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Abstract

We compute the nuclear spin-orbit coupling from the Skyrme model. Previous attempts to do this were 
based on the product ansatz, and as such were limited to a system of two well-separated nuclei. Our cal-
culation utilises a new method, and is applicable to the phenomenologically important situation of a single 
nucleon orbiting a large nucleus. We find that, to second order in perturbation theory, the coefficient of 
the spin-orbit coupling induced by pion field interactions has the wrong sign, but as the strength of the 
pion-nucleon interactions increases the correct sign is recovered non-perturbatively.
© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The spin-orbit coupling is an important ingredient in nuclear structure theory. Its presence 
implies that it is energetically favourable for the spin and orbital angular momentum of a nucleon 
to be aligned, particularly if this nucleon is moving close to the surface of a larger nucleus. This 
explains the phenomenon of magic numbers, and it is important in the description of halo nuclei, 
to name just two examples. Unlike the spin-orbit force encountered in the study of electron 
shells of an atom, the nuclear spin-orbit force is not merely a relativistic effect but is caused by 
the strong interaction physics of nuclei.
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The Skyrme model is an effective description of QCD, and a candidate model of nuclei with 
a topologically conserved baryon number. It successfully accounts for phenomena such as the 
stability of the alpha-particle, the long-range forces between nuclei, and quantum numbers of 
excited states of very light nuclei. Some of the recent successes of the model include reproducing 
the excited states of oxygen-16 [1] and carbon-12 [2], nuclear binding energies of the correct 
magnitude [3], accurately modelling neutron stars [4] and a geometric explanation for certain 
magic nuclei [5].

However, one of the challenges in analysing the Skyrme model has been accounting for the 
spin-orbit coupling. There have been several attempts to calculate the spin-orbit term in the 
nucleon–nucleon potential [6–10]. Most of these calculations were only valid for large sep-
arations and were also perturbative, and so corresponded to calculations taking into account 
one- and two-pion exchange. Almost all obtained the nucleon–nucleon spin-orbit coupling with 
the wrong sign, although [6] obtained the correct sign by introducing additional mesons in the 
model.

The conventional description of the spin-orbit force is in the framework of relativistic mean 
field theory [11], which couples nucleons to several mesons (including the pion, σ , ρ and ω). An 
interesting perspective was put forward by Kaiser and Weise [12]: they argued that the spin-orbit 
coupling receives several contributions, including a wrong-sign contribution from pion exchange; 
this is compensated by other effects, including meson exchange and three-body forces. This 
seems to be related to the sign problem in the Skyrme model.

In this article we investigate in a novel way how a short-range spin-orbit coupling arises in 
the Skyrme model. Unlike relativistic mean field theory, our calculation is non-relativistic and 
incorporates pions but no other mesons. Our calculations are for a somewhat simplified model, 
but we hope this model captures the essence of the effect. Our main discovery is that the sign 
of the spin-orbit coupling is wrong at weak coupling, where a perturbative approach would be 
valid. However, the sign is correct when the coupling between the nucleon and the surface of the 
nucleus with which it interacts is stronger.

A key property of a Skyrmion, distinguishing it from an elementary nucleon, is that it has 
orientational degrees of freedom. It is a spherical rigid rotor. After quantisation [13], the ba-
sic states are nucleons with spin 1

2 , but there are also excited states with spin 3
2 corresponding 

to Delta resonances, and further states of higher spin and higher energy that play no signifi-
cant role. The states simultaneously have isospin quantum numbers (isospin 1

2 for the nucleons 
and 3

2 for the Deltas). In our model, a dynamical Skyrmion interacts quantum mechanically 
with a background multi-Skyrmion field modelling the nuclear surface. The interaction involves 
a potential that depends on the Skyrmion orientation and its position, and the potential has a 
strength parameter that we consider as adjustable. When the parameter is small, a perturbative 
treatment works. However, the spin-orbit coupling has the wrong sign in this regime. When the 
parameter is larger (but not too large), the spin-orbit coupling for the Skyrmion has the correct 
sign.

Indeed, in this latter regime, a better approximation to the Skyrmion wavefunction is to say 
that the orientation has its probability concentrated near the minimum of the orientational poten-
tial, with this minimum varying with the Skyrmion’s location on the surface. The quantum state 
is now close to the classical picture of a Skyrmion rolling over the nuclear surface, maintaining a 
minimal orientational potential energy. This classical rolling motion gives the correct sign for the 
spin-orbit coupling. In earlier work, Halcrow and one of the present authors investigated a model 
of this type [14], but they only treated the case of a disc interacting with another disc in two 
dimensions. When the potential is strong, the model becomes a quantised version of cog wheels 
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rolling around each other. Here we do better, by treating a realistic three-dimensional Skyrmion 
interacting quantum mechanically with a nuclear surface. However, we still need to make var-
ious approximations. For example, we assume the height of the Skyrmion above the surface is 
fixed.

Our analysis is based on the following well-known interpretation of the phenomenological 
spin-orbit coupling. Consider a nucleon near the surface of a spherical nucleus. Suppose that in 
addition to the usual kinetic terms, the hamiltonian for the nucleon contains a term of the form

a �S. �N × �P , (1.1)

where a is a parameter, �S is the spin of the nucleon, �P is its momentum, and �N is an inward-
pointing vector normal to the surface, which may be interpreted as the gradient of the density 
of nuclear matter. Since the position vector �r of the nucleon equals −r �N/| �N |, this term equals 
−(a| �N |/r)�S. �L, where �L = �r × �P is the orbital angular momentum of the nucleon. This is the 
usual form of the spin-orbit coupling. In order to give the correct magic numbers, the spin-orbit 
coupling must prefer spin and angular momentum to be aligned rather than anti-aligned, so the 
parameter a needs to be positive. The advantage for us of the formula (1.1) is that it applies when 
the nucleon is interacting with an essentially flat nuclear surface, as in the model we will discuss 
below. We will refer to (1.1) as the spin-momentum coupling. Note that �N is essential here, and 
implies that there is no coupling for an isolated nucleon, nor for a nucleon deeply embedded 
inside a nucleus.

There are two practical difficulties with this approach: the first is that the interaction between 
Skyrmions and multi-Skyrmions is poorly understood at short distances, and the second is that 
the complicated spatial structure of known multi-Skyrmions with finite baryon number would 
make the calculations laborious. We solve the first of these problems by working in the lightly 
bound version of the Skyrme model [15], for which multi-Skyrmions and their interactions are 
accurately captured by a point particle description, although the particles still have orientational 
degrees of freedom. We solve the second problem by supposing that the multi-Skyrmion repre-
senting the core of the nucleus is large, and approximating its surface by a plane. Since Skyrmions 
in the lightly bound model naturally arrange themselves to sit at vertices of an FCC lattice, this 
surface has a high degree of symmetry, making the calculation tractable.

In the next section we review the 2D toy model of [14], but in a modified and simplified form. 
Here the dynamical, Skyrmion-like object is a coloured disc, and it moves in the background of 
a straight, periodically coloured rail, rather than around a larger coloured disc as in [14]. The 
potential depends on the colour difference between the disc and the rail at their closest points. 
The translational and rotational motion of the disc is quantised, and we compare the result of 
a perturbative treatment, valid when the potential is weak but which leads to a spin-momentum 
coupling of the wrong sign, with a non-perturbative approach that can deal with stronger cou-
pling but is still algebraically straightforward. The price to pay for working non-perturbatively 
is that we must assume that the moment of inertia of the disc is small; in our perturbative cal-
culation, no such assumption is necessary. The strong coupling result gives the correct sign for 
the spin-momentum coupling. In the later sections we perform similar calculations in the more 
realistic 3D setting. Here, the Skyrmion is visualised as a coloured sphere moving relative to a 
coloured surface, and the potential again depends on the colour difference at the closest points. 
The calculations can be done by hand, exploiting the assumed lattice symmetries of the (planar) 
nuclear surface, but are nevertheless considerably more complicated. The reader may wish to 
skip the details here.
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Fig. 1. Coloured disc on a fixed coloured rail. One period of the rail colouring is shown. (For interpretation of the colours 
in the figure(s), the reader is referred to the web version of this article.)

2. Disc on a rail

We start with a two-dimensional toy model of spin-momentum coupling, rather similar to what 
was analysed in [14]. Consider a vertical disc at a fixed height above a fixed, straight rail. The 
disc can move along the rail and also rotate. Both the edge of the disc and the rail are coloured, 
and the potential energy is a periodic function of the colour difference at their closest points. 
When the colours match, the potential energy is lowest. Let us assume that the disc is coloured 
so that for the potential to remain at its lowest value as the disc moves classically, the disc needs 
to roll along the rail. See Fig. 1. This model is similar to a cog on a rack rail, which can only roll, 
but not slip. Classically there is spin-momentum coupling, as the (clockwise) spin of a rolling 
cog is a positive multiple of its linear momentum.

Let X be a linear coordinate along the rail. The colour χ along the rail is an angular field 
variable, and as with an ordinary angle we assume χ takes any real value and identify values that 
differ by 2π . We suppose that χ = X, so the colour is periodic along the rail, with period 2π . 
Let the disc have radius 1 and assume that when it is in its standard orientation, the colour is the 
same as the angle around the disc measured from the bottom in an anticlockwise direction, i.e. 
the colour is χ at angle χ .

Suppose now that the position and orientation of the disc are (x, θ), where x is the location 
of the centre of the disc, projected down to the X-axis, and θ is the angle by which the disc is 
rotated clockwise relative to its standard orientation. The bottom of the disc then has colour θ , 
and the rail under this point has colour x. We suppose the potential energy of the disc in this 
configuration is −V0 cos(x − θ) with V0 ≥ 0.

We next introduce some dynamics. Suppose the disc has unit mass, and moment of inertia �, 
so the Lagrangian for its motion is

L= 1

2
ẋ2 + 1

2
�θ̇2 + V0 cos(x − θ) . (2.1)

The equations of motion are

ẍ =−V0 sin(x − θ) , �θ̈ = V0 sin(x − θ) . (2.2)

Note that as the potential only depends on x − θ , there is a conserved quantity ẋ + �θ̇ . One 
solution of the equations is x = μt , θ = μt for any constant μ – this is rolling motion.

The conjugate momenta to x and θ are

p = ẋ , s =�θ̇ , (2.3)
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and the Hamiltonian is

H = 1

2
p2 + 1

2�
s2 − V0 cos(x − θ) , (2.4)

with conserved quantity p+ s.
We now quantise. Stationary wavefunctions are of the form 	(x, θ), and the momentum and 

spin operators are

p =−i
∂

∂x
, s =−i

∂

∂θ
. (2.5)

The stationary Schrödinger equation is(
−1

2

∂2

∂x2 −
1

2�

∂2

∂θ2 − V0 cos(x − θ)

)
	=E	, (2.6)

where the operator on the left hand side is the Hamiltonian (2.4) expressed in terms of the mo-
mentum and spin operators.

The configuration space of the disc has first homotopy group Z, so wavefunctions can acquire 
a phase when θ → θ+2π . Bearing in mind that we are modelling a fermionic nucleon interacting 
with a large nucleus, we choose this phase to be π . Wavefunctions then have a Fourier expansion

	(x, θ)=
∑
n odd

ψn(x)ei 1
2 nθ , (2.7)

a superposition of half-integer spin states.
The free motion, in the absence of the potential, has separately conserved momentum p and 

spin s, and the basic stationary state is

	(x, θ)= eipxeisθ , (2.8)

where p is arbitrary and s is half-integer. This state has energy

E = 1

2
p2 + 1

2�
s2 . (2.9)

We now suppose that � is small, so that 1
�

is large compared to V0 and to p2. The expressions 
we derive later will only be valid provided p2 � 1

�
. In this regime, the low energy states are 

those with s = ± 1
2 . This is physically what we are interested in. Spin 3

2 nucleons (i.e. Delta 
resonances) have energy about 300 MeV greater than spin 1

2 nucleons, and spin-orbit energies 
are much less than this, of order 1 MeV. So we mostly neglect the small parts of the wavefunction 
with s =± 3

2 or larger.
Because of the restriction to n =±1 states, i.e. those with s =± 1

2 , the wavefunction reduces 
to

	(x, θ)=ψ1(x)ei 1
2 θ +ψ−1(x)e−i 1

2 θ . (2.10)

A stationary state like this is not strictly compatible with the Schrödinger equation, because the 
potential couples it to s = ± 3

2 states. We can deal with this by calculating the matrix form of 
the Hamiltonian restricted to this subspace of wavefunctions. Recall that there is the conserved 
quantity p + s. This implies that if ψ1(x) = eipx then ψ−1(x) = Aeip′x , where p′ = p + 1, for 
some amplitude A. Momentum p itself is not a good label for states, but instead we can use 
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r = p + s, where r takes any value in the range (−∞, ∞). The wavefunction (2.10) becomes, 
for a definite value of r ,

	(x, θ)= ei(r− 1
2 )xei 1

2 θ +Aei(r+ 1
2 )xe−i 1

2 θ . (2.11)

Alternatively, the crystal momentum k could be defined to be p mod 1 and the (first) Brillouin 
zone to be − 1

2 ≤ k ≤ 1
2 , but because of the restricted range of spins, we do not need the formalism 

of Bloch states mixing momentum p with all its integer shifts.

We now work with basis states 1
2π

ei(r− 1
2 )xei 1

2 θ and 1
2π

ei(r+ 1
2 )xe−i 1

2 θ . These are normalised 
in {0 ≤ x ≤ 2π , 0 ≤ θ ≤ 2π}. The matrix elements of the Hamiltonian (2.4), or equivalently the 
operator on the left of (2.6), are

H2×2 =
( 1

2 (r − 1
2 )2 + 1

8�
− 1

2V0

− 1
2V0

1
2 (r + 1

2 )2 + 1
8�

)
, (2.12)

where the diagonal terms are kinetic contributions. The upper off-diagonal term comes from the 
matrix element of the potential

1

(2π)2

2π∫
0

2π∫
0

e−i(r− 1
2 )xe−i 1

2 θ (−V0 cos(x − θ))ei(r+ 1
2 )xe−i 1

2 θ dxdθ =−1

2
V0 , (2.13)

and the lower off-diagonal term is the same, by hermiticity. The potential makes no contribution 
to the diagonal terms.

It is now convenient to express the energy eigenvalues E of H2×2 as E = 1
2ε+ 1

8�
. The matrix 

with eigenvalues ε is

H̃2×2 =
(

(r − 1
2 )2 −V0

−V0 (r + 1
2 )2

)
, (2.14)

and the eigenvalue equation det(H̃2×2 − ε1) = 0 reduces to

ε2 − 2ε

(
r2 + 1

4

)
+

(
r2 − 1

4

)2

− V 2
0 = 0 , (2.15)

with solutions

ε±(r)= r2 + 1

4
±

√
r2 + V 2

0 . (2.16)

The spectrum has two branches, the lower branch ε−(r) and the upper branch ε+(r), and is 
symmetric under r → −r . When V0 = 0 the spectrum simplifies to ε(r) = (r ± 1

2 )2, whose 
graph consists of two intersecting parabolas, with minima at r =− 1

2 and r = 1
2 , and a crossover 

at r = 0.
We are mainly interested in low energy states on the lower branch, near the minima of ε−(r). 

There is an important bifurcation at a critical strength of the potential, V0 = 1
2 . For V0 < 1

2 , 

ε− has two minima at r =±
√

1
4 − V 2

0 and a local maximum at r = 0. For V0 > 1
2 , there is just 

one minimum at r = 0; here p =± 1
2 , so the crystal momentum k is located on the boundary of 

the Brillouin zone. The upper branch ε+(r) has simpler behaviour, as it just has a minimum at 
r = 0 for all positive V0. Fig. 2 shows graphs of the eigenvalue spectrum for two typical values 
of V0.
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Fig. 2. Eigenvalues ε−(r) (lower curves) and ε+(r) (upper curves) of the matrix H̃2×2 for two values of the parameter V0.

Recall the form of the (unnormalised) wavefunction (2.11). We evaluate A using the condition 
that 

(1
A

)
is the eigenvector of the matrix (2.14). On the lower branch of the spectrum

A= 1

V0

(√
r2 + V 2

0 − r

)
, (2.17)

and on the upper branch

A=− 1

V0

(√
r2 + V 2

0 + r

)
. (2.18)

Note that |A|2 = 1 at r = 0 on both branches, so spins ± 1
2 are superposed there with equal 

probability. On the lower branch, the total (unnormalised) wavefunction at r = 0 is 2 cos 1
2 (x−θ), 

so the highest probability occurs for θ = x, where the disc is oriented so as to minimise the 
potential energy. This is compatible with a rolling motion.

Except in cases where |A| is very close to 0, or much larger than 1, the quantum states of 
the disc cannot be thought of as having a definite momentum p or spin s, because the poten-
tial strongly superposes states where these have different values. So to consider the correlation 
between the momentum and spin, we work with their expectation values 〈P 〉 and 〈S〉.

The expectation value of the spin is

〈S〉 =
1
2 + |A|2(− 1

2 )

1+ |A|2 (2.19)

where A is given by expressions (2.17) and (2.18), respectively, on the lower and upper branches. 
The expectation value of momentum follows immediately, as p + s = r for both contributing 
states in (2.11), so

〈P 〉 = r − 〈S〉 . (2.20)

Graphs of 〈P 〉 and 〈S〉 as functions of r are shown in Fig. 3. They are plotted together with ε−
for states on the lower branch, for the typical values of V0 we selected before; for states on the 
upper branch, they are plotted together with ε+.
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Fig. 3. Expectation values of the scaled energy ε (solid red), spin 〈S〉 (long-dashed green), and momentum 〈P 〉 (short-
dashed blue) as functions of r , for the eigenstates of H̃2×2.

Interesting to note is that 〈P 〉 vanishes wherever E (or equivalently ε) is stationary with 
respect to r , as one can see from the graphs. This is because

d

dr
H2×2 =

(
r − 1

2 0
0 r + 1

2

)
, (2.21)

and the right hand side is the matrix form of the momentum operator. Taking expectation values 
gives the result. (One also needs to use the identity 〈 d

dr
	|	〉 + 〈	| d

dr
	〉 = 0 for normalised 

states.)
When the potential is relatively weak, such that V0 < 1

2 , then 〈P 〉 passes through 0 at the 
non-zero minima of ε− on the lower energy branch. On the other hand 〈S〉 does not change sign 
near here. The signs of 〈P 〉 and 〈S〉 are therefore not strongly correlated for these low energy 
states, and we conclude that for weak potentials there is no significant spin-momentum coupling. 
Near r = 0, where ε− has a local maximum, 〈P 〉 and 〈S〉 have opposite signs, so momentum and 
spin are anticorrelated. This is the opposite of the classical correlation of momentum and spin 
for a rolling motion. Similarly, on the upper energy branch, the expectations of momentum and 
spin have opposite signs for all r , so they are anticorrelated.

When the potential is stronger, such that V0 > 1
2 , we find the correlation we are seeking. Here, 

the low energy states on the lower branch are near r = 0, and we see that 〈P 〉 and 〈S〉 have the 
same sign. It is straightforward to estimate these quantities analytically for small r . They are

〈S〉 � 1

2V0
r and 〈P 〉 �

(
1− 1

2V0

)
r , (2.22)

and for V0 > 1
2 both their slopes with respect to r are positive. In fact, because 〈P 〉 is zero only 

at r = 0 when V0 > 1 , there is a spin-momentum correlation of the desired sign for all r , on the 
2
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lower branch. On the other hand, the momentum and spin are anticorrelated for all r on the upper 
branch.

The conclusion is that the potential has to be quite strong to achieve the spin-momentum 
coupling for quantum states that mimics the classical phenomenon of rolling motion for a cog. 
As in the usual model of spin-orbit coupling for a spin 1

2 particle, there are two states, a lower 
energy state with a positive correlation, and a higher energy state with an anticorrelation.

2.1. Perturbation theory

We have just seen that the spin-momentum correlation has the desired form only when the 
potential is quite strong. Nevertheless, it is of some interest to calculate what happens in per-
turbation theory. When the potential is weak, we can calculate the energy spectrum to second 
order in perturbation theory, treating V0 as small. The perturbative result overlaps what we have 
already calculated, and we can allow for the possibility that the moment of inertia � is not small. 
This is a useful check on our calculations, both for the two-dimensional disc, and later, when we 
consider three-dimensional Skyrmion dynamics.

When V0 = 0, the eigenstates of the Hamiltonian are 	0(x, θ) = eipxeisθ , with definite mo-
mentum and spin, and energy E = 1

2p2 + 1
2�

s2. Low energy states are those with s = ± 1
2 and 

p � 0. These are near the centre of the Brillouin zone. Let us focus on the states with s = 1
2

(the results are similar for s =− 1
2 ), whose energy is 1

2p2 + 1
8�

. Recall that when the potential 
is included, there is still the good quantum number r = p+ s, so the states that we are focussing 
on have r = p+ 1

2 � 1
2 .

The effect of the cosine potential −V0 cos(x − θ), at leading order, is to mix the unper-

turbed state 	0 = eipxei 1
2 θ with states where p is shifted by ±1, i.e. the states ei(p+1)xe−i 1

2 θ

and ei(p−1)xei 3
2 θ , whose unperturbed energies are 1

2(p+ 1)2 + 1
8�

and 1
2 (p− 1)2 + 9

8�
, respec-

tively. The potential has no diagonal matrix element, so the energy is unchanged to first order 
in V0.

The eigenfunction of the Hamiltonian to first order in V0, for the fixed value p+ 1
2 of r , is

	(x, θ)= eipxei 1
2 θ + V0

2p+ 1
ei(p+1)xe−i 1

2 θ + V0

−2p+ 1+ 2
�

ei(p−1)xei 3
2 θ , (2.23)

where the denominators of the coefficients are proportional to differences between the energies 
of the unperturbed states. The energy of the state 	, to second order in V0 (found either by acting 
with the Hamiltonian, or by using the standard formula) is

E = 1

2
p2 + 1

8�
− V 2

0

2(2p+ 1)
− V 2

0

2(−2p+ 1+ 2
�

)
. (2.24)

This formula is valid, provided the unperturbed energy differences are not small compared to V0. 
So V0 must be much less than 1 and p must not approach − 1

2 . The perturbative approach there-
fore definitely fails for the states near r = 0 that we were considering earlier for fairly strong V0. 
However, it is successful for small p, even if � is not small and the last term of the formula (2.24)
makes a significant contribution. Therefore, perturbation theory allows us to consider easily the 
spin 3

2 contribution to low energy states, in contrast to our matrix method, which required this 
contribution to be negligible.
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Let us compare our previous calculation of ε−, as a matrix eigenvalue, with this perturbative 
estimate. From the expression (2.16), and converting it back to give the energy E as a function 
of momentum p, we find, to second order in V0, that

E = 1

2
p2 + 1

8�
− V 2

0

2(2p+ 1)
, (2.25)

and this agrees with (2.24) provided � is small. So the matrix method and perturbation theory 
agree where they should.

The conclusion is that perturbation theory is a good way to find states of the disc in a certain 
regime, but that regime does not extend to where spin-momentum coupling has the correlation 
we are seeking. In the following sections we shall investigate the quantised three-dimensional 
dynamics of a Skyrmion in a background potential. We should expect the matrix method to be 
more effective than perturbation theory for finding the desired form of spin-momentum coupling. 
We shall need a model where the potential is fairly strong, and where states of the Skyrmion with 
spin 3

2 and higher are suppressed, relative to the spin 1
2 states.

3. Rolling on a half-filled lattice of Skyrmions

Static solutions of the lightly bound Skyrme model are well-represented by a point particle 
description [15], and we start by reviewing this. This approach is also expected to provide an 
accurate representation of dynamics, given that the same is true in a lower-dimensional toy model 
[16].

A multi-Skyrmion modelling a nucleus with mass number N is described by N Skyrmion-like 
point particles, each with three positional degrees of freedom and three orientational degrees of 
freedom. The rotational degrees of freedom could be expressed using an SO(3) matrix, but for 
quantum mechanical calculations it is more convenient to use an SU(2) matrix q . Throughout this 
section we will identify the group SU(2) with the group of unit quaternions, making the identi-
fications i =−iσ1, j =−iσ2, k =−iσ3 between imaginary quaternions and Pauli matrices. The 
Lagrangian for the model consists of standard kinetic terms for the positions and orientations, 
and interaction potentials between pairs of particles (see [15] for the precise form).

The interaction potential is such that the particles tend to arrange themselves into crystals with 
an FCC lattice structure, with a preferred orientation at each lattice site. In suitable length units 
the FCC lattice is the set of vectors (x, y, z) ∈ Z

3 such that x + y + z is even. The preferred 
orientation at lattice site (x, y, z) is ixjykz.

We want to study the problem of a charge-1 Skyrmion rolling along the surface of a half-filled 
FCC lattice. See Fig. 4. We assume that the lattice sites with x + y + z ≤ −2 are filled with 
particles in their preferred orientations, and consider a Skyrmion moving freely in the plane

= {(x, y, z) ∈R
3 : x + y + z= 0} . (3.1)

The degrees of freedom for this Skyrmion are its position coordinates (x, y, z) and its orientation 
q ∈ SU(2). Its dynamics can be described by a Lagrangian consisting of a standard kinetic term 
and a potential function V : × SU(2) → R. The kinetic terms are invariant under the group 
SU(2)I × SU(2)S of isorotations and rotations, with action

SU(2)I × SU(2)S � (g,h) : (�x, q) �→ (h�xh−1, gqh−1) , (3.2)

where we identify vectors �x ∈ R3 with imaginary quaternions xi + yj + zk =−i(xσ1 + yσ2 +
zσ3). These terms are also invariant under translations (�x, q) �→ (�x + �c, q) and parity transfor-
mations (�x, q) �→ (−�x, q).
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Fig. 4. A Skyrmion above a half-filled lattice of Skyrmions. The spheres are coloured using the colour scheme of [3]
to indicate their orientations: the three pairs of opposite faces are coloured black/white, red/green and yellow/blue. Four 
orientations occur in the lattice. Preferred rolling directions for the single Skyrmion are shown by the arrows.

The potential function V must be invariant under the group of symmetries of the half-filled 
lattice. This group is generated by the following transformations:

−1 : (x, y, z, q
) �→ (

x, y, z,−q
)
, (3.3)

ρ : (x, y, z, q
) �→ (

z, x, y,
1+i+j+k

2 q
1−i−j−k

2

)
, (3.4)

τ : (x, y, z, q
) �→ (

x, y + 1, z− 1, iq
)
, (3.5)

σ : (x, y, z, q
) �→ (

y, x, z,
i−j√

2
q

j−i√
2

)
. (3.6)

The invariance of V under −τ 2, −ρτ 2ρ−1 and −ρ2τ 2ρ−2 implies in particular that V is invariant 
under the translation action of the two-dimensional lattice

�= {(2m,2n,−2(m+ n)) : m,n ∈ Z} ⊂. (3.7)

The transformations listed above acting on (/�) × SU(2) generate a finite group which is 
isomorphic to the binary cubic group (the double cover of the cubic group). Note that since 
τ 2 =−1 when acting on (/�) × SU(2) we are free to use ρ, σ, τ as a set of generators.

We employ an ansatz for the potential of the form

V (�x, q)=U(�x)+ Tr(R(q)Y (�x)) , (3.8)

with R(q) the rotation matrix induced by q (i.e. qσjq
−1 = σiR(q)ij ), and Y(�x) a 3 × 3 matrix-

valued function. This ansatz is motivated by the dipole description of Skyrmion interactions; to 
a good approximation a single Skyrmion interacts with a background field of pions like a triple 
of orthogonal scalar dipoles, and this dipole interaction has similar q-dependence to our ansatz. 
Alternatively, one may regard our ansatz as the first two terms in an expansion of V in harmonics 
on SU(2). Note that this potential satisfies V (�x, −q) = V (�x, q), as required by symmetry.

We simplify the ansatz further using Fourier series. Both U and Y are required to be invariant 
under the lattice �, so have Fourier series with summands corresponding to dual lattice vectors. 
We assume that these Fourier series only contain terms corresponding to the shortest dual lattice 
vectors; the associated functions are 1 and e±i�aj .�x , where

�a1 = π
3 (2,−1,−1) , �a2 = π

3 (−1,2,−1) , �a3 = π
3 (−1,−1,2) . (3.9)

With this restriction, the vector space of functions U is seven-dimensional and the space of 
functions Y is 63-dimensional.
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The symmetries ρ, σ , τ generate an action of the binary cubic group on the vector spaces 
occupied by U, Y . Since the ansatz (3.8) is invariant under q �→ −q , this action descends to 
an action of the cubic group. Representation theory can be used to find all functions U and Y
which are invariant under this action. This calculation involves the irreducible representations of 
the cubic group: we recall these briefly. Besides the trivial representation A1, there is another 
one-dimensional representation A2 in which ρ and τ map to 1 and σ maps to −1. There is a 
unique two-dimensional representation E and two three-dimensional representations T1 and T2; 
the first of these is the standard rotational action as the symmetry group of the cube and the 
second is T2 = T1 ⊗A2.

It can be shown that the functions e±i�aj .�x transform in the representation 2T2 of the cubic 
group; since this contains no trivial subrepresentations the only allowed form for U is a constant 
function. Since this constant does not alter differences between energy eigenvalues we set it to 
zero.

The elements of the group act on matrix-valued functions Y by simultaneously multiplying 
with matrices from the left and right, and by permuting the Fourier modes. The matrix acting 
from the left corresponds to the representation A2⊕E, and that acting from the right corresponds 
to the representation T1. The action on Fourier modes is A1 ⊕ 2T2. Therefore the representation 
acting on the vector space occupied by Y is (A1⊕2T2) ⊗T1⊗ (A2⊕E). Since T1⊗ (A2⊕E) ∼=
T1 ⊕ 2T2 this space contains four copies of A1, so the space of allowed potential functions has 
real dimension four.

This space of allowed potential functions can be parametrised by (U0, U1) = (W0e
iθ0, W1e

iθ1)

∈C
2 as follows:

Yapprox(�x)=−�
⎛⎜⎝U0e

i�a1.�x U1e
i�a2.�x U1e

i�a3.�x

U1e
i�a1.�x U0e

i�a2.�x U1e
i�a3.�x

U1e
i�a1.�x U1e

i�a2.�x U0e
i�a3.�x

⎞⎟⎠

=−
⎛⎜⎝W0 cos(�a1.�x + θ0) W1 cos(�a2.�x + θ1) W1 cos(�a3.�x + θ1)

W1 cos(�a1.�x + θ1) W0 cos(�a2.�x + θ0) W1 cos(�a3.�x + θ1)

W1 cos(�a1.�x + θ1) W1 cos(�a2.�x + θ1) W0 cos(�a3.�x + θ0)

⎞⎟⎠ . (3.10)

The values of the constants can be estimated in the lightly bound Skyrme model using its point 
particle approximation. One calculates a function Ytrue by adding up the interaction energies 
between fixed Skyrmions in the planar lattice x + y + z=−2 and the Skyrmion moving freely 
in the plane x + y + z= 0, and then calculates its Fourier coefficients. The values obtained are

W0 = 0.67 , W1 = 0.55 , θ0 =−0.03 , θ1 = 0.77≈ π

4
. (3.11)

With these parameters the truncated Fourier series Yapprox given in eq. (3.10) is a good approx-
imation to Ytrue, in the sense that the ratio of the squares of the L2 norms of Ytrue − Yapprox and 
Ytrue is 0.095. Our final potential V (�x, q) = Tr(R(q)Yapprox(�x)) is not exact, even in the point 
particle description of Skyrmion interactions, but it is analogous to the potential −V0 cos(x − θ)

that we chose for the disc in section 2.
We claim that for the parameter values (3.11), the potential given by equations (3.8) and 

(3.10) induces classical motion similar to a ball rolling on a surface. Consider the situation where 
a particle moves from (x, y, z, q) = (0, 0, 0, 1) to (x, y, z, q) = (1, −1, 0, ±k). Both of these 
points are critical points of the potential, and for our parameter set they are minima. We will 
treat this situation adiabatically, assuming that the mass M of the Skyrmion is much greater than 
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Fig. 5. The path of a rolling Skyrmion.

its moment of inertia �. If the spatial kinetic energy 1
2Mv2 is much larger than the energy scale 

W =
√

W 2
0 +W 2

1 of the potential then the path in space will to a good approximation be a straight 

line: �x(t) = (vt/
√

2)(1, −1, 0). If the velocity is not too large then, at each time t , q(t) will to a 
good approximation be the orientation that minimises V (�x(t), q) with respect to variations in q . 
In this situation the rotational kinetic energy is roughly 1

2�v2, and the approximation is reliable 
as long as this is much less than W . Thus our approximation assumes that W/M� v2 �W/�.

We wish to compare this motion with that of a rolling ball. If a ball of radius r rolls with 
velocity �v along a surface with inward-pointing unit normal �n its angular velocity will be 
�ω = −�n× �v/r . For �n = (−1, −1, −1)/

√
3 and �v = (v/

√
2)(1, −1, 0) as above this makes the 

angular velocity a positive multiple of (1, 1, −2). The angle θ(t) between the angular velocity 
vector �ω(t) =−2q−1q̇ for the path q(t) and the vector (1, 1, −2) measures deviation from rolling 
motion: acute angles indicate motion similar to rolling, and obtuse angles indicate motion that is 
opposed to rolling. We have computed q(t) using the adiabatic approximation described above 
and have hence determined θ(t). The maximum angle along the path is 0.89 ≈ 2π/7, indicating 
that the motion induced by the potential is similar to that of a rolling ball.

This adiabatic motion of a Skyrmion is illustrated in Fig. 5 (see also Fig. 4). The orientation 
of the rolling Skyrmion is illustrated at the start, mid-point, and end of the path. The start and 
end points are neighbouring lattice sites, and their orientations differ by a rotation of 180 degrees 
about the red–green axis. The most natural guess for the orientation at the mid-point is a rota-
tion through 90 degrees about the same axis, and there are two possibilities here (depending on 
whether one rotates clockwise or anticlockwise). Fig. 5 shows the orientation for one sense of 
rotation, but the alternative would have made the Skyrmion’s red, white and yellow faces visible 
at the mid-point. Now observe that just below the Skyrmion at the mid-point there is a nearby 
Skyrmion in the lattice (white and yellow faces visible). It is straightforward to find the pion 
dipole fields of this pair of Skyrmions along the line joining them and verify that for the illus-
trated sense of rotation, the fields are identical at the closest points, implying that the potential 
energy is minimal. (The associated colouring is predominantly green, but with a small tilt to-
wards white and yellow.) If the sense of rotation had been opposite, the field match would have 
been less good and the energy greater.

We conclude that the rolling motion illustrated in Fig. 5 is along a particularly deep valley in 
the potential energy landscape, and favoured as a low energy classical motion. Anti-rolling is dis-
favoured. Fig. 5 suggests that to a good approximation the spin vector �S for the rolling Skyrmion 
points in the direction of the red–green axis, from green to red. This spin vector �S, the vector �N
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pointing into the half-filled lattice, and the momentum vector �P do not form an orthonormal triad 
( �P is orthogonal to both �N and �S, and �N.�S =−1/

√
3), but their triple scalar product �S. �N × �P

is negative. This is what is expected classically if the parameter a in equation (1.1) is positive.

4. Weak coupling to the potential

In this section and the next we will study the quantum mechanical problem of a Skyrmion in-
teracting with the surface of a half-filled lattice. Since the potential experienced by the Skyrmion 
is periodic it is natural to analyse this problem using the theory of Bloch waves. Let �k ∈R

3 be a 
crystal wavevector satisfying k1 + k2 + k3 = 0 and let H�k be the Hilbert space of wavefunctions 
	 :R3 × SU(2) →C satisfying

	(�x + (t, t, t), q)=	(�x, q) ∀t ∈R , (4.1)

	(�x + �v, q)= ei�k.�v	(�x, q) ∀�v ∈ � . (4.2)

The first condition ensures that 	 is effectively defined in the plane  rather than all of R3. The 
second condition has the implication that two crystal wavevectors whose difference lies in the 
reciprocal lattice �∗ generated by �aj define the same Hilbert space, so �k should be regarded as 
an element of ∗/�∗.

The natural operators on H�k are isospin, spin, and momentum. Spin and isospin are just the 
infinitesimal versions of the actions described in (3.2):

Sj	(�x, q)= i
d

dt
	(�x, q exp(−iσj t/2))

∣∣∣∣
t=0

, (4.3)

I j	(�x, q)= i
d

dt
	(�x, exp(iσj t/2)q)

∣∣∣∣
t=0

. (4.4)

Although the space in which the Skyrmion moves is two-dimensional, it will be convenient to 
write momentum as a three-vector (due to the three-dimensional origin of the problem). Thus we 
set

P j	(�x, q)=−i
∂	

∂xj
(�x, q) , (4.5)

noting that P 1+P 2+P 3 = 0. Then for a plane wave of the form 	(�x, q) = ei�b.�x with b1+b2+
b3 = 0 we have P j	 = bj	.

It will be useful in what follows to decompose H�k into eigenspaces of | �S|2. Fix a non-negative 
integer or half-integer � and let η� : SU(2) → SU(2� +1) be the spin � irreducible representation 
of SU(2). If ψ : →Mat(2� + 1, C) is a matrix-valued function of �x then

	(�x, q) := Tr(ψ(�x)η�(q)) (4.6)

satisfies | �S|2	 = | �I |2	 = �(� + 1)	. Thus this wavefunction describes a particle of total spin �
and total isospin �. The space of all such wavefunctions in H�k will be denoted H�

�k . The Peter–
Weyl theorem implies that any wavefunction in H�k can be decomposed as an infinite sum of 
wavefunctions of this type:

H�k =
⊕

�∈{0}∪ 1
N

H�
�k . (4.7)
2
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The wavefunction 	 describing the Skyrmion is required to satisfy the Finkelstein–Rubinstein 
constraints [13]. These simply state that 	 is an odd function of q: 	(�x, −q) = −	(�x, q). 
Functions in H�

�k are odd if � is a half-integer and even if � is an integer. Thus the Finkelstein–

Rubinstein constraints require 	 to be in the subspace Hodd
�k of H�k , where the summation over �

is restricted to half-integers. This ensures the quantised Skyrmion has half-integer spin.

4.1. Outline of perturbation theory

The hamiltonian that we will study is

H =H0 + V, H0 = |
�P |2

2M
+ |�S|

2

2�
. (4.8)

Here M, � > 0 are parameters representing the mass and moment of inertia of the Skyrmion, and 
V is the potential introduced in the previous section. We will construct an effective hamiltonian 
for the lowest-energy eigenstates using perturbation theory, with the parameters W0 and W1 of 
V treated as small.

If V = 0 and �k is in the first Brillouin zone (i.e. |�k + �v| > |�k| for all �v ∈ �∗) then the lowest 
energy eigenstates in the space H�k are clearly of the form

	0(�x, q)= Tr(ψq)ei�k.�x , (4.9)

with ψ ∈Mat(2, C). The space of all such wavefunctions has dimension four and will be denoted 
by K�k . The energy of these states is

E0 = |
�k|2

2M
+ 3

8�
. (4.10)

This is minimised by �k = �0. In the following calculations we will assume that �k is close to �0, 
discarding terms of O(�k2).

When the potential V is non-zero, the four degenerate energy levels with energy E0 will sep-
arate. We will study this effect using perturbation theory. Let us review the overall methodology, 
which generalises the formulae (2.23) and (2.24). We seek an operator I :K�k →H�k which de-
pends continuously on the parameters U0, U1 in the potential, such that the image under I of 
the H0-invariant subspace K�k is H -invariant, and such that the composition K I of I with the 
orthogonal projection K :H�k →K�k is the identity map. The effective hamiltonian is then de-
fined to be Heff =KHI . The operators I and Heff will be constructed as power series in the 
parameters that appear in the potential.

To zeroth order, I is just the inclusion: I|	0〉 = |	0〉 +O(V ) for all 	0 ∈H�k . The first order 
correction to Heff is given by

Heff|	0〉 =KH |	0〉 +O(V 2)=E0|	0〉 +KV |	0〉 +O(V 2) . (4.11)

The term linear in V vanishes. The reason for this is simple: the only non-zero terms in the 
Fourier series of V 	0 correspond to plane waves of the form ei(�k±�aj ).�x , as one sees from 
eqs. (4.9) and (3.10), and these are all L2-orthogonal to ei�k.�x . As a consequence, Heff =
H0 +O(V 2).

The first order correction to I is given by

I|	0〉 = (1− (H0 −E0)
−1V )|	0〉 +O(V 2). (4.12)
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This satisfies HI|	0〉 = E0I|	0〉 +O(V 2), so its image is H -invariant up to terms quadratic 
in V .

The second order correction to Heff is given by

Heff|	0〉 =KH(1− (H0 −E0)
−1V )|	0〉 +O(V 3)

= (E0 −KV (H0 −E0)
−1V )|	0〉 +O(V 3) . (4.13)

In the next subsection we will calculate the action of KV (H0 −E0)
−1V on wavefunctions 	0

of the form (4.9), and thereby evaluate Heff to second order. A reader uninterested in the details 
of this calculation may skip to the final result, eq. (4.34).

4.2. The effective hamiltonian Heff

We begin by analysing V |	0〉, with the potential V given by eqs. (3.8) and (3.10). From 

eq. (3.8) we see that V ∈ H1
�0, and from eq. (4.9) we see that 	0 ∈ H

1
2
�k . It follows from the 

Clebsch–Gordan rules that the excited wavefunction V (�x, q)	0(�x, q) will be a sum of terms 
with spin 1

2 and spin 3
2 . Thus

V |	0〉 =
1
2 V |	0〉 +

3
2 V |	0〉 , (4.14)

with � denoting projection onto H�
�k . Applying (H0 −E0)

−1 to the spin 1
2 term gives

(H0 −E0)
−1

1
2 V |	0〉 = 2M(| �P |2 − |�k|2)−1

1
2 V |	0〉

= 2M(| �P − �k|2 + 2( �P − �k).�k)−1
1
2 V |	0〉

= 2M(| �P − �k|2)−1
1
2 V |	0〉

− 4M(| �P − �k|2)−2�k.( �P − �k)
1
2 V |	0〉 +O(�k2) . (4.15)

As the Fourier modes that appear in the excited wavefunction V (�x, q)	0(�x, q) are ei(�k±�aj ).�x , the 
operator | �P − �k|2 takes the constant value |�aj |2 = 2π2/3 on 

1
2 V |	0〉, which simplifies this 

expression. The spin 3
2 term can be analysed in the same way, yielding

(H0 −E0)
−1V |	0〉 = 3M

π2 
1
2 V |	0〉 − 9M

π4
�k.( �P − �k)

1
2 V |	0〉

+M

(
π2

3
+ 3M

2�

)−1


3
2 V |	0〉 −M

(
π2

3
+ 3M

2�

)−2

�k.( �P − �k)
3
2 V |	0〉
+O(�k2) . (4.16)

Thus to compute KV (H0 − E0)
−1V |	0〉 we need to compute the following four terms: 

KV 
1
2 V |	0〉, KV �k.( �P − �k)

1
2 V |	0〉, KV 

3
2 V |	0〉 and KV �k.( �P − �k)

3
2 V |	0〉.

We begin with KV 
1
2 V |	0〉. This can be evaluated with the help of the following identity, 

which is proved in the appendix:


1
2
(
Rji(q)Tr(ψ(�x)q)

)= 1

3
Tr(σiψ(�x)σjq) . (4.17)

We introduce a vector
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�u= (u1, u2, u3)= (U1,U1,U0)= (W1e
iθ1 ,W1e

iθ1 ,W0e
iθ0) (4.18)

so that

V (�x, q)=−1

2

3∑
i,j=1

(ui−j e
i�aj .�x + ūi−j e

−i�aj .�x)Rji(q) , (4.19)

with the index i − j understood modulo 3. Then applying the identity (4.17) yields


1
2
(
V 	0)(�x, q)=

− 1

6

3∑
i,j=1

(
ui−j Tr(σiψσjq)ei(�k+�aj ).�x + ūi−j Tr(σiψσjq)ei(�k−�aj ).�x) . (4.20)

To apply the operator KV to this expression we multiply the function with V , discard all terms 
in the Fourier series except ei�k.�x , and apply 

1
2 with the help of the identity (4.17). The result is

K(V 
1
2
(
V 	0))(�x, q)= 1

36

3∑
i,j,k=1

(
ūk−j ui−j + uk−j ūi−j

)
Tr(σkσiψσjσjq)ei�k.�x

= 1

36

3∑
i,j,k=1

ūk−j ui−j Tr((σkσi + σiσk)ψq)ei�k.�x

= 1

6

3∑
i=1

|ui |2Tr(ψq)ei�k.�x

=
(

W 2
0

6
+ W 2

1

3

)
	0(�x, q) . (4.21)

The next term, KV �k.( �P − �k)
1
2 V |	0〉, can be evaluated using a similar method. The cal-

culation will make use of the identity

�̄u× �u= 2
√

3i sin(θ1 − θ0)�n× �e3 , (4.22)

in which �ej are the standard basis vectors for R3 and

�n=− 1√
3
(1,1,1) (4.23)

is an inward-pointing normal vector of unit length representing the normalised gradient of the 
nuclear charge density. Since �k.( �P − �k)ei(�k±�aj ).�x =±�k.�aj e

i(�k±�aj ).�x , we obtain

K(V �k.( �P − �k)
1
2
(
V 	0))(�x, q)

= 1

36

3∑
i,j,k=1

�k.�aj

(
ūk−j ui−j − uk−j ūi−j

)
Tr(σkσiψσjσjq)ei�k.�x

= 1

36

3∑ �k.�aj ūk−j ui−j Tr((σkσi − σiσk)ψq)ei�k.�x

i,j,k=1
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=−
√

3

9
W0W1 sin(θ1 − θ0)

3∑
j,l=1

�k.�aj (�n× �e3)
l−j Tr(σlψq)ei�k.�x . (4.24)

Now 
∑

j
�k.�aj (�n× �e3)

l−j simplifies algebraically to π(�n× �k)l and Tr(σlψq)ei�k.�x = 2Sl	0, so

KV �k.( �P − �k)
1
2 V |	0〉 = − 2π

3
√

3
W0W1 sin(θ1 − θ0)�S.�n× �k|	0〉 . (4.25)

The remaining two terms will be evaluated indirectly, using the identities

KV 
3
2 V |	0〉 =KV 2|	0〉 −KV 

1
2 V |	0〉 , (4.26)

KV �k.( �P − �k)
3
2 V |	0〉 =KV �k.( �P − �k)V |	0〉 −KV �k.( �P − �k)

1
2 V |	0〉 . (4.27)

In other words, we calculate the contributions from the sum of the spin 1
2 and spin 3

2 excited 
states and subtract the spin 1

2 contribution.

We begin with KV 2|	0〉. The term in the Fourier series of V (�x, q)2	0(�x, q) involving ei�k.�x
is

1

2

3∑
j=1

∣∣∣∣∣
3∑

i=1

Rij (q)ui−j

∣∣∣∣∣
2

Tr(ψq)ei�k.�x . (4.28)

The other terms in the Fourier series will be annihilated by K, so need not be computed.
By the Clebsch–Gordan rules, | ∑i Rij (q)ui−j |2 belongs to the space H0

�0⊕H1
�0⊕H2

�0 (because 

Rij (q) ∈H1
�0). We only need to calculate the piece in H0

�0 ⊕H1
�0, because multiplying a spin 1

2

wavefunction with a spin 2 function yields wavefunctions with spin 3
2 and 5

2 , both of which will 
be annihilated by K. We show in the appendix that, for any vectors �v, �w ∈R

3,

0((viRijw
j )2)= 1

3
|�v|2| �w|2 , 1((viRijw

j )2)= 0 . (4.29)

Therefore the relevant part of | ∑i Rij (q)ui−j |2 is |��u|2 + |��u|2 =W 2
0 + 2W 2

1 . It follows that

KV 2|	0〉 =
(

W 2
0

2
+W 2

1

)
|	0〉 (4.30)

and, using our earlier result (4.21),

KV 
3
2 V |	0〉 =

(
W 2

0

3
+ 2W 2

1

3

)
|	0〉 . (4.31)

The term KV �k.( �P − �k)V |	0〉 can be evaluated using similar techniques. The coefficient of 
ei�k.�x in the Fourier series of (V �k.( �P − �k)V 	0)(�x, q) is

1

2

3∑
j=1

�k.�aj

∣∣∣∣∣
3∑

i=1

Rij (q)ui−j

∣∣∣∣∣
2

ei�k.�xTr(ψq) . (4.32)

As before, the other terms in the Fourier series are irrelevant. Also as before, we may replace ∣∣∑
i Rij (q)ui−j

∣∣2 with W 2
0 +2W 2

1 . The resulting sum over j is zero, because 
∑

j �aj = �0. There-

fore KV �k.( �P − �k)V |	0〉 = 0 and, by our previous result (4.25),
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KV �k.( �P − �k)
3
2 V |	0〉 = 2π

3
√

3
W0W1 sin(θ1 − θ0) �S.�n× �k|	0〉 . (4.33)

We are now in a position to evaluate the effective hamiltonian. Collecting together the results 
(4.13), (4.16), (4.21), (4.25), (4.31) and (4.33) gives

Heff = |
�k|2

2M
+ 3

8�
−M

((
π2

3

)−1

+ 2

(
π2

3
+ 3M

2�

)−1)(
W 2

0

6
+ W 2

1

3

)

−M

((
π2

3

)−2

−
(

π2

3
+ 3M

2�

)−2)
2

3
√

3
W0W1 sin(θ1 − θ0)�S.�n× �k

+O(V 3)+O(�k2) . (4.34)

This hamiltonian, which is analogous to equation (2.24) in the 2D model, contains the sought-
after coupling between momentum and spin (1.1). Besides scalars, this is the only term in the 
hamiltonian, and it is at first sight surprising that no other terms occur. The explanation lies in 
the symmetries of the lattice: �S.�n× �k is the only term linear in �k which is invariant under the 
action of the binary cubic group.

For the parameter set (3.11) the coefficient of the term (1.1) in Heff is negative, which is 
opposite to what would be expected based on the classical rolling motion of Skyrmions. This is 
not such a surprise, given what we learnt from the toy model. In the toy model, spin-momentum 
effects consistent with the classical rolling motion of Skyrmions only occurred for a relatively 
strong potential, and were inaccessible to perturbation theory. In the next section we investigate 
stronger potentials.

5. Strong coupling to the potential

In the previous section we discussed the situation where the potential is small; in this section 
we discuss the case where the potential is slightly larger. Recall that in the 2D toy model, if the 
potential was strong the lowest energy Bloch wave had a non-zero crystal wave vector (at r = 0
so k = ± 1

2 ). We expect a similar effect in the 3D model. We begin this section by looking for 
candidate crystal wave vectors for the ground state, using symmetry as a guide.

Recall that the hamiltonian is invariant under an action of the binary cubic group. The action 
of this group on wavefunctions induces an action on the space of crystal wavevectors �k. The 
generator τ acts trivially on �k, while the generators ρ and σ act on �k as multiplication by the 
matrices⎛⎝0 0 1

1 0 0
0 1 0

⎞⎠ and

⎛⎝0 1 0
1 0 0
0 0 1

⎞⎠ . (5.1)

The vectors

�k+ = 1

3
(�a2 − �a3) and �k− = 1

3
(�a3 − �a2) (5.2)

are special because they represent fixed points of the action of the subgroup generated by ρ
and τ , namely the binary tetrahedral group (bear in mind that �k is only defined up to addition of 
the reciprocal lattice vectors �aj ). These two crystal wavevectors are plausible candidates for the 
wavefunction of the ground state at strong coupling. Note that they are at the vertices of the first 
Brillouin zone, as shown in Fig. 6.
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Fig. 6. Diagram showing important vectors in crystal momentum space. The dashed line indicates the boundary of the 
first Brillouin zone. Shaded circles represent �k+ and unshaded circles represent �k− .

In order to analyse the Hilbert spaces corresponding to these crystal wavevectors it is conve-
nient to apply a rotation to the lattice and the moving Skyrmion:(�x, q

) �→ (
R(U)−1 �x, qU

)
, (5.3)

where

U = 1√
2(
√

3+ 3)

(
(
√

3+ 1)e− iπ
8 −√2e− iπ

8√
2e

iπ
8 (

√
3+ 1)e

iπ
8

)
, (5.4)

R(U)−1 = 1√
6

⎛⎝ 1 1 −2
−√3

√
3 0√

2
√

2
√

2

⎞⎠ . (5.5)

After rotation, the Skyrmion moves in the plane z= 0, and the half-filled lattice of Skyrmions is 
the region z < 0. The generators of the binary cubic group now act as follows:

−1 : (x, y, z, q
) �→ (

x, y, z,−q
)
, (5.6)

ρ : (x, y, z, q
) �→ (− 1

2x +
√

3
2 y,− 1

2y +
√

3
2 x, z,

1+i+j+k
2 q 1−k

√
3

2

)
, (5.7)

τ : (x, y, z, q
) �→ (

x −
√

3
2 , y + 1√

2
, z, iq

)
, (5.8)

σ : (x, y, z, q
) �→ (

x,−y, z,
i−j√

2
qj

)
. (5.9)

After rotation the reciprocal lattice vectors are

�a1 = π

√
2

3

⎛⎝ 1
2

−
√

3
2

0

⎞⎠ , �a2 = π

√
2

3

⎛⎝ 1
2√
3

2
0

⎞⎠ , �a3 = π

√
2

3

⎛⎝−1
0
0

⎞⎠ . (5.10)

5.1. Perturbation theory in �k

We will be interested in eigenfunctions of the hamiltonian whose crystal wavevector is close 
to �k±. It is enough to analyse just wavevectors close to �k+, as the transformation τ swaps �k+ and 
�k−. First we will identify an orthonormal basis |	0a〉 ∈H� for the eigenspace of the hamiltonian 
k+
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with (degenerate) lowest energy eigenvalue E0. Then we will consider nearby wavevectors �k =
�k+ + δ�k. Perturbing �k in this way is mathematically equivalent to perturbing the momentum 
operator:

�P �→ �P0 + δ�k , (5.11)

where �P0 =−i∇�x is the usual momentum operator acting on H�k+ . Thus nearby wavevectors can 
be analysed using perturbation theory. The perturbed hamiltonian is

H =H0 + 1

M
δ�k. �P0 + 1

2M
|δ�k|2 , H0 = 1

2M
| �P0|2 + 1

2�
| �S|2 + V . (5.12)

We will show below that 〈	0a| �P0|	0b〉 = 0 for reasons of symmetry, so the effective hamil-
tonian acting on this eigenspace is unchanged to linear order in �k. Therefore the perturbed 
wavefunctions

|	a〉 = |	0a〉 − (H0 −E0)
−1 1

M
δ�k. �P0|	0a〉 +O(δ�k2) (5.13)

satisfy H |	a〉 =E0|	a〉 +O(δ�k2). We then compute the matrix elements of the hamiltonian H
to second order in δ�k:

〈	0a|H |	b〉 =E0δab + |δ
�k|2

2M
δab

− 1

M2

〈
	0a

∣∣δ�k. �P0(H0 −E0)
−1δ�k. �P0

∣∣	0b

〉+O(δ�k3) . (5.14)

For large enough M the second term on the right dominates the third term, meaning that the 
lowest energy eigenvalue has a stable local minimum at δ�k = �0. Below we will quantify how 
large M needs to be for this to happen.

The expectation value 〈 �P 〉 of �P = (P 1, P 2) in the state |	0〉 is, as we have already noted, 
zero. Similarly, group theoretical arguments will show that the expectation value 〈�S〉 of �S =
(S1, S2, S3) has vanishing planar components (although the component perpendicular to the 
plane will be non-vanishing). For δ�k �= �0 we expect these expectation values to be non-zero 
and correlated. More precisely, we expect 〈 �P0〉 to point in the same direction as �n× 〈�S〉, where 
�n= (0, 0, −1) is now the normalised gradient of the nuclear matter density. Equivalently,

〈S+〉 = λi〈P+0 〉 for some λ > 0 , (5.15)

where S± := S1 ± iS2 and P±0 := P 1
0 ± iP 2

0 .
It is straightforward to derive expressions for these expectation values within the frame-

work of perturbation theory in δ�k. The expectation value of �P in a normalised state va|	a〉
is v̄avb〈	a| �P |	b〉, where〈

	a

∣∣ �P ∣∣	b

〉= 〈
	a

∣∣( �P0 + δ�k)
∣∣	b

〉
= δ�k δab − 1

M

〈
	0a

∣∣( �P0(H0 −E0)
−1δ�k. �P0 + δ�k. �P0(H0 −E0)

−1 �P0
)∣∣	0b

〉
+O(δ�k2) . (5.16)

We will show below that for sufficiently large M the second term is negligible and we have that 
〈 �P 〉 ≈ δ�k. For �S we compute
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〈
	a

∣∣�S∣∣	b

〉
=−〈

	0a

∣∣(�S(H0 −E0)
−1δ�k. �P0 + δ�k. �P0(H0 −E0)

−1 �S)∣∣	0b

〉+O(δ�k2) . (5.17)

This equation and (5.16) are analogues of eqs. (2.22) in the 2D model. In terms of κ = δk1+ iδk2, 
we have that 〈P+〉 ≈ κ and

〈S+〉 =−κ

2
v̄avb

〈
	0a

∣∣(S+(H0 −E0)
−1P−0 + P−0 (H0 −E0)

−1S+
)∣∣	0b

〉
− κ̄

2
v̄avb

〈
	0a

∣∣(S+(H0 −E0)
−1P+0 + P+0 (H0 −E0)

−1S+
)∣∣	0b

〉
(5.18)

to leading order. Thus to verify (5.15) it is sufficient to show that〈
	0a

∣∣(S+(H0 −E0)
−1P−0 + P−0 (H0 −E0)

−1S+
)∣∣	0b

〉=−iλδab, λ ∈R>0 , (5.19)〈
	0a

∣∣(S+(H0 −E0)
−1P+0 + P+0 (H0 −E0)

−1S+
)∣∣	0b

〉= 0 . (5.20)

This concludes the outline of what we intend to show. In the remainder of this section we verify 
equations (5.19) and (5.20) by explicit calculation. In the next section we provide an alternative 
verification based mainly on symmetry.

5.2. Truncation of Hilbert space

In order to calculate the eigenstates |	0a〉 we make a number of simplifying assumptions. 
First, we assume that the only terms that occur in the spatial Fourier series of 	0a are those with 
the shortest possible wavevectors, namely

e1(�x) := e
i
3 (�a2−�a3).�x , e2(�x) := e

i
3 (�a3−�a1).�x , e3(�x) := e

i
3 (�a1−�a2).�x . (5.21)

Note that these all have the same crystal wavevector; for example, in the case of e1 and e2 this is 
because

�a2 − �a3

3
− �a3 − �a1

3
= �a1 + �a2 + �a3

3
− �a3 =−�a3 . (5.22)

Second, we assume that the only terms that occur in the expansions of 	0a in harmonics on 
SU(2) are those corresponding to spin 1

2 . In other words,

	0a(�x, q)= Tr(ψa(�x)q)= Tr(ψiaei(�x)q) (5.23)

for 2 × 2 matrices ψ1a, ψ2a, ψ3a . Since these three matrices have altogether 12 degrees of free-
dom, the eigenstates |	0a〉 belong to a 12-dimensional subspace of the Hilbert space H�k+ .

These assumptions are justified as long as energies of states in the 12-dimensional subspace 
are appreciably lower than those in its complement. If the moment of inertia � is small then states 
with spin greater than 1

2 will have much greater energy than the spin 1
2 states considered here, 

so truncation to spin 1
2 can always be justified by choosing � small. To justify the truncation in 

momentum space, we need to consider the next-shortest wavevectors associated with �k+. These 
are 2

3 (�a3 − �a2), 2
3 (�a1 − �a3) and 2

3 (�a2 − �a1), and their associated kinetic energies are

1

2M

∥∥∥∥2

3
(�a2 − �a1)

∥∥∥∥2

+ 3

8�
= 4π2

9M
+ 3

8�
. (5.24)

Later we will compare these with the energies of states in the 12-dimensional subspace.
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The generators r = ρ, τ of the binary tetrahedral group act naturally on wavefunctions H�k+
via r ·	(�x, q) =	(r−1(�x, q)), and these actions fix the 12-dimensional subspace. However, they 
only define a projective representation and not a true representation, because

τ 2 ·	(�x, q)=	
(
x +√6, y −√2, z,−q

)= ei(
√

6,−√2,0).�k+	(�x,−q)

= e2π i/3	(�x,−q) �=	(�x,−q) . (5.25)

The binary tetrahedral group is known to be Schur-trivial, meaning that every projective repre-
sentation can be turned into a true representation by twisting the actions of the group elements. 
In this case, a true representation is obtained by choosing

ρ ·	(�x, q)=	(ρ−1(�x, q)) , τ ·	(�x, q)= ω	(τ−1(�x, q)) . (5.26)

Here we have introduced ω= e2π i/3 =− 1
2 + i

√
3

2 , the cube root of unity.
We wish to break up the 12-dimensional subspace of the Hilbert space into irreducible sub-

representations of the binary tetrahedral group. To this end, we review these irreducible repre-
sentations. Besides the trivial representation, there are two further 1-dimensional representations 
Aa with a = 1, 2, given by

−1 �→ 1 , ρ �→ ωa , τ �→ 1 . (5.27)

The binary tetrahedral group can be identified with the subgroup of the group of unit quaternions 
generated by −1, ρ =− 1

2 (1 + i + j + k), τ = i. The standard identification of unit quaternions 
with SU(2) matrices gives a two-dimensional representation E3. There are two further inequiv-
alent representations E1 = E3 ⊗ A1 and E2 = E3 ⊗ A2. Finally, there is a three-dimensional 
representation F given by R : SU(2) → SO(3).

It is straightforward to check that the action of the binary tetrahedral group on the span of 
e1, e2, e3 ∈H�k+ is isomorphic to the representation F . The action on the four-dimensional sub-
space of H�0 consisting of functions of the form 	(�x, q) = Tr(ψq) is isomorphic to E1 ⊕ E2. 
This can be seen as follows: the induced action on the 2 × 2 matrix ψ is

ρ ·ψ = −1−k
√

3
2 ψ

(−1−i−j−k
2

)−1
(5.28)

=
(

ω 0
0 ω2

)
ψ

(−1+ iσ1 + iσ2 + iσ3

2

)−1

, (5.29)

τ ·ψ =ψ i−1 =ψ(−iσ1)
−1 , (5.30)

−1 ·ψ =ψ(−1)−1 . (5.31)

The matrices acting on the left correspond to the representation A1⊕A2, and those acting on the 
right correspond to the representation E3, so the representation is E3⊗ (A1 ⊕A2) ∼=E1 ⊕E2.

The action on our 12-dimensional subspace is therefore F ⊗ (E1 ⊕E2). This, it turns out, is 
isomorphic to 2E3⊕2E1⊕2E2. To fully describe the decomposition, we introduce basis vectors 
fia , with i = 1, . . .6 and a = 1, 2:

f1a =
(

δ1a δ2a

0 0

)
(−ωiσ1e1 −ω2iσ2e2 − iσ3e3) , (5.32)

f2a =
(

0 0
δ δ

)
(−ω2iσ1e1 −ωiσ2e2 − iσ3e3) , (5.33)
1a 2a
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f3a =
(

δ1a δ2a

0 0

)
(−iσ1e1 − iσ2e2 − iσ3e3) , (5.34)

f4a =
(

0 0
δ1a δ2a

)
(−ωiσ1e1 −ω2iσ2e2 − iσ3e3) , (5.35)

f5a =
(

δ1a δ2a

0 0

)
(−ω2iσ1e1 −ωiσ2e2 − iσ3e3) , (5.36)

f6a =
(

0 0
δ1a δ2a

)
(−iσ1e1 − iσ2e2 − iσ3e3) . (5.37)

It can be checked that f1a span an irreducible subrepresentation isomorphic to E3, f2a span a 
second copy of E3, f3a and f4a span two copies of E1, and f5a and f6a span two copies of E2.

5.3. Hamiltonian matrix and the ground state

Next we need the matrix elements (5.14) for the hamiltonian acting on our truncated Hilbert 
space. The non-trivial part is the potential. After rotation, the potential given by equations (3.8)
and (3.10) becomes

V (�x, q)=−�Tr

(
1√
3
(U0 + 2U1)A0(�x)R(q)+

√
2

3
(U0 −U1)A1(�x)R(q)

)
, (5.38)

where Uα =Wαeiθα (α = 0, 1) as before and

A0(�x)=
⎛⎝ 0 0 0

0 0 0
ei�a1.�x ei�a2.�x ei�a3.�x

⎞⎠ , (5.39)

A1(�x)=
⎛⎝ 1

2ei�a1.�x 1
2ei�a2.�x −ei�a3.�x

−
√

3
2 ei�a1.�x

√
3

2 ei�a2.�x 0
0 0 0

⎞⎠ . (5.40)

This acts on wavefunctions from our 12-dimensional space by multiplication, and, in order 
to have a well-defined action, the resulting functions need to be projected back onto the 
12-dimensional space.

Consider first the action of the functions ei�aj .�x with j = 1, 2, 3. In the case j = 1 we find that

ei�a1.�xe1 = ei(3�a1+�a2−�a3).�x/3 (5.41)

ei�a1.�xe2 = ei(2�a1+�a3).�x/3 = ei(�a1−�a2).�x/3 = e3 (5.42)

ei�a1.�xe3 = ei(4�a1−�a2).�x/3 . (5.43)

The first and third of these are orthogonal to e1, e2, e3 so only the second of these survives 
projection onto the span of e1, e2, e3. By performing similar computations we find that the actions 
of ei�aj .�x are

ei�aj .�xek = δj+1,k ek+1 (no sum over k) . (5.44)

In this expression, indices i, j, k are to be understood modulo 3.
The effect of multiplying a wavefunction with Rij (q) and projecting back to the 12-di-

mensional space is described by the identity (4.17). Therefore the action of the functions 
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Tr(Aα(x)R(q)) that appear in the potential on the 12-dimensional subspace of the Hilbert space 
can be computed using equations (5.44) and (4.17), and turns out to be

Tr(Aα(x)R(q)) ·ψib = Bα;jiψjb , (5.45)

where Bα are 6 × 6 block diagonal matrices of the form

Bα =
⎛⎝ Cα 0 0

0 ωCα 0
0 0 ω2Cα

⎞⎠ , C0 = 1

3

(−iω2 0
0 iω

)
, C1 = 1

3

(
0 i
i 0

)
. (5.46)

The action of the potential function is therefore described by the 6 × 6 block diagonal matrix

−1

2

(
1√
3
(U0 + 2U1)B0 +

√
2

3
(U0 −U1)B1 + hermitian conj.

)
. (5.47)

It is straightforward to find the eigenvalues and eigenvectors for the values of U0, U1 given earlier. 
The lowest eigenvalue turns out to be −0.38 and the associated eigenvectors are

ψ0a =−μf3a + νf4a, μ= 0.46, ν = 0.89, a = 1,2 . (5.48)

Let us compare the energy of this state with the energy of the state associated with �k= 0. The 
former is

|�k+|2
2M

+ 3

8�
− 0.38= π2

9M
+ 3

8�
− 0.38 . (5.49)

The latter was computed in the previous section using perturbation theory to be

3

8�
− W 2

0 + 2W 2
1

12

((
π2

3M

)−1

+
(

π2

3M
+ 3

2�

)−1)
. (5.50)

The value of W 2
0 +2W 2

1 is approximately 1.06. Since we are only interested in energy differences 
we ignore the term 3/8� which occurs in both expressions. Since we have been assuming that 
� is small, the other �-dependent term in brackets can be ignored. Thus the state with crystal 
wavevector �k+ will have lower energy if

π2

9M
− 0.38 <−1.06

M

4π2 . (5.51)

This inequality holds for M in the range 4.04 < M < 10.11. Thus for M close to zero (equivalent 
to small potentials) the state with �k = �0 is preferred, but as M increases past the value 4.04 the 
state with �k = �k+ is preferred.

Now we assess the reliability of the approximation that we made by truncating in momentum 
space. The largest eigenvalue of the 6 × 6 block diagonal matrix that describes the potential is 
0.37. Thus the largest energy involved in our calculation is

|�k+|2
2M

+ 3

8�
+ 0.37= π2

9M
+ 3

8�
+ 0.37 . (5.52)

In our truncation of the Hilbert space we neglected states whose energy is bounded below by 
(5.24). We are justified in neglecting these provided that

π2

+ 0.37� 4π2

⇐⇒ M � π2

≈ 8.9 . (5.53)

9M 9M 3× 0.37
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This means that our approximation is valid for the values of M around 4.04 where the transition 
between the �k = �0 and �k = �k+ states occurs.

5.4. Expectation values for spin and momentum

Now we turn our attention to the expectation value of spin and momentum in the ground state. 
We need to compute matrices describing the action of �P0 and �S on the 12-dimensional subspace 
of the Hilbert space.

The action of �S is given by

Sj Tr(ψ(�x)q)= 1

2
Tr(σjψ(�x)q) . (5.54)

It follows that S3fia = (−1)i+1 1
2fia for i = 1, . . . , 6 and a = 1, 2. In particular, for the ground 

states ψ0a given by (5.48) we have S3ψ0a = 1
2 (−μf3a − νf4a), and the expectation value of S3

is 1
2 (μ2 − ν2) < 0. The action of S+ = S1 + iS2 is described by the 6 × 6 matrix⎛⎝ 0 1

2σ+ 0
0 0 1

2σ+
1
2σ+ 0 0

⎞⎠ ,
1

2
σ+ = 1

2
(σ1 + iσ2)=

(
0 1
0 0

)
. (5.55)

The action of S− is given by the conjugate transpose of this matrix. As the blocks on the diagonal 
are zero, the expectation values of S1 and S2 in the states ψ0a are zero, so the expected spin points 
vertically down into the half-filled lattice of Skyrmions, as was previously claimed.

The action of �P0 =−i∇ on the functions e1, e2, e3 is simply

�P0e1 = 1

3
(�a2 − �a3), �P0e2 = 1

3
(�a3 − �a1), �P0e3 = 1

3
(�a1 − �a2) . (5.56)

It follows that the action of P+0 = P 1
0 + iP 2

0 is described by the 6 × 6 block diagonal matrix

−i
π
√

2

3

⎛⎝ 0 I2 0
0 0 I2

I2 0 0

⎞⎠ , I2 =
(

1 0
0 1

)
. (5.57)

The action of P−0 is given by the hermitian conjugate of this matrix. It follows that the expectation 
value of �P in the ground state is zero as claimed.

Using these formulae it is straightforward to verify equations (5.19) and (5.20). We have that

S+ψ0a = νf1a , P+0 ψa
0 =−i

π
√

2

3
(−μf1a + νf2a) , (5.58)

S−ψ0a =−μf6a , P−0 ψa
0 =−i

π
√

2

3
(−μf5a + νf6a) . (5.59)

The block diagonal structure of the matrix representing H0 means that the inner products on the 
left hand side of (5.20) vanish as required. Using these identities and our particular values for 
U0, U1, we find that

〈	0a|P−0 (H0 −E0)
−1S+|	0b〉 = δabi

π
√

2

3

(−μ ν
)(

1.49 0.29
0.29 1.89

)(
ν

0

)
=−0.37

π
√

2
iδab , (5.60)
3
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〈	0a|S+(H0 −E0)
−1P−0 |	0b〉 = δabi

π
√

2

3

(
0 −μ

)(
4.88 0.09
0.09 1.93

)(−μ

ν

)
=−0.76

π
√

2

3
iδab . (5.61)

Thus equation (5.19) holds true with λ = 1.13π
√

2/3, a positive number.
It remains to evaluate the subleading contributions to 〈 �P 〉 and E0. The subleading term in 

(5.16) is expressed in terms of

T
ij
ab =

1

M

〈
	0a

∣∣P i
0(H0 −E0)

−1P
j
0 + P

j
0 (H0 −E0)

−1P i
0

∣∣	0b

〉
, i, j = 1,2 . (5.62)

Note that by construction T ij
ab = T

ji
ab . It is straightforward to show using the matrix given ear-

lier for P+0 that 〈	0a|P+0 (H0 − E0)
−1P+0 |	0b〉 = 0 and 〈	0a|P−0 (H0 − E0)

−1P−0 |	0b〉 = 0. 

These two identities imply that T 11
ab = T 22

ab and T 12
ab =−T 21

ab . Altogether, this means that T ij
ab is 

proportional to δij . The coefficient can be determined by evaluating

2
〈
	0a

∣∣P i
0(H0 −E0)

−1P i
0

∣∣	0b

〉
= 〈

	0a

∣∣P+0 (H0 −E0)
−1P−0

∣∣	0b

〉+ 〈
	0a

∣∣P−0 (H0 −E0)
−1P+0

∣∣	0b

〉
= 2π2

9
δab

(−μ ν
)(

1.49 0.29
0.29 1.89

)(−μ

ν

)
+ 2π2

9
δab

(−μ ν
)(

4.88 0.09
0.09 1.93

)(−μ

ν

)
= 4.03 δab. (5.63)

Thus T ij
ab = 4.03 δabδ

ij , and

〈
	0a

∣∣ �P ∣∣	0b

〉= (
1− 4.03

M

)
δabδ�k +O(δ�k2) . (5.64)

So for M < 4.03, the expectation of momentum points in the opposite direction to δ�k and for 
M > 4.03, the region of most interest, they point in the same direction. Notice that the transition 
occurs at almost exactly the same value of M as where the energy for �k = �k+ drops below that 
for �k = �0.

Finally we consider the subleading corrections to the eigenvalue E of H implied by eq. (5.14). 
This equation can be rewritten in terms of T ij

ab as follows:

〈	a|H |	b〉
〈	a|	b〉 =E0δab + δkiδkj

M2 (Mδij δab − T
ij
ab) . (5.65)

Inserting our formula for T ij
ab shows that E =E0+ (M−4.03)‖δ�k‖2/M2+O(δ�k3). Thus δ�k = 0

is a stable critical point when M > 4.03.
This concludes our verification of spin-momentum coupling based on the crystal wavevector 

�k+. If M > 4.04 then the crystal wavevector �k+ is preferred over �k = �0, and the expectation 
values of spin and momentum are correlated in the manner predicted by the spin-momentum 
coupling. Our calculation is reliable as long as M� 8.9.



D. Harland, N.S. Manton / Nuclear Physics B 935 (2018) 210–241 237
6. Symmetry arguments

To conclude, we would like to point out that our results in the previous section are robust and 
insensitive to the details of the choice of potential function. Many of them can be derived using 
symmetry alone, as we now explain.

We begin by analysing the symmetry properties of the operators �P and �S. Their commutation 
relations with ρ are as follows:

ρS3 = S3ρ , ρS+ = ω2S+ρ , ρP+ = ω2P+ρ . (6.1)

Since the hamiltonian commutes with the action of the binary tetrahedral group, the eigenspace 
corresponding to the lowest eigenvalue E0 forms a representation K of this group. Generically 
this representation will be irreducible, as was the case in the above calculation. Since the group 
element −1 acts non-trivially on the Hilbert space, K must be isomorphic to one of the three 
representations E3, E1 and E2 introduced above, because −1 acts trivially in all other irreducible 
representations of the binary tetrahedral group. The commutation relations above show that the 
images of K under S+ and P+ are isomorphic to K ⊗ A2. Since tensoring with A2 cyclically 
permutes the representations E3, E1 and E2, these image representations are not isomorphic 
to K . It follows that they are orthogonal to K . This means that

〈	0a|S+|	0b〉 = 0 and 〈	0a|P+0 |	0b〉 = 0 , (6.2)

and in particular that S+ and P+0 have zero expectation value in the ground state.
The identity (5.20) can be proved similarly. The operators S+(H0 −E0)

−1P+ and P+(H0 −
E0)

−1S+ map K onto a representation isomorphic to K ⊗ A1, which is again not isomorphic 
to K , so the inner products in (5.20) have to vanish.

To analyse the identity (5.19) we need the symmetry σ . As has already been noted, σ maps the 
Hilbert space H�k+ onto H�k− . There is another transformation which swaps �k+ and �k−, namely 
time reversal T . This acts as

T :	(�x, q) �→	(�x, q) . (6.3)

The composition σT maps H�k+ onto H�k+ . Its commutation relations with �S and �P are

σT P 1
0 =−P 1

0 σT , σT P 2
0 = P 2

0 σT , σT S1 = S1σT , σT S2 =−S2σT . (6.4)

Since multiplication with i anticommutes with σT , the transformation σT anticommutes with 
P± and commutes with S±.

The operator that appears in (5.19) is S+(H0−E0)P
−
0 +P−0 (H0−E0)

−1S+. When composed 
with projection onto the eigenspace K it defines a linear map K → K . This map commutes 
with the action of ρ and τ , so by Schur’s lemma it acts as multiplication by a scalar. Since it 
anticommutes with the action of σT , this scalar must be pure imaginary.

Thus symmetry arguments show that an identity similar to (5.19) must hold, with λ ∈R. How-
ever, symmetry arguments alone cannot determine the sign of λ. This is because replacing the 
potential V with its negative −V changes the sign of λ without altering the symmetry properties. 
Nevertheless, the sign of λ does seem to be fixed by a few coarse features of the above calcula-
tion. Consider again the basis vectors ψ0a for the lowest-energy eigenspace. Each of these can 
be written as a sum of three terms:
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ψ0a =−
(−μδ1a −μδ2a

ωνδ1a ωνδ2a

)
iσ1e1

−
(−μδ1a −μδ2a

ω2νδ1a ω2νδ2a

)
iσ2e2 −

(−μδ1a −μδ2a

νδ1a νδ2a

)
iσ3e3 . (6.5)

Each summand is an eigenvector of �P0, so has a definite momentum vector. Each summand also 
determines a unique spin vector �v, such that it is an eigenstate of �v.�σ acting from the left with 
eigenvalue 1

2 . The momentum vectors and spin vectors for the summands involving e1, e2 and e3
are listed below:

summand momentum vector spin vector

e1
π
√

2
3

(√
3

2 , 1
2 , 0

) (
1
2μν, −

√
3

2 μν, 1
2 (μ2 − ν2)

)
e2

π
√

2
3

(
−
√

3
2 , 1

2 , 0
) (

1
2μν,

√
3

2 μν, 1
2 (μ2 − ν2)

)
e3

π
√

2
3 (0, −1, 0)

(−μν, 0, 1
2 (μ2 − ν2)

)
.

Note that for each summand, the momentum vector points in the opposite direction to the cross 
product of �n with the spin vector.

The expectation values for momentum and spin are weighted averages of these vectors. In the 
case δ�k = �0 the three summands contribute equally to the wavefunction, and weighted averages 
are ordinary averages. Since the momentum vectors sum to zero and the unweighted average 
of the spin vectors is 1

2 (ν2 − μ2)�n, we recover the results derived earlier. When δ�k �= �0 the 
momentum eigenvalues get shifted by δ�k and the dominant contribution to the wavefunction is 
from the summand with the shortest wavevector. For example, when δ�k points in the direction (
−
√

3
2 , − 1

2 , 0
)

the dominant contribution is from the state with momentum vector aligned with 

−δ�k, so the expectation value for (S1, S2) points in the direction 
(

1
2 , −

√
3

2

)
and �n× 〈�S〉 points 

in the direction of δ�k. There are two effects contributing to the expectation value for �P : the shift 
in momentum vectors and the change of weights. For strong potentials the former dominates, 
and the expectation value for �P points in the same direction as the naive momentum δ�k (see the 
discussion around eq. (5.16)). Thus �n× 〈�S〉 and 〈 �P 〉 point in the same direction, consistent with 
the spin-momentum coupling.

Note that all of this follows from the correlation between the spin and momentum vectors of 
the three summands making up ψ0a , and any vector similar to ψ0a with μν > 0 would produce 
the same effect. Thus we expect a similar correlation between spin and momentum for all values 
of U0, U1 close to those used in our calculation.

7. Conclusions and further work

In a classical picture, the experimentally observed nuclear spin-orbit coupling arises from a 
rolling motion of a nucleon over the surface of a larger nucleus. However, understanding why 
such a rolling motion is energetically preferred remains something of a mystery. We have shown 
here that for a Skyrmion close to the planar surface of a half-filled lattice of Skyrmions, a rolling 
motion is energetically favoured by the orientational part of the potential energy. To describe this 
planar rolling motion, it is convenient to introduce the notion of spin-momentum coupling.

We have next investigated the quantum mechanics of the Skyrmion, first by analysing the 
hamiltonian describing the Skyrmion interacting with the half-filled lattice of Skyrmions using 
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perturbation theory. A spin-momentum coupling term appears at second order in perturbation 
theory, but has the wrong sign, at least for the parameter set obtained from the lightly bound 
Skyrme model. We then calculated spin-momentum coupling at the level of expectation values, 
and found that the correct sign is recovered non-perturbatively at stronger potential strengths. 
The change of sign is correlated with a jump in the crystal momentum of the lowest energy state.

Our results were based on a half-filled FCC lattice that has been sliced in the plane 
x + y + z = 0. There is another natural way to slice the FCC lattice, in a plane parallel to one 
of the coordinate planes (or x = 0, y = 0 or z = 0). It would be interesting to investigate the 
spin-momentum coupling in that situation.

Our analysis also sheds light on a recent study of a B = 1 Skyrmion orbiting a B = 4 core 
[17]. It was found that weak pion-induced coupling to the core affects the energy levels of the 
orbiting Skyrmion, but in the opposite way to what would be expected based on the phenomeno-
logical spin-orbit coupling. This is consistent with our perturbative result for the spin-momentum 
coupling, and a similar problem will likely persist for larger baryon numbers. We suggest that 
the correct sign of the spin-orbit coupling will be obtained for stronger potentials, and that a 
non-perturbative treatment will resolve some of the puzzles in [17].
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Appendix A. Identities for products of SU(2) harmonics

In this appendix we prove two identities for products of harmonic functions on SU(2). To 
prove them, it is helpful to identify SU(2) with S3 ⊂R

4 by writing

SU(2) � q = q0 −
3∑

j=1

qj iσj ∼ (q0, q1, q2, q3) ∈ S3 . (A.1)

If p(q) is any homogeneous polynomial function on R4 of degree 2� that solves Laplace’s equa-
tion then the restriction to S3 lies in the space H� of harmonic functions with total spin and 
isospin �, because

0= p = ∂2p

∂r2 +
3

r

∂p

∂r
− 4| �S|2p = 4�(�+ 1)p− 4| �S|2p . (A.2)

So for example q2
0 /∈H1, because  q2

0 = 2, but q2
0 − q2

1 ∈H1.
The first identity to be proved is


1
2 Rij (q)Tr(ψq)= 1

3
Tr(σjψσiq) . (A.3)

It is enough to prove this in the case i = j = 3, as the other cases can be deduced from this one 
by acting on q with SU(2)I × SU(2)S . From the definition qσjq

−1 = σiRij (q) one deduces that 
R33(q) = q2 − q2 − q2 + q2. We calculate:
0 1 2 3
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q0R33(q)= 1

3
q0(q

2
0 + q2

1 + q2
2 + q2

3 )+ 2

3
q0(q

2
0 − 2q2

1 − 2q2
2 + q2

3 ) , (A.4)

q1R33(q)=−1

3
q1(q

2
0 + q2

1 + q2
2 + q2

3 )+ 2

3
q1(2q2

0 − q2
1 − q2

2 + 2q2
3 ) , (A.5)

q2R33(q)=−1

3
q2(q

2
0 + q2

1 + q2
2 + q2

3 )+ 2

3
q2(2q2

0 − q2
1 − q2

2 + 2q2
3 ) , (A.6)

q3R33(q)= 1

3
q3(q

2
0 + q2

1 + q2
2 + q2

3 )+ 2

3
q3(q

2
0 − 2q2

1 − 2q2
2 + q2

3 ) . (A.7)

In each case the first term is in H 1
2 and the second is in H 3

2 . Since σ3qσ3 = q0+q1iσ1+q2iσ2−
q3iσ3, the result follows.

The second set of identities are

0((viRij (q)wj )2)= 1

3
|�v|2| �w|2 , 1((viRij (q)wj )2)= 0 , (A.8)

for vectors �v, �w ∈ R
3. Again, by symmetry it is enough to prove these in the case �v = �w =

(0, 0, 1). We compute:

(R33(q))2 = 1

3
(q2

0 + q2
1 + q3

2 + q2
3 )2

+ 2

3
(q4

0 + q4
1 + q4

2 + q4
3 + 2q2

0q2
3 + 2q2

1q2
2 − 4(q2

0 + q2
3 )(q2

1 + q2
2 )) . (A.9)

The first term is 1
3 as required and it is straightforward to check that the second term solves 

Laplace’s equation so belongs to H2.
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