

midden sites from the western United States.  Middens primarily sample floristic composition, 

not relative or absolute abundance, and are thus more reliable indicators of vegetation 

composition than structure (57,65). 

Temperature change by region 

In fig. S3 we plot the frequency distributions of the estimated mean-annual temperature 

differences between the last glacial maximum and today for each region of the globe (26), in 

each of the three LGP-to-modern vegetation-change categories (low, moderate, large) for 

composition and structure.  Although some regions (North America, Europe, New Zealand, 

Japan) have very high sampling density (figs. S1, S2), they do not dominate the patterns 

observed in Figure 2.  Furthermore, although regions in proximity to continental ice sheets 

(North America, Europe) have many sites with extreme temperature anomalies (>10oC) between 

LGM and today, large vegetation changes are associated at many sites (typically further from ice 

sheets) with smaller temperature anomalies.  Observed vegetational changes at sites near ice 

sheets may have occurred with much smaller temperature differences.  

Comparing estimates of LGM-to-modern temperature change 
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 In fig. S4 we plot the frequency distributions of the mean-annual temperature change 

from LGM to present vs. vegetation change using two different products for the temperature 

change: Annan and Hargreaves 2013 (26) and TraCE-21ka (32), as described above.  

 

The Annan and Hargreaves estimate may overestimate the temperature change required to 

drive the observed ecological changes, because not all the paleoecological records extend to 

LGM.  Our temperature-change estimates using TraCE (LGP to late Holocene) provide an 

independent check, with a bias opposite that of Annan and Hargreaves 2013.  TraCE may 

underestimate the temperature change necessary to drive the observed vegetation change because 

of its cold Holocene bias (34) and because of the broad time ranges used to estimate the 

temperature change (particularly including the post-LGM warming trend observed in many 

regions between 21,000 and 14,000 yr BP). TraCE is based solely on climate model forcings and 

physics, and thus provides independent validation of our inferences, free of any possible bias 

from pollen and other paleoclimate proxy data. (As noted above, such bias is small even for the 

Annan and Hargreaves 2013 dataset.) 

 

The range of temperature estimates and the general pattern in which greater vegetation 

change is associated with higher temperature change are consistent between the two LGM 

temperature products (fig. S4; table S3)).  We repeated the GAM modeling of ecological change 

as a function of estimated temperature change using the TraCE temperature-change estimates.  

Results were consistent with those obtained using the Annan & Hargreaves 2013 estimates (fig. 

S7). 

 

Role of climate and confidence  

 

For all cases in which compositional or structural change were judged to be moderate or 

large, assessors were asked to judge the role of climate in driving the observed changes, as well 

as their confidence in that judgment (table S4).  Climate was assessed with high confidence to 

have played a large role in the observed changes in composition and structure for 85% of the 

sites, and was judged as having a large role with medium or high confidence for 88% of sites.  

Climate was assessed to have played a low role in driving ecological change at less than 1% of 

sites (6 out of 584 for composition and 1 out of 566 for structure).  

 

Role of Carbon Dioxide in Forcing Vegetational Changes 

Some studies suggest that atmospheric CO2 concentrations may be a primary driver of 

vegetation change, particularly in savanna and grassland regions (75), even overriding changes in 

climate (76). This hypothesis is based on advantages conferred by increased CO2 concentrations 

on C3 plants relative to C4 plants in terms of quantum yield, wherein reduced transpiration raises 

soil moisture and water-use efficiency (77-79), increases woody-plant resprouting rates (75), or 

both. 

Global temperature and atmospheric CO2 concentrations are strongly linked (80); both 

increase significantly across the last glacial-interglacial transition (81), and both are predicted to 

rise in the future (73). Our conclusion that substantial changes in vegetation are likely to occur in 

the future does not require that the relative importance of these two controls be disentangled. The 
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spatial scale of our study does, however, allow for some degree of insight regarding the role of 

CO2 versus climate in driving vegetation changes observed in the past. 

At the global scale, atmospheric CO2 levels are essentially homogeneous; when CO2 rises 

in one part of the globe, it rises everywhere else proportionally.  In contrast to CO2, climate 

change is much more heterogeneous; increasing global temperature may manifest itself 

climatically in any number of ways across the globe (39), and climatic changes since the LGM 

have been spatially heterogenous (25).  Although temperatures have increased globally since the 

LGM - and as a result the hydrological cycle has been invigorated, resulting in wetter conditions 

in many regions - the degree of change varies significantly between regions, and in some parts of 

the world the LGM was in fact more humid than the Holocene (82-86).  Thus, although certain 

ecosystems may be particularly sensitive to CO2 forcing (87), or may exhibit threshold responses 

to changing CO2 levels (88), if CO2 was a dominant global driver of postglacial vegetation 

change, it would be expected to override, or strongly modify, climatic influences, and a 

widespread deglacial trend towards more arboreal taxa would be observed.   

Paleoecological records indicate, however, that several regions show a clear decline in 

arboreal taxa during the deglacial period, in spite of increasing CO2, but consistent with 

increasing drought stress as a result of reduced precipitation and/or increasing temperatures (fig. 

S8). In other regions, where a deglacial increase in arboreal taxa is recorded, the variability 

observed is much more tightly coupled to changes in hydroclimate than CO2 (fig. S8; see also 

(89)).  These disparities do not mean that CO2 is unimportant in vegetation change, but suggest 

instead that CO2 changes may modulate vegetational responses to climate change, rather than 

being the sole or dominant driver. 

Rate-of-Change Differences Between the Past and the Future  

Although the last deglaciation included periods of rapid global, regional, and local 

climate change, the future rates of climate change projected under RCP 4.5, 6.0, and 8.5 are far 

greater, by at least an order of magnitude (25).  We focus on the past and future magnitude of 

change, which is more directly comparable.  Our analysis indicates that, all else being equal, the 

magnitude of climate change anticipated in coming decades under high-emission scenarios is by 

itself sufficient to effectively ‘lock in’ major vegetational transformations over most of the globe.  

Thus, our analysis may represent a relatively conservative estimate of the magnitude of 

ecological change expected in the future, owing to the anticipated higher rate of future climate 

change, and to the compounding factors of land-use, human disturbance, landscape 

fragmentation, invasive species, and other contemporary influences.   

 We acknowledge some critical differences between past and future.  The warming 

between LGP and the Holocene occurred within the range of previous glacial/interglacial 

temperatures, while projected future changes will exceed those experienced over the past 2 

million years (25).  Also, under higher rates of environmental change, migration lag and 
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ecological disequilibrium are likely to be more severe than in the past.  Even in the past, 

migrations have sometimes lagged climate change, and some ecosystems have been in transient 

disequilibrium with climate (e.g., 38).  Habitat fragmentation, invasive species, harvesting, 

biogeochemical disruptions, and other novel factors will also play important roles in the future 

(41).  However, our study demonstrates that the magnitude of projected global temperature 

change is sufficient to drive large ecological changes.  Undoubtedly, inertial processes 

(incumbency, local seed sources, ecological legacies) will allow many ecosystems to at least 

temporarily ‘resist’ effects of climate change (90).  But climate extremes and widespread 

mortality events (15) are likely to accelerate ecosystem transformation, and other factors 

(fragmentation, invasives, harvesting, etc.) are likely to amplify and accelerate, rather than 

dampen, ecological change.   

Our primary goal is to provide an independent perspective on climate-driven ecological change 

that complements other approaches such as real-time observations and modeling efforts.  Our 

approach is built on an entirely different combination of assumptions, strengths, and 

shortcomings than the other approaches, and convergent predictions of these various approaches 

strengthens the inference that projected climate changes will drive major ecosystem 

transformations. 
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Fig. S1.  Distribution of paleoecological sites used in the assessment. Site dots colored by region. 
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Fig. S2 

Confidence (high, medium, low) of individual assessments for each category of vegetation 

change (low, moderate, large), across the entire data set (Global) and individually for each 

region.  
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Fig. S3 

Regional decomposition of Figure 2.  Box plots show the estimated mean-annual temperature 

differences between the last glacial maximum and today in each of the three vegetation-change 

categories (low, moderate, large), for composition and structure.   
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Fig. S4 

Comparison of the estimated temperature change obtained from the Annan and Hargreaves 2013 

data and the TraCE simulations, in each of the vegetation-change categories.  The Annan and 

Hargreaves 2013 plots are as in Figure 2; the corresponding TraCE-21ka estimates are plotted for 

comparison.  The TraCE plots show smaller temperature differences than the Annan and 

Hargreaves 2013 plots, but show a similar pattern of increasing magnitude of vegetational 

change with increasing temperature change. 
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Fig. S5 

Box plots of the estimated mean-annual temperature differences between today and future-

climate simulations for individual sites (using the nearest grid-point).  RCP2.6 and RCP8.5 are as 

in Fig. 3a; this figure includes RCP4.5 and RCP6.0 for comparison.  Projected temperature 

changes generally increase with higher radiative forcing. 
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Fig. S6 

Estimated probability of large compositional and structural change by the end of the 21st century 

(average of 2081-2100) under the four representative concentration pathway (RCP) scenarios: 

RCP2.6, RCP4.5, RCP6.0, and RCP 8.5.  Results for RCP2.6 and RCP8.5 are as in Fig. 3c; 

RCP4.5 and RCP6.0 are added for comparison.  Global risk of large vegetational change 

increases with magnitude of radiative forcing. 
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Fig. S7 

Probability of large change in vegetation composition and structure as a function of temperature 

change, based on the generalized additive models (GAMs) using two sets of temperature-

difference estimates as the independent variable: Annan and Hargreaves 2013 LGM to pre-

industrial temperature change (as in Fig. 3b), and the TraCE-21ka LGP to late Holocene 

temperature change.  Although the shape of the function differs between the two data sets, both 

show sensitivity of vegetation change to temperature change.  Upper figure shows the model 

within the range of projected future temperature change for the 21st century.  Lower figure shows 

results of the same models with an expanded x-axis to show the entire range of temperatures 
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used in developing the model.  The excursion for ‘Structure-TraCE’ response between 10 and 18 
is driven by several sites in Europe within this temperature range that were assessed as having 

moderate compositional change. 
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Fig. S8 

Comparison of atmospheric CO2 concentrations as measured from Antarctic ice cores (a) (91) 

with a selection of records that highlight the relative importance of CO2 and climatic factors as 

drivers of vegetation change. At Lake Bosumtwi, Ghana, δ13C data (woody C3 plants versus C4 

grasses) indicate an increase in forest cover since the Last Glacial Maximum (LGM) (b, c) (88). 

While this is not inconsistent with the broad changes in atmospheric CO2, vegetation change is 

much more tightly linked to changes in hydroclimate, as indicated by δD data (rainfall 
amount/intensity) from the same site. While the late Holocene persistence of forest at the site 

may be enabled by high CO2 levels (88), it may also, or alternatively, be related to a mid-

Holocene establishment of a stable forest state that is naturally resistant to perturbation (92). At 

Pella, on the southern margin of the Namib Desert, fossil pollen data indicate that arboreal 

vegetation was dominant during the LGM, contrary to predictions based on CO2 forcing, and 

grasses became an important feature of the vegetation only during the CO2-rich Holocene (d, e) 

(85). A similar pattern is observed in the North American southwest, with macrofossil data from 

the Lower Colorado River Basin revealing that significant C4 grass cover only became 

established during the Holocene, with the decline of extra-local arboreal taxa (f, g) (84). In South 

America, records from the Andes indicate no significant change in forest cover at higher 

elevations sites such as Consuelo, and vegetation change at lower elevations is driven by climatic 

drivers, with no post-glacial increase in forest cover that can be clearly linked to changes in CO2 

(h) (93,94).  
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Table S1.  Team members responsible for compilation and assessment of specific regions. 

REGION TEAM MEMBERS 

North America Jackson, Nolan, Betancourt, Overpeck 

Neotropics Bush, Gosling 

Subtropical South America Latorre 

Southern South America Moreno 

Europe Huntley, Allen 

Northern Eurasia Tarasov, Muller, Binney  

Japan Takahara, Momohara 

Beringia Edwards, Lozhkin, Anderson, Binney 

China Y. Liu, Xu, Zheng, Shen, K.B. Liu, Weng 

Middle East Djamali, Cheddadi, Brewer 

North Africa Cheddadi, Djamali, Brewer 

East and Tropical Africa Ivory, Lezine, Marchant, Vincens 

South Africa and 

Madagascar 

Chase 

Indo Pacific and Oceania Stevenson, Hotchkiss, Soo-Hyun 

Australia Kershaw, Haberle, Dodson 
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New Zealand McGlone 
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Table S2. 

Working definitions used in assessments of paleoecological records. 

 

Term Definition 

Composition The species composition of the dominant vegetation in the record 

(Note: Although pollen records do not support species level 

discrimination, species turnover can be inferred from genus- and 

family-level changes) 

Physiognomy/Structure The physical structure of the dominant vegetation (e.g. coniferous 

forest, grassland, steppe, deciduous woodland, etc) 

Large change Complete or nearly complete replacement of dominant species or 

growth forms. (Note: does not imply complete biogeographic 

turnover; former dominants may remain in region, but not as 

dominants. Conversely, current dominants may be present at LGM , 

but not as dominants) 

Moderate change Partial replacement of dominant species or growth forms 

Small change Little or no replacement; dominant species and growth forms of 

today are unchanged at LGM 

High confidence Few or no substantial uncertainties, high quality data, inferences 

clear and unequivocal 

Medium confidence Some substantial uncertainties related to questions of data quality or 

clarity of inference 

Low confidence Significant uncertainties in the quality or interpretation of the data 
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Table S3.  

Summary of the results of the Wilcoxon rank sum test for statistically significant difference in 

temperature change from LGM to modern between different levels of ecological change. The 

table shows the test statistic, W, and the p-values for different pairs of ecological change groups 

using two different estimates of the temperature change from LGM to modern. 

 

 

Ecological	

Change	Group	1	

Ecological	Change	

Group	2	

Climate	

Variable	

W	 P-Value	

Large	

Composition	

Moderate	

Composition	

Annan	and	

Hargreaves	

20985	 4.108e-12	

Large	

Composition	

Moderate	

Composition	

TraCE	 22916	 4.479e-9	

Large	

Composition	

Low	

Composition	

Annan	and	

Hargreaves	

1015.5	 0.003612	

Large	

Composition	

Low	

Composition	

TraCE	 1275.5	 0.003005	

Moderate	

Composition	

Low		

Composition	

Annan	and	

Hargreaves	

769.5	 0.2924	

Moderate	

Composition	

Low	

Composition	

TraCE	 754.5	 0.2523	

	

Ecological	

Change	Group	1	

Ecological	Change	

Group	2	

Climate	

Variable	

W	 P-Value	

Large	Structure	 Moderate	Structure	 Annan	and	

Hargreaves	

22174	 2.39e-10	

Large	Structure	 Moderate	Structure	 TraCE	 24720	 9.501e-7	

Large	Structure	 Low	Structure	 Annan	and	

Hargreaves	

3288	 4.052e-5	

Large	Structure	 Low	Structure	 TraCE	 3735.5	 0.006269	

Moderate	

Structure	

Low		

Structure	

Annan	and	

Hargreaves	

2275	 0.3977	

Moderate	

Structure	

Low	

Structure	

TraCE	 2309.5	

	

0.4676	
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Table S4. 

Summary of assessments, ordered by confidence, of the role of climate in driving observed 

moderate or large compositional change (top) or structural change (bottom). Columns represent 

the assessed role of climate in driving the observed ecological changes. Rows are the confidence 

assigned to those judgments by the assessors. The numbers are the number of sites in each 

combination of role of climate and confidence. The role of climate was not assessed for sites for 

which the ecological change was assessed as low (12 sites for composition and 30 sites for 

structure). 

 

 
 

 

 

  

Composition	
Large		

Role	of	Climate	
Moderate	 Low	 N/A	

High	

Confidence	
514	 11	 0	 0	

Medium	 39	 13	 1	 0	

Low	 3	 1	 2	 0	

N/A	 0	 0	 0	 12	
Total	 556	 25	 3	 12	

	

Structure	
Large		

Role	of	Climate	
Moderate	 Low	 N/A	

High	

Confidence	
502	 8	 0	 0	

Medium	 21	 26	 0	 0	

Low	 5	 3	 1	 0	

N/A	 0	 0	 0	 30	
Total	 528	 37	 1	 30	
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Instructions for Assessors 

The following document was sent to all assessment team members, along with templates for data 

compilation and submission. 

Assessment:   

• Based on expert evaluation of all available and reliable paleoecological records from 

individual sites, in all regions of the planet.   

• Our primary focus is on climate-driven vegetational change.  Vegetation has, of course, 

been altered greatly by human activities in many regions.  Thus, an important subsidiary 

question is whether substantial vegetational changes happened (or would have happened) 

in the absence of human activities. 

• Assessments in this initial analysis will be based on “expert judgment” by paleoecologists 
who have experience in collection, analysis, and interpretation of the relevant data.    

• Assessment will be qualitative, based on judgment of degree of contrast between glacial-

age vegetation states and modern or Holocene vegetation states 

• Assessments will be categorical, typically involving three classes (see below) 

• Assessments will require judgment of confidence (also three classes) 

Central Operational Questions (to be asked for each individual record):  

1. What has been the magnitude of vegetational change, in terms of vegetational 

composition, since the last glacial period? Choose from three outcomes: 

a. Large 

b. Moderate 

c. None 

2. What is the level of confidence for this assessment?  Choose from three outcomes: 

a. High confidence 

b. Medium confidence 

c. Low confidence 

3. If the answer to Question 1 was “Large” or “Moderate”, what role did climate change 
since the last glacial period play in driving change of this magnitude?  Choose from three 

outcomes: 

a. Large 

b. Moderate 

c. None 

4. What is the level of confidence for this assessment?  Choose from three outcomes: 

a. High confidence 

b. Medium confidence 

c. Low confidence 
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5. What has been the magnitude of vegetational change, in terms of vegetation 

physiognomy, since the last glacial period? Choose from three outcomes: 

a. Large 

b. Moderate 

c. None 

6. What is the level of confidence for this assessment?  Choose from three outcomes: 

a. High confidence 

b. Medium confidence 

c. Low confidence 

7. If the answer to Question 5 was “Large” or “Moderate”, what role did climate change 

since the last glacial period play in driving change of this magnitude?  Choose from three 

outcomes: 

a. Large 

b. Moderate 

c. None 

8. What is the level of confidence for this assessment?  Choose from three outcomes: 

a. High confidence 

b. Medium confidence 

c. Low confidence 

N.B. concerning Questions 3 and 7:  Assessments should focus on judging whether climate 

change since the last glacial period was sufficient to drive vegetation change of “large” 
magnitude.  Climate change as an explanation of high-magnitude vegetational change is not 

mutually exclusive of other processes (e.g., human activity, post-glacial CO2 increase, 

megafaunal decline, etc.).  In some regions with a strong human signature (e.g., Europe), 

judgment can be facilitated by examining the magnitude of change that is recorded before 

extensive human land-clearance.  Thus, comparison of glacial-age with early Holocene 

assemblages may be useful in many cases. 

N.B. concerning coverage:  In some regions, some sites with temporal coverage to >14 ka may 

occur on land surfaces formerly occupied by continental or montane ice-sheets.  These sites 

should be included in the analysis, as long as they have records extending more than ~1000 

years after site inception.  Thus, for example, a lake on glaciated terrain with basal pollen 

assemblages dating to 17 ka might be included, whereas a lake with basal sediments dating to 

14.5 ka should be excluded.  The purpose of the 1000-year rule is to ensure that sufficient time 

elapses after deglaciation to allow primary successional processes to play out. 
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Provisional Operational Definitions: 

Vegetation terms: 

Composition: The species composition of the dominant vegetation in the record.  Although most 

pollen records do not support species-level discrimination, species turnover can of 

course be inferred from genus- and family-level changes.  Macrofossils can also 

support such inferences, particularly among dominant types. 

Physiognomy: The physical structure of the dominant vegetation (e.g., coniferous forest, 

grassland, steppe, tundra, deciduous woodland, etc.).    

Magnitude of vegetation change: 

Large: Complete or nearly complete replacement of dominant species or growth-forms.  

(This does not imply complete biogeographic turnover; former dominants may 

remain in the region, but not as dominants. Conversely, current dominants may 

have occurred at the locale during LGM, but not as dominants.)  

Moderate: Partial replacement of dominant species or growth-forms 

None: Little or no replacement; dominant species or growth-forms today are unchanged 

Role of climate change: 

Large: Climate change since the last glacial period is by itself sufficient to explain the 

magnitude of observed vegetation change.  (Other factors may well have played a 

role, but in the absence of those factors, a similar magnitude of vegetation change 

would have been observed.) 

Moderate: Climate change since the last glacial period explains at least part of the observed 

magnitude of vegetation change.  (Other factors, in addition to climate change, are 

necessary to explain the magnitude of vegetation change). 

None: Climate change is entirely insufficient to explain the magnitude of vegetation 

change observed since the last glacial period.  Other factors are wholly 

responsible for the magnitude of change. 

 Level of confidence: 

High: Few or no substantial uncertainties; high-quality data, inferences clear and 

unequivocal  

Medium: Some substantial uncertainties arising from questions of data quality or clarity of 

inferences from the data   

Low:  Significant uncertainties in quality or interpretation of data  
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Additional Data table S1 (separate file) 

List of paleoecological sites used in analysis with data and metadata: 

 

Region:   Region in fig. S1, S2, S3, and Table 1. 

Site:   Site name 

Sitelats:  Latitude 

Sitelons:  Longitude 

CompChange:  Compositional change since LGP 

CompConf:  Confidence of compositional change assessment 

CompClim:  Role of climate change since LGP in driving compositional change 

CompClimConf: Confidence of climate-change role for composition 

StructureChange: Structural change since LGP 

StructureConf:  Confidence of structural change assessment 

StructureClim:  Role of climate change since LGP in driving structure change 

StructureClimConf: Confidence of climate-change role for structure 

CompJustification: Description of the ecological change the underlies the composition change 

assessment 

StructureJustification: Description of ecological change that underlies the structure change 

assessment 

Sitetemps_ah:  Temperature difference since LGM (Annan&Hargreaves2013) 

Sitetemps_trace1: Temperature change since LGP (TraCE21ka) 

Sitetemps_ccsm4rcp85: Projected temperature change (RCP8.5) 

Sitetemps_ccsm4rcp26: Projected temperature change (RCP2.6) 

Sitetemps_ccsm4rcp45: Projected temperature change (RCP4.5) 

Sitetemps_ccsm4rcp60: Projected temperature change (RCP6.0) 

ReferenceDOI: Digital Object Identifier (DOI) for the site’s reference 

Reference:  Citation for paleoecological site 

 

 

 

 

 

 

 


