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Zipf’s law states that the frequency of an observation with a given value is inversely proportional
to the square of that value; Taylor’s law, instead, describes the scaling between fluctuations in the
size of a population and its mean. Empirical evidence of the validity of these laws has been found
in many and diverse domains. Despite the numerous models proposed to explain the presence of
Zipf’s law, there is no consensus on how it originates from a microscopic process of individuals
dynamics without fine tuning. Here we show that Zipf’s law and Taylor’s law can emerge from a
general class of stochastic processes at the individual level, which incorporate one of two features:
environmental variability, i.e. fluctuations of parameters, or correlations, i.e. dependence between
individuals. Under these assumptions, we show numerically and with theoretical arguments that
the conditional variance of the population increments scales as the square of the population and
that the corresponding stationary distribution of the processes follows Zipf’s law.

Formally, a random variable follows Zipf’s law if its
probability density function is a power law with expo-
nent −2. Evidence for Zipf’s law has been found in many
and diverse empirical domains, including systems where
observations correspond to groups of individuals and the
variable of interest is the group size, such as the num-
ber of employees in firms [1] or the distribution of family
names [2]. In particular, one of the most documented
empirical findings in human geography is Zipf’s law for
the distribution of city sizes: the probability to find a
city with a given number of dwellers, n, is inversely pro-
portional to the square of that number: P (n) ∼ n−1−γ ,
where γ ≃ 1. The exponent γ ≃ 1 has been shown to
apply to city sizes both globally and historically with
surprisingly small deviations. Zipf’s law also applies to
the distribution of population of larger regions, for exam-
ple countries in Europe [3] as well as cities and counties
in the United States (see Fig.1a).
A number of general mechanisms exist to account for

the emergence of Zipf’s law in various systems [2, 6, 7].
A series of recent works [8, 9] has demonstrated that
models with latent variables can lead to Zipf’s law with-
out fine tuning by mixing together narrow distributions
with very different means. However, these works fo-
cus on static systems, without an explicit time depen-
dence. Several models have been proposed to explain
how Zipf’s law can emerge as the stationary distribution
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of dynamical processes for the sizes of groups of indi-
viduals. These models can be divided into two classes
based on the scale considered: mesoscopic models at the
scale of the groups (e.g., cities) and microscopic mod-
els at the scale of the individuals (e.g., dwellers). The
mesoscopic models are stochastic processes describing the
evolution of the group’s population as a whole. Exam-
ples of mesoscopic models are the random multiplicative
process [10], also called Gibrat’s law [11] or proportion-
ate random growth in the economics literature [12, 13],
and those based on the interplay between intermittency
and diffusion [14]. Mesoscopic models are able to ex-
plain the emergence of Zipf’s law without the need to
fine-tune their parameters to specific values [15], how-
ever they are coarse-grained descriptions of population
dynamics and lack an explicit link to the underlying mi-
croscopic processes. Microscopic models provide a more
fundamental description because they are stochastic pro-
cesses describing the events experienced by an individual,
namely births, deaths and migrations, that ultimately de-
termine the change in the size of a population. Examples
of microscopic models include Yule’s and Simon’s models
based on the rich-get-richer mechanism [16, 17], cluster
growth and aggregation [18, 19], preferential migration
to large aggregates [20], and network growth with redi-
rection [21]. However, microscopic models are only able
to produce the power law exponent γ = 1 for specific
values of their parameters.

Here we present a class of microscopic stochastic pro-
cesses that are able to reproduce Zipf’s law with exponent
γ = 1 without fine tuning. These processes are charac-
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FIG. 1. a) Zipf’s law, data. Probability density function
P (n) (y-axis) vs size n (x-axis) for cities (circles) and coun-
ties (triangles) within the United States. The solid lines are
guides for the eye corresponding to P (n) ∝ n−2. Data on the
population of cities is obtained from theGeonames dataset [4].
County level data is obtained from the US Census Bureau [5].
The distribution for US cities has been shifted by a factor of
10 along the y-axis for clarity. b) Taylor’s law, data. The
variance of population in year t + 1 conditioned to the pop-
ulation in year t (y-axis) vs the average population in year
t+1 conditioned to the population in year t (x-axis) for cities
(circles) and counties (triangles) in the United States during
the period 1970 to 2010. The vertical dashed line denotes the
cross-over city size nc at which Taylor’s exponent defined in
Eq. 2 transitions from α = 1/2 to α = 1 (the best fit expo-
nents in the regime n > nc are α = 0.92± 0.01 for cities and
α = 0.97 ± 0.03 for counties). As shown in panel a), nc cor-
responds to the cross-over city size at which the distributions
start following Zipf’s law. The data for US cities have been
shifted by a factor of 10 along the y-axis for clarity.

terised by an anomalous scaling of the fluctuations of
the population increments, commonly known as Taylor’s
law in ecology [22–24]. In particular, we describe two
general mechanisms to construct microscopic stochastic
processes where the conditional variance of the popula-
tion increments scale as the square of the population, and
we demonstrate that the stationary distribution of such
processes follows Zipf’s law. Our processes are applicable
to dynamical systems with an explicit time dependence
where the stationary distribution of group sizes can be
described by Zipf’s law. In this respect, our derivation of
Zipf’s law differs from static models without an explicit
time dependence and from models where groups can only
grow [6, 8, 17, 25, 26].
We present our microscopic processes as models in which
individuals belong to different local areas (groups or
patches). To describe how the population in each group
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FIG. 2. a) Zipf’s law, models. Stationary distributions of
group sizes P (n) for modified branching processes with envi-
ronmental variability (circles) and correlated individuals (tri-
angles). See the main text for details on the numerical sim-
ulations and the parameter values. The distributions have
been shifted by a factor of 10 along the y-axis for clarity. The
vertical line denotes the cross-over city size nc at which the
distributions start following Zipf’s law: nc = 104 for both
models. b) Taylor’s law, models. The variance of population
change in time interval [t, t+1] conditioned to the population
at time step t (y-axis) vs the average population change in
time interval [t, t + 1] conditioned to the population at time
step t (x-axis) for branching processes with environmental
variability (circles) and correlated variables (triangles). Sim-
ulations and parameter values are the same as in a). We
observe a transition of Taylor’s exponent from α = 1/2 for
n < nc to α = 1 for n > nc. The black lines correspond to
the analytical results of Eq. 3 and Eq. 5. Curves have been
shifted by a factor of 10 along the y-axis for clarity.

evolves in time, we use a modified version of the Galton-
Watson process. The original Galton-Watson process [27]
is a discrete-time branching stochastic process describing
the evolution of a population of nt individuals at time t
according to the equation

nt+1 =

nt
∑

i=1

xi (1)

where xi are independent and identically distributed ran-
dom variables over the integers, with finite mean and
variance and with probability mass function P (x|λ),
where λ are parameters. If xi = 0, individual i dies,
if xi = 1, they do nothing and if xi = 2, 3, 4... then they
have 1, 2, 3... children. Extinction will occur with proba-
bility 1 if the average number of offspring per individual
is less than or equal to one, E(x) ≤ 1. To avoid extinction
and ensure the process has a stationary state we include
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Distribution γ D p

US Counties 0.86 0.04 < 0.01

US Cities 0.96 0.07 0.01

Environmental variability 0.91 0.02 < 0.01

Correlated individuals 1.00 0.01 < 0.01

TABLE I. Power law fit: exponent γ for the distribution of
group sizes obtained using a Maximum likelihood estimate,
Kolmogorov-Smirnov statistic D and p-value for the PDF dis-
tributions in Figs 1a and 2a. All numbers are rounded to two
decimal places.

the boundary condition nt ≥ 1 for all t, which accounts
for immigration [28]. If E(x) > 1, then the population
will experience an exponential growth and there will be
no stationary state. For E(x) ≤ 1, the stationary distri-
bution cannot be described by Zipf’s law; it is a power
law with exponent −1 (γ = 0).

The conditional mean and variance of the population
increments, defined as E(∆n|nt = n) and V ar(∆n|nt =
n) respectively, where ∆n = nt+1 − nt, can be used to
measure the scaling of the fluctuations of the population
size. Given that the random variables xi are indepen-
dent and identically distributed, the conditional mean
and variance of population increments both scale as n:
E(∆n|n) ∼ n and V ar(∆n|n) ∼ n. This scaling be-
haviour can be summarised considering the relationship
between these two quantities, i.e. Taylor’s law [29]:

V ar(∆n|n) ∝ E(∆n|n)2α. (2)

The exponent α often takes a value of either 1/2, as in the
original Galton-Watson process, or 1, as in random mul-
tiplicative processes. As random multiplicative processes
are known to produce Zipf’s law, this suggests Zipf’s law
can be present with exponent γ = 1 when Taylor’s expo-
nent is α = 1. On the other hand we hypothesise that
when Taylor’s exponent is α = 1/2 Zipf’s law will not
be present. This suggests a connection between Taylor’s
law and Zipf’s law, which we characterise with analytical
arguments and numerical simulations.
Formalising this intuition, we propose two variations of

the Galton-Watson process, namely processes with envi-
ronmental variability and processes with correlated indi-
viduals, and show that for large populations they have
exponents γ = 1 and α = 1.
We first present the case of processes with environ-

mental variability. To this end, we consider a modified
Galton-Watson process where the parameters λ of the
distribution of the individuals are not constant values
but random variables drawn from a distribution G(λ)
at each time step. To be specific, we assume that
the xi are Poisson random variables with distribution
P (x|λ) = Poiss(λ) = e−λλx/x!.
In order to determine the fluctuations of the popula-

tion increments, we compute the variance of the pop-
ulation change, ∆n = nt+1 − nt, conditioned to the

population at time t by applying the law of total vari-
ance [30], V ar(∆n|nt = n) = Eλ[V ar∆n|λ(∆n)] +
V arλ(E∆n|λ[∆n]). Here E∆n|λ and V ar∆n|λ denote the
mean and variance of ∆n for a fixed λ, and Eλ and V arλ
denote the mean and variance with respect to G(λ). We
obtain,

V ar(∆n|nt = n) = n Eλ(λ) + n2 V arλ(λ). (3)

Note that the fluctuations in the size of a population are
proportional to n and follow Eq. 2 with exponent α =
1/2 for small populations, n ≪ nc ≡ Eλ(λ)/V arλ(λ),
whereas they scale as n2 for large populations n ≫ nc.
The crossover population nc marks the transition be-
tween these two scaling regimes. Empirical evidence of
the presence of this crossover can be found analysing
the fluctuations of the populations of cities and coun-
ties in the United States, where data shows a transition
between Taylor exponents α = 1/2 and α = 1 around
nc ∼ 104 (Fig. 1b). Within our framework, this re-
sult means that on average the ratio between variance
and mean of growth rates is very small, around n−1

c =
V arλ(λ)/Eλ(λ) ∼ 10−4. For example, if the distribution
of λ is a Gamma distribution, G(λ) = Gamma(λ|κ, ν),
then Eq. 3 becomes V ar(∆n|nt = n) = nκν+n2 κν2 and
nc = ν−1. We verify the validity of this prediction with
numerical simulations of Eq. 1 shown in Fig 2b, where the
xi are independent and identical Poisson random vari-
ables with distribution Poiss(λ) and a new parameter λ
is drawn at each discrete time step from a Gamma dis-
tribution with fixed parameters κ = 104 and ν = 10−4.

Next we demonstrate that the stationary distribution
of group sizes follows Zipf’s law for large populations,
as shown in Fig 2a and summarised in Table I. When
the total population is sufficiently large, we expect that
Eq. 1 can be approximated as (see martingale Central
Limit Theorem [31])

∆n ≡ nt+1 − nt ≈ µ̂n + σ̂n ξ(t), (4)

where ∆n(t) is a continuous random variable, µ̂n =

E(∆n|nt = n), σ̂n =
√

V ar(∆n|nt = n), and ξ(t)
is a zero-mean Gaussian white noise with autocorrela-
tion 〈ξ(t)ξ(t′)〉 = 2δ(t − t′). Figures 3a-b demonstrate
that numerical simulations support the validity of the
ansatz of Eq. 4. Using the law of total expectation
and Eq. 3, we obtain µ̂n = n (Eλ(λ) − 1) ≡ nµ̂ and

σ̂n =
√

nEλ(λ) + n2V arλ(λ) ≡
√

nσ̂2
1 + n2σ̂2

2 . Using
the formal substitutions t + 1 → t + dt, µ̂ → µdt,
σ̂1 → σ1dt and σ̂2 → σ2dt to first order in dt, we ob-
tain the following stochastic differential equation: ṅ(t) =

µn(t) +
√

σ2
1n(t) + σ2

2n(t)
2ξ(t), with a reflecting bound-

ary at n = 1. Hence, the proposed birth-death mi-
croscopic process can be well approximated by a meso-
scopic proportionate random growth dynamics, when
populations are large. In fact, for large populations,
n ≫ nc = σ2

1/σ
2
2 , the above equation becomes a ran-

dom multiplicative process with growth rate of mean µ
and variance σ2

2 . In this limit, we obtain a stationary
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FIG. 3. Numerical simulations support the ansatz of Eq. 4 for processes with environmental variability (panels a,b), and
with correlated individuals (panels c,d). a) Distribution of the fluctuations of the population increments in consecutive time
steps, ∆n = nt+1 − nt, for a process with environmental variability where P (x|λ) = Poiss(λ) and G(λ) = Gamma(λ|κ, ν) with
κ = 19.8, ν = 0.05. Different curves correspond to different values of populations nt = n. b) The curves in panel a) collapse on
the same distribution, a standard normal distribution (dashed line), when the population increments are shifted by removing
the mean and rescaled by the square root of the variance derived in Eq. 3. c) Distribution of the fluctuations of the population
increments in consecutive time steps for a process with correlated individuals, where the n Poisson random variables have
covariance matrix Cov(xi, xj) = δijλ+ (1− δij)ρλ with λ = 0.999, ρ = 0.1. d) The curves in panel c) collapse on the standard
normal distribution (dashed line) when the population increments are shifted by removing the mean and rescaled by the square
root of the variance derived in Eq. 5.

distribution with a power-law tail P (n) ∼ n
−2+

µ

σ2

2 [32].
Notice that we get the exponent of Zipf’s law, γ = 1, for
|µ| ≪ σ2

2 . The parameter values used in the simulations
of Fig. 2 are chosen to fit the models to city data, captur-
ing both the Zipf exponent of the tail and the large value
of nc. Because of the specific choice of a Poisson distri-
bution for P (x|λ), this requires to use a set of parameter
values that are very close to criticality (i.e. λ = 1). How-
ever, it is important to emphasize that it is possible to
find various distributions P (x|λ) and G(λ) that produce
non-critical systems with stationary distributions with
exponent γ = −2 + µ

σ2

2

close to Zipf’s law for any value

of nc = σ2
1/σ

2
2 . In general, for generic distributions P (x)

and G(λ), we have:










σ2
1 = Eλ

(

V ar∆n|λ(∆n)
)

σ2
2 = V arλ

(

E∆n|λ(∆n)
)

µ = Eλ

(

E∆n|λ(∆n)
)

− 1

so it is possible to find many combinations of functions
and parameter values such that |µ| ≪ σ2

2 ≪ σ2
1 , cor-

responding to Zipf’s law and large nc. For example, it
might be possible to satisfy these conditions using a Neg-
ative Binomial distribution for P (x), whose mean and
variance can be independently set, and choosing an ap-
propriate distribution over its parameters, G(λ). The
second case we present is the class of processes where
individuals are correlated. To this end, we consider a
modified Galton-Watson process with correlated individ-
uals, where the joint probability P (x1, . . . , xn|λ) does
not factorize into the product of the individual proba-
bilities P (xi|λ). To be specific, we assume that the x
random variables have a Poisson distribution with fixed
parameter λ (the same for all individuals) and correla-
tion matrix ρij = Cov(xi, xj)/λ, where Cov(xi, xj) ≡
E[(xi − λ)(xj − λ)]. When individuals are correlated the
off-diagonal terms of the covariance matrix are non-zero,
and in the simplest case that we consider, they are all

equal: Cov(xi, xj) = δijλ + (1 − δij)ρλ. The fluctua-
tions of the population increments for the process with
correlated individuals have the same scaling form of the
fluctuations for the process with environmental variabil-
ity. The conditional variance of ∆n = nt+1 − nt for a
given population nt = n is:

V ar(∆n|nt = n) =
∑

i,j

Cov(xi, xj) = nλ(1− ρ) + n2ρλ

(5)
Here the cross-over population between the regimes with
Taylor exponents α = 1/2 and α = 1 is nc = 1/ρ − 1.
Within this framework, the cross-over population nc ∼
104 of United States cities and counties (Fig. 1b) corre-
sponds to a very small value of correlation between peo-
ple, ρ ∼ 1/nc ∼ 10−4. The physical meaning of this cor-
relation can be interpreted considering that the inverse
of the correlation matrix corresponds to the interaction
between individuals [33, 34]. Since the off-diagonal ele-
ments of the inverse of the covariance matrix vanish in
the small ρ limit we get that only a small amount of in-
teraction is needed for large group sizes to follow Taylor’s
law with exponent α = 1, yet in the absence of correla-
tions this will not be present.

Using the ansatz of Eq. 4 and following the same
steps taken for the case with environmental variabil-
ity, it is possible to show that the process with corre-
lated individuals has a stationary distribution of group
sizes which for large populations, n > nc, is a power-

law, P (n) ∼ n−2+
λ−1

ρλ , that follows Zipf’s law when
|λ − 1|/λ ≪ ρ. Numerical simulations support the va-
lidity of the approximation of Eq. 4 on the scaling of the
population increments (Figs. 3c-d and Fig. 2b) and the
presence of Zipf’s law in the distribution tail (Fig. 2a,
Table I).
In the numerical simulations, we used two methods

to generate correlated Poisson variables. In the first
method, used in the simulations of Fig. 2, we consider
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the modified Galton-Watson process nt+1 =
∑nt

i=1
(xi+z)

where the xi are independent and identical random vari-
ables with Poisson distribution Poiss(λ(1 − ρ)) and we
introduce the random variable z, independent of the xi,
with Poisson distribution Poiss(ρλ). One can show that
for this process the conditional variance of ∆n is identical
to Eq. 5. In Fig. 2 we use λ = 1 and ρ = 10−4. In the sec-
ond method, used in the simulations of Fig. 3c-d, we use a
Gaussian copula model to link the Poisson marginals [35].
We verified with numerical simulations that for appropri-
ate values of the multivariate Gaussian’s parameters, this
method generates Poisson variables with the desired val-
ues of λ and covariance matrix Cov(xi, xj) = Cij ; the
conditional variance of ∆n is again identical to Eq. 5.
Both methods give results compatible with the theoreti-
cal predictions.

To summarise our results, we have shown that envi-

ronmental variability and correlations between individu-
als are able to produce Zipf’s law and Taylor’s law [36].
The exponent of Taylor’s law shifts from α = 1/2 for
small populations to α = 1 for large populations. Also,
when population is large Zipf’s law emerges naturally
without fine tuning whenever the growth rate’s mean is
much larger than the variance. The proposed framework
can also naturally account for exponent values close but
not identical to Zipf’s law. This reveals a general connec-
tion between Zipf’s law and Taylor’s law in microscopic
stochastic processes of population dynamics under real-
istic assumptions.
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