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Segmentation and Quantification for Angle-Closure

Glaucoma Assessment in Anterior Segment OCT
Huazhu Fu, Yanwu Xu, Stephen Lin, Xiaoqin Zhang, Damon Wing Kee Wong, Jiang Liu, Alejandro F. Frangi,

Mani Baskaran, and Tin Aung

Abstract—Angle-closure glaucoma is a major cause of irre-
versible visual impairment and can be identified by measuring
the anterior chamber angle (ACA) of the eye. The ACA can
be viewed clearly through Anterior Segment Optical Coherence
Tomography (AS-OCT), but the imaging characteristics and the
shapes and locations of major ocular structures can vary signif-
icantly among different AS-OCT modalities, thus complicating
image analysis. To address this problem, we propose a data-
driven approach for automatic AS-OCT structure segmentation,
measurement and screening. Our technique first estimates initial
markers in the eye through label transfer from a hand-labeled ex-
emplar dataset, whose images are collected over different patients
and AS-OCT modalities. These initial markers are then refined by
using a graph-based smoothing method that is guided by AS-OCT
structural information. These markers facilitate segmentation of
major clinical structures, which are used to recover standard
clinical parameters. These parameters can be used not only to
support clinicians in making anatomical assessments, but also to
serve as features for detecting anterior angle closure in automatic
glaucoma screening algorithms. Experiments on Visante AS-OCT
and Cirrus HD-OCT datasets demonstrate the effectiveness of
our approach.

Index Terms—Data-driven, segmentation, AS-OCT, anterior
chamber angle, angle-closure glaucoma.

I. INTRODUCTION

Glaucoma is the second leading cause of blindness world-

wide (only second to cataracts), as well as the foremost cause

of irreversible blindness [1], [2]. Since vision loss from glau-

coma cannot be reversed, improved screening and detection

methods for glaucoma are essential to preserve vision and life
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Fig. 1. The angle-closure glaucoma: open angle and angle-closure. The small
anterior chamber angle (ACA) blocks drainage channels of aqueous fluid and
results in optic nerve damage.

quality. The two main types of glaucoma are open angle and

angle-closure, according to the configuration of the anterior

chamber angle (ACA) within the eye, as shown in Fig. 1.

Primary angle-closure glaucoma is a major form of glaucoma

in Asia [3], in which a narrow ACA between the iris and

cornea blocks the drainage channels of aqueous fluid, resulting

in rising eye pressure that causes optic nerve damage [4],

[5]. Imaging and assessment of the ACA is thus critical for

diagnosis of angle-closure glaucoma [6], [7].

Optical Coherence Tomography (OCT) provides a clear

view of intraretinal morphology and enables noninvasive

depth-resolved functional imaging of the retina [8], [9], which

can be widely employed to image macular edema [10],

segment retinal layers [11], [12], and detect the optic

disc/cup [13], [14]. Anterior Segment Optical Coherence To-

mography (AS-OCT) is an effective imaging modality for vi-

sually identifying the anterior segment structure [15], [16], by

obtaining high-resolution cross-sections of the entire anterior

chamber in a single image [17], [18].

For wide-scale screening, automatic AS-OCT segmenta-

tion and assessment methods are. Recently, the Zhongshan

Angle Assessment Program [19] provided a semi-automatic

algorithm to calculate the various anterior segment param-

eters. But this semi-automatic method requires the observer

to input the location of the two scleral spurs, which makes

it unsuitable for automatic analysis of large-scale clinical

datasets. Tian et al. provided a Schwalbe’s line detection

method for High-Definition OCT (HD-OCT) to compute ACA

measurements [20]. HD-OCT imaging uses spectral domain

technology to obtain higher resolution images in which the

Schwalbe’s line is well defined. But this method [20] is only

valid for HD-OCT and cannot be implemented with other AS-

OCT modalities with low resolution. Williams et al. employed

level-set-based shape priors to segment the corneal anterior

and posterior boundaries [22]. This method estimates the

cornea location, and then utilizes the level-set-based model
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TABLE I
SUMMARY OF THE EXISTING AS-OCT ASSESSMENT METHODS.

Method Year Automatic Cornea
Segmentation

Iris Segmenta-
tion

Clinical
Measurement

Glaucoma
Screening

Multiple
Modalities

Zhongshan [19] 2008 Semi
√ √ √ √

Visante OCT
Tian et al. [20] 2011

√ √ × √ √
HD-OCT

Xu et al. [21] 2012
√ × × × √ √

Williams et al. [22] 2013
√ √ × × × √

Xu et al. [23] 2013
√ × × × √ √

Ni Ni et al. [24] 2014
√ √ √ √ √

HD-OCT
Williams et al. [25] 2015

√ √ × × × √
Niwas et al. [26] 2015 × × × √ √

Visante OCT
Fu et al. [27] 2016

√ √ √ × × √
Proposed method 2017

√ √ √ √ √ √

to segment the corneal boundary. However, this method only

produces a corneal boundary segmentation without the other

ACA structures. Xu et al. localized the ACA region, and

then extracted visual features directly to classify the glaucoma

subtype [21], [23]. However, that method can only report

classification results and cannot provide clinical measurements

needed by doctors. A comparison of the existing methods

is given in Table I. In summary, common drawbacks among

existing AS-OCT assessment methods include the following:

1) Global Segmentation: An AS-OCT image includes the

corneal boundary and iris region, but many existing

methods provide only single region segmentation (e.g.,

Schwalbe’s line [20] or corneal boundary [22], [25]),

rather than the global structure segmentation needed for

ACA measurement.

2) Clinical Measurement: In the field of medical image

analysis, visual features have been shown to obtain good

performance on glaucoma screening [21], [23]. How-

ever, clinical parameters defined by anatomic structure

are more valuable for medical assessment and clinician

validation.

3) Multiple Modalities: The imaging characteristics, as

well as the location and shape of the iris and cornea, can

vary significantly among different AS-OCT modalities,

as shown in Fig. 2. Many existing methods are limited

to only a particular type of AS-OCT image (e.g., HD-

OCT [20], [24], or Visante OCT [19]), and cannot be

applied directly with other types of AS-OCT imagery.

To address these issues, we propose a data-driven approach

for AS-OCT structure segmentation and measurement. Our

key idea is to introduce an exemplar set containing manually

labeled markers on the iris and corneal boundaries, and use

it to estimate initial marker locations by transferring from

the exemplars most similar to the input. These exemplars

include images taken from different patients and AS-OCT

modalities. The initially placed markers are then refined using

a graph-based smoothing model that accounts for structural

information within the AS-OCT image. These refined markers

are employed to guide the segmentation of major AS-OCT

structures – namely the corneal boundary, iris region, and

Visante AS-OCT

Cirrus HD-OCT

Fig. 2. Different subjects and AS-OCT modalities (e.g., Visante AS-OCT and
Cirrus HD-OCT). It is observed that the iris positions and shapes are varied
among different patients for the same AS-OCT modality. For different AS-
OCT modalities, Cirrus HD-OCT has a clearer corneal boundary and slight
noise, but the iris posterior and trabecular-iris contact (TIC) are missed, as
indicated by the red arrows.

trabecular-iris contact1 – which are used to calculate clinical

parameters based on ocular anatomy. These clinical parameters

are finally used for clinician assessment and angle-closure

glaucoma screening.

An approach related to our method is multi-atlas segmen-

tation [29]–[31], where an atlas dataset is built and pairwise

registration is used between the input image and each atlas im-

age. After that, these registration results are used to propagate

the atlas labels to the input image coordinates. Our method has

the following differences to multi-atlas segmentation: 1) our

method employs labeled raw images to generate the exemplar

dataset, allowing for easy addition of new images into the

dataset; 2) our method uses K-nearest neighbor retrieval to

replace pairwise registration, providing higher computational

efficiency; 3) to our knowledge, our work is the first applica-

tion of a data-driven scheme for AS-OCT image analysis.

The proposed approach is fully automatic and encompasses

AS-OCT segmentation, measurement and screening. A major

advantage is that its data-driven scheme provides robust perfor-

mance over the imaging variations among different AS-OCT

modalities as well as over various iris shapes among different

1Note that due to low resolution, it has been found that the scleral spur is
not identifiable in 20-30% of Visante AS-OCT images [28]. Thus we employ
the trabecular-iris contact as an alternative biomarker that is located very close
to the scleral spur.
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(A) AS-OCT image

(B) Left/Right image
(E) Marker 

Transfer

(C) Exemplar Dataset

(F) Marker Initialization

(G) Marker Refinement (H) Segmentation
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(J) Clinical 
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(K) Computer 
Aided Screening

...
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Fig. 3. Flowchart of our proposed method. (A) Given an AS-OCT image, we divide it into (B) left/right images, and retrieve (D) its K-nearest neighbors from
(C) the exemplar dataset. Then (E) marker transfer is employed to obtain (F) the initial markers. After that, (G) these markers are refined and employed to (H)
guide the segmentation of major structures. Finally, (I) clinical parameters are measured for (J) clinical diagnosis or (K) automatic angle-closure glaucoma
screening.

subjects. Moreover, the measured clinical parameters can be

used not only to support clinicians in making anatomical

assessments, but also to serve as features for detecting anterior

angle closure in automatic glaucoma screening algorithms. Our

tests on two clinical AS-OCT datasets demonstrate encourag-

ing performance of this method.

II. PROPOSED METHOD

As illustrated in Fig. 3, our method proceeds as follows.

Given an AS-OCT image, we first retrieve the K-nearest

neighbors from the labeled exemplar dataset, and transfer

the labels to estimate initial marker locations in the input

image. These markers are refined based on a graph-based

model that utilizes prior structural information. The refined

markers are then used to guide the segmentation of major

structures. Finally, clinical parameters are calculated and used

to support clinical assessment or automatically detect anterior

angle closure for glaucoma screening.

A. Marker Transfer

Our marker transfer approach takes inspiration from the

recent success of data-driven techniques that transfer label

information from one image to another [32]–[35]. The AS-

OCT image is first cropped into left/right images. Then the

initial markers are obtained via transfer from the closest

matching images in a exemplar dataset, which is composed

of various AS-OCT images containing markers labeled man-

ually by ophthalmologists. These images span various AS-

OCT modalities and patients. In our method, the markers

are placed along the ACA boundary, which is separated into

four parts, namely the corneal epithelium/endothelium and

the upper/lower iris layers, as shown in Fig. 3 (C). The use

of boundary markers for this transfer is motivated by the

following: 1) Markers on boundaries are more stable to locate

than those within the iris or cornea regions; 2) Boundary

alignment is a priority for most registration methods; 3)

Manual labeling of boundary markers is much more feasible

than completely tracing the boundaries over a large exemplar

set; and 4) A set of approximate boundary points provided by

the transferred markers is sufficient to initialize the subsequent

steps in our algorithm.

From this exemplar dataset, we retrieve the K-nearest

neighbors for the left/right image (K = 5 in our imple-

mentation) based on the Edge Orientation Histogram (EOH)

feature [36], [37]. EOH is calculated based on the Canny

edge detector and Sobel masks. The Canny edge detector is

used to generate an edge map for the input image, and Sobel

masks are employed to calculate five orientation gradients. The

input image is divided into 4× 4 non-overlapping rectangular

regions, and we calculate the EOH for each region, yielding

a feature of 4 × 4 × 5 = 80 dimensions. Then the Euclidean

distance is used to calculate the similarity between the input

image and the exemplars. Finally, we directly transfer all the

retrieved exemplar markers to the input image to serve as the

initial markers, as shown in Fig. 4 (A).

B. Marker Refinement

Due to inaccuracies in direct marker transfer, some refine-

ment of the initial markers is needed. In our work, we employ

a graph-based smoothing method, which generates a graph

G = 〈V, E〉 with a set of nodes V and edges E . Each node

n ∈ V can take a state un in a discrete space and has an

associated unary energy function Ψ(un). In our work, each

initial marker p is represented as one node, and a vertical pixel

list Lp of length l (l = 20 in this paper) centered on initial
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Node: p
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(A) (B)

Node: p
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Fig. 4. (A): Initial markers of the AS-OCT image after marker transfer,
where the red, green, blue, and yellow points denote the markers for the
corneal epithelium/endothelium and the upper/lower iris, respectively. (B): A
zoom-in region of the AS-OCT image, where each marker pi is represented
as a node in the graph, and the vertical pixel candidates centered on initial
marker pi (green points) are the states of corresponding node pi. The refined
markers (red points) are optimized by our graph-based processing.

marker p is extracted as the candidate states of the node, as

shown in Fig. 4 (A). The edge (n,m) ∈ E connecting nodes n

and m has an associated pairwise energy function Φ(un, um).
The overall objective function of our refinement is as follows:

Eg(u) =
∑

n∈V

Ψ(un) +
∑

(n,m)∈E

Φ(un,um). (1)

The configuration of states u = {u1, · · · ,u|V|} can be

obtained by minimizing Eq. (1).

Unary term Ψ(un) reflects the likelihood that a pixel

candidate lies on a boundary, which is defined as

Ψ(un) = Ug(un) · Up(un), (2)

where Ug(un) is the vertical gradient magnitude of candidate

un, encouraging the refined point to adhere to a boundary.

Up(un) denotes structural prior information, where Up(un) =
1 if the initial marker un is on the corneal epithelium or upper

iris, and Up(un) = −1 otherwise. This term is based on the

observation that from top to bottom in an AS-OCT image, the

upper boundaries of the cornea and iris go from dark to bright,

and lower boundaries go from bright to dark.

Pairwise term Φ(un, um) provides a spatial smoothness

constraint between neighboring markers, and we define this

term as follows:

Φ(un, um) = Ds(un, um) ·Df (un, um), (3)

where Ds(un, um) represents a spatial penalty measured as the

vertical coordinate difference between nodes un, um, which

encourages markers to form a smooth layer. And Df (un, um)
is the l2-norm similarity between the features of nodes un, um,

which are taken simply as the intensity in a 5×5 region around

the candidate.

Our refined markers are thus obtained based on a com-

bination of boundary magnitude Ug(·), structural informa-

tion Up(·), spatial smoothness Ds(·, ·), and feature similar-

ity Df (·, ·) constraints. Eq. 1 can be optimized by using

existing energy minimization methods (e.g., TRW-S [38],

A*search [39]) to obtain a good approximate solution.

j

s

Y

Z

X

W

(A) (B)

Fig. 5. (A): Regions in the binary image centered on junction j. The
trabecular-iris contact s is located at the bottom-left corner of the top-right
black region Z. (B): The AS-OCT image with fitted curves.

C. AS-OCT Structure Segmentation

Based on the localized markers, we segment three major

structures of the AS-OCT image: the corneal boundary, iris

region, and trabecular-iris contact.

Corneal boundary: The corneal boundary, including the

corneal epithelium and endothelium, can be considered as a

smooth curve. To the corresponding refined markers, a fourth

order polynomial (also used in [20]) is fit to obtain the corneal

boundary, as shown in Fig. 5 (B).

Iris region: The shape and location of the iris varies among

different AS-OCT images, which makes it difficult to detect

using a fixed pattern. With our transferred markers, we can

detect the iris region reliably. We first fit two curves to the

upper/lower boundary of the iris region based on the markers,

as shown by the blue and yellow curves in Fig. 5 (B). Then we

threshold the region between these two curves and obtain the

iris areas by selecting the two maximum connecting regions,

which determines one endpoint of the iris. The threshold value

is set using Otsu’s thresholding method. The other endpoint of

the iris is determined by the trabecular-iris contact. In practice,

we slightly expand the region between the two iris curves

prior to thresholding, to account for iris morphologies such as

plateau iris that do not closely fit a curve.

Trabecular-iris contact (TIC): The trabecular-iris contact

is the key biomarker in the AS-OCT image, as it is used to

localize the ACA position and iris endpoint. In our method,

we first calculate the junction of the fitted corneal endothelium

and upper iris curve, and crop a region of interest (ROI) of size

200×200 centered on the calculated junction. Then, we thresh-

old this ROI using the same thresholding value as in the iris

region segmentation, and perform morphological operations

(dilation and erosion) to remove isolated noise pixels. After

that, the ROI region can be divided into four major connecting

regions as shown in Fig. 5 (A). The trabecular-iris contact s is

located at the bottom-left corner of the top-right black region

(region Z in Fig. 5 (A)).

D. Clinical Parameter Measurement

With the AS-OCT segmentation, we calculate the anatom-

ical parameters needed for clinical assessment and that have

been shown to be discriminative features for automatic glau-

coma classification. The major clinical parameters used in our

work are listed as follows [5], [26], [40]:
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Fig. 6. The clinical parameters of AS-OCT. (A) Global AS-OCT parameters.
AC-Area: Anterior Chamber Area. IEW: Iris Endpoint Width. LV: Lens-
Vault. ACW: Anterior Chamber Width. CH: Chamber Height. (B) Local angle
parameters, where point s denotes the Trabecular-iris contact, and m is the
angle opening distances. TIA: Trabecular Iris Angle. AOD: Angle Opening
Distance. IT: Iris Thickness. I-Curv: Iris Curvature.

1) Anterior Chamber Width (ACW): distance between

the two TIC points, along the blue line in Fig. 6 (A).

2) Iris Endpoint Width (IEW): shortest distance between

the two iris endpoints, along the green line in Fig. 6 (A).

3) Lens-Vault (LV): perpendicular distance between the

anterior pole of the lens and the horizontal line joining

the two TIC points [41], along the red line in Fig. 6 (A).

4) Chamber Height (CH): perpendicular distance between

the anterior chamber and the horizontal line joining the

two TIC points, as the yellow line in Fig. 6 (A).

5) Chamber Height Ratio (CHR): the ratio of Chamber

Height to Lens-Vault.

6) Anterior Chamber Area (AC-Area): cross-sectional

area of the anterior segment bounded by the endothe-

lium, iris, and anterior surface of the lens, shown as the

blue shaded region in Fig. 6 (A).

7) Anterior Chamber Volume (AC-Vol): calculated by

rotating the ACA 360◦ around its central vertical axis.

8) Iris Area (IA): cumulative cross-sectional area along

the full length of the iris, shown as the red shaded region

in Fig. 6 (B).

9) Iris Curvature (I-Curv): calculated by drawing a line

from the most peripheral to the most central points of

the iris pigment epithelium, extending a perpendicular

line to the iris pigment epithelium at its point of greatest

convexity, and taking the length of this line [5], indicated

by the green line in Fig. 6 (B).

10) Trabecular Iris Angle (TIA): angle at the apex of the

iris recess defined between lines extending through a

point on the trabecular meshwork at a distance m from

the TIC point, shown as the orange angle in Fig. 6 (B).

11) Angle Opening Distance (AOD): length of the line

segment between the cornea and iris at distance m, along

the red line in Fig. 6 (B).

12) Angle Recess Area (ARA): area bounded by the AOD

line, corneal endothelium and the iris.

13) Iris Thickness (IT): thickness of the iris at a distance

m from the TIC, along the blue line in Fig. 6 (B).

Parameters 1-7 are global AS-OCT parameters of dimension 1,

and 8-9 are local angular parameters of dimension 1. Parame-

ters 10-13 are also local angular parameters but with different

angle opening distances (m = {750, 1000, 1200}µm), as

shown in Fig. 6 (B), thus each of them has |m| dimensions

TABLE II
ERROR SCORES (UNIT:PIXEL) IN PIXELS FOR DIFFERENT STEPS OF OUR

METHOD. IE: IRIS ENDPOINT. 1 PIXEL ≈ 0.016 MM

TIC Err. IE Err. ACW Err. IEW Err.

Baseline [20] 14.45 - 18.69 -

Transfer 21.26 24.91 23.26 37.38
Fitted curve 12.94 18.41 17.51 9.61
Final result 10.47 5.16 12.87 6.51

for each angle.

III. EXPERIMENTS

A. Segmentation Evaluation

The first experiment is for evaluating segmentation. In our

experiments, the AS-OCT images (from a Carl Zeiss Visante

AS-OCT) are centered on the pupil, and one cross-sectional

horizontal scan (nasal-temporal angles at 0◦-180◦) is evaluated

for each subject. We collected 100 Visante AS-OCT images,

where the TIC points and iris endpoints are labeled manually

as the ground truth, and ACW and IEW are calculated from

them. We evaluate our method on this dataset and measure the

following four error scores: point distances for TIC and iris

endpoint, and the absolute width for ACW and IEW.

We report the results of our method, including at two

intermediate steps. The first result is determined after the

marker transfer step, using the initial markers directly. The

second result is from points computed by fitting a curve to the

refined markers. The last is our final result with all refinement

and segmentation steps. We additionally report results of the

TIC detection method [20] as a baseline. The TIC method [20]

is highly dependent on detecting the feature change along the

lower boundary of the cornea in an HD-OCT image, which

is hard to observe in a low resolution OCT (e.g., Visante

OCT). Thus in our implementation we extract the HOG feature

within small windows (50 × 50) along the corneal boundary

to detect the feature change and localize the TIC point. Note

that the TIC method [20] does not segment the iris region,

thus only comparisons to TIC and ACW scores can be done.

The performance scores are shown in Table II. Due to the

low resolution of the Visante OCT image, the feature change

is slight and the TIC is hard to detect by using [20]. Its

performance is only better than the initial marker transfer of

our method. In our method, the result of marker transfer is

rough and has large error. The marker refinement step deals

with outliers and improves performance by using fitted curves.

Our final result obtains the best performance on all point

localizations and measurements. Some visual results of our

method are shown in Fig. 7. Our method segments the corneal

boundary, iris region, and TIC accurately for different ACA

shapes and positions in the AS-OCT images.

B. Screening Evaluation

The second experiment is on angle-closure glaucoma

screening using clinical measurements obtained by our

method. In this experiment, a total of 4135 Visante AS-

OCT images from 2113 subjects are collected to generate the

clinical dataset. Each AS-OCT image is split into two ACA



6 IEEE TRANSACTIONS ON MEDICAL IMAGING

Visante AS-OCT Cirrus HD-OCT

Fig. 7. Segmentation results of our proposed method on Visante AS-OCT and Cirrus HD-OCT images, where the corneal boundaries are marked by red and
blue curves, and the iris and anterior chamber regions are indicated by red and green shading, respectively. (Note that the pale blue colors of Cirrus HD-OCT
images, also seen in Fig.2, are generated by the Cirrus machine, not by our method.)

sub-images (8270 ACA sub-images in total), since each image

contains two ACA regions and the right ACA sub-image is

flipped horizontally. For each ACA sub-image, the ground

truth label of open-angle or angle-closure is determined by

majority from three ophthalmologists. The data contains 7375

open-angle and 895 angle-closure cases. The dataset is divided

equally and randomly into training and testing sets.

We repeat each algorithm 50 times and report the mean

and standard deviations. We employ five evaluation criteria

to measure the performance: Balanced Accuracy, Sensitivity,

Specificity, Precision and F-measure. The Sensitivity (Sen),

Specificity (Spe), and Precision (Pre) are defined as:

Sen =
TP

TP + FN
, Spe =

TN

TN + FP
, Pre =

TP

TP + FP
,

where TP and TN denote the number of true positives and

true negatives, respectively, and FP and FN denote the

number of false positives and false negatives, respectively.

The F-measure (Fm) and Balanced Accuracy (BAcc) are as

follows:

Fm =
2TP

2TP + FP + FN
, BAcc =

1

2
(Sen+ Spe).

We additionally report the ROC curves and area under ROC

curve (AUC).

Our evaluation utilizes five classification algorithms for the

detection of gonioscopic angle closure, including k-Nearest

Neighbor, Naive Bayes, Random Forest, AdaBoost, and Linear

SVM. The performances are reported in Table III and Fig. 8(a).

k-Nearest Neighbor (kNN) is a non-parametric method based

on the k closest training examples in the feature space, with

the prediction set to the most common label among the k

nearest neighbors (k = 5 in our experiment). Naive Bayes

classification estimates the probability based on applying

Bayes’ theorem under the assumption that the covariates are

independent and conditional on class membership. From the

results, we observe that k-Nearest Neighbor and Naive Bayes

do not perform well on our Visante AS-OCT dataset. Random

Forests and AdaBoost are both ensemble learning methods,

where Random Forests is bagging algorithm and AdaBoost is

a boosting algorithm. We set the tree numbers to 50 in our

experiment. These two classifiers obtain similar performance

on the AS-OCT classification task. The last classifier is Linear

SVM, which constructs a hyperplane or a set of hyperplanes in

a higher dimensional space to separate feature points. Linear

SVM achieves the best scores in this experiment.

C. Performance with Visual Features

In this experiment, we examine the use of visual features

instead of clinical parameters for glaucoma classification.

In [21], the ACA region is localized based on geometric struc-

ture, and then visual features (e.g., HOG [42]) are extracted

to classify the glaucoma subtype. In our implementation, we

use the TIC obtained by our method as the center of the ACA

region, and follow [21] by using HOG features to classify

the glaucoma subtype on the Visante AS-OCT dataset. The

results are shown in Table IV and Fig. 8(b). Our visual feature

classification (VF) outperforms the original method in [21],

which reports a 0.835 AUC and a 0.758 Balanced Accuracy

for ACA images. We also found that classification with visual

features (VF) is better than with just clinical parameters (CP).

The more fundamental reason is that clinical parameter have

already a prior on what information clinicians currently use,

while visual features identify a wider set of image properties

some of which are unrelated with what clinicians seem to

recognize as relevant. Hence, visual feature have more image

information, and more discriminative capacity than clinical

parameters. Clinical parameters are nevertheless important to

recover for clinical assessment. Combining the two types of

features (CP + VF) produces the best performance on the

Visante AS-OCT dataset. Moreover, our results are comparable

to those of Niwas et al. [26], which achieves 0.866 Accuracy

by using a Laplacian score feature selection method. Note that

the ACA measurements used in [26] are measured manually,

so it is not an automatic method.

D. Multiple Modality Evaluation

A major advantage of our system is its ability to deal with

different AS-OCT imaging modalities. In this experiment, we
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TABLE III
PERFORMANCES (Mean± Std) OF DIFFERENT CLASSIFIERS USING CLINICAL MEASUREMENTS ON THE VISANTE AS-OCT DATASET.

Balanced Accuracy Sensitivity Specificity Precision F-measure

k-Nearest Neighbor 0.770± 0.019 0.740± 0.071 0.800± 0.037 0.462± 0.073 0.528± 0.031
Naive Bayes 0.786± 0.013 0.722± 0.031 0.850± 0.019 0.377± 0.033 0.494± 0.027
Random Forest 0.814± 0.014 0.774± 0.034 0.855± 0.012 0.401± 0.016 0.526± 0.022
AdaBoost 0.812± 0.014 0.773± 0.033 0.850± 0.014 0.392± 0.027 0.519± 0.024
Linear SVM 0.828± 0.010 0.807± 0.024 0.851± 0.013 0.402± 0.028 0.536± 0.023
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Fig. 8. (A) Performances of different classifiers on the Visante AS-OCT dataset. (B) Performances of Clinical Parameter (CP) and Visual Feature (VF) on
the Visante AS-OCT dataset. (C) Performances of CP and VF on the Cirrus HD-OCT dataset.

TABLE IV
PERFORMANCES (Mean± Std) OF DIFFERENT FEATURES WITH LINEAR SVM ON VISANTE AS-OCT DATASET.

Balanced Accuracy Sensitivity Specificity Precision F-measure

Clinical Parameter 0.830± 0.011 0.810± 0.024 0.850± 0.012 0.410± 0.024 0.553± 0.020
Visual Feature 0.860± 0.011 0.869± 0.032 0.851± 0.017 0.423± 0.030 0.581± 0.022
Combination 0.872± 0.018 0.886± 0.037 0.862± 0.019 0.438± 0.032 0.610± 0.024

test our method on another modality, Zeiss Cirrus HD-OCT.

Some visual segmentation results are shown in Fig. 7. It can

be seen from the figure that the image structure for Cirrus

HD-OCT is different from that of Visante AS-OCT. In Cirrus

HD-OCT, post-processing is done during AS-OCT imaging,

which makes the corneal boundary clearer. However, the iris

posterior and the contact point of iris and cornea are not

obvious, as shown in Fig. 2. Because of the data-driven marker

localization, our method performs well and is robust for Cirrus

HD-OCT.

For quantitative evaluation, we collected a Cirrus HD-OCT

dataset, with 1402 ACA images in total (1102 open-angle and

300 angle-closure). The performances are shown in Table V

and Fig. 8(c). Results using the feature combination (CP +

VF) were found to be best. Note that due to the missing iris

posterior and contact point of the iris and cornea, the scores

for Cirrus HD-OCT are lower than those for Visante AS-OCT.

E. Discussion

1) Exemplar Dataset: In our method, we utilize the same

exemplar dataset directly for different OCT machines. This

is based on the observation that the relative positions of the

cornea and iris are roughly consistent in different AS-OCT

images after image normalization. For dividing the image into

left/right images, we crop the image by tightening the ACA

Fig. 9. Challenging cases for our segmentation method.

region to remove the excess margin and resize the cropped

image to the same size as the exemplar. In this paper, we

collect more than 20000 ACA images from Visante AS-OCT

and use K-means to cluster them into 50 groups. The image of

each cluster center is selected as an exemplar in the exemplar

dataset. This exemplar data is utilized in both the Visante and

Cirrus AS-OCT experiments.

2) Running Time: We run our method using a workstation

with a Xeon 2.7GHz CPU and 64GB RAM. The code is im-

plemented without optimizations in MATLAB 2014 (Natick,

MA). Typically, our method takes less than 10 s for segmenting

and measuring one AS-OCT image.

3) Limitation: Our method segments the corneal boundary,

iris region, and trabecular-iris contact accurately for different

iris shapes and positions in the AS-OCT images. One limita-

tion of our method is that shadows within an AS-OCT image
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TABLE V
PERFORMANCES (Mean± Std) OF DIFFERENT FEATURES WITH LINEAR SVM ON THE CIRRUS HD-OCT DATASET.

Balanced Accuracy Specificity Sensitivity Precision F-measure

Clinical Parameter 0.779± 0.029 0.850± 0.039 0.708± 0.063 0.527± 0.074 0.599± 0.048
Visual Feature 0.796± 0.031 0.851± 0.032 0.742± 0.053 0.536± 0.067 0.620± 0.053
Combination 0.802± 0.026 0.850± 0.032 0.753± 0.044 0.541± 0.063 0.627± 0.045

may lead to distortions of the iris shape, as shown in the first

image of Fig. 9. This is a failure case for our method that

is also a challenge for other segmentation methods and even

ophthalmologists. Another challenging case is low contrast,

which may lead to mis-segmentation as shown for the corneal

boundary in the second image of Fig. 9.

4) Comparison: We compare the existing AS-OCT assess-

ment methods with our method in Table VI. The work in [20]

only deals with segmentation and detection, without provid-

ing glaucoma screening results. The method in [24] obtains

outstanding performance with fuzzy kNN classification, but

works only on the Casia SS-1000 OCT modality, which is a

high-definition (HD) mode of SS-OCT imaging, and has been

evaluated on just a small data size. Xu’s methods in [21],

[23] employ different visual features to classify angle-closure

glaucoma, but they cannot produce clinical measurements. Our

work is evaluated on two AS-OCT modalities, Visante AS-

OCT and Cirrus HD-OCT, and the data sizes are the largest in

each AS-OCT modality. Our method also achieves satisfactory

performance.

IV. CONCLUSION

In this paper, we proposed an automatic anterior chamber

angle segmentation and measurement method for AS-OCT

imagery. The key contributions of this work are the introduc-

tion of marker transfer from labeled exemplars to generate

initial markers, and segmentation of the corneal boundary

and iris regions to obtain clinical ACA measurements. The

experiments on both the Visante AS-OCT and Cirrus HD-

OCT datasets demonstrate the effectiveness and robustness of

our method. Potential applications of our proposed method in-

clude clinical anatomical assessment, automatic angle-closure

glaucoma screening, and statistical analysis of large clinical

datasets.
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Based Object Class Detection Using Complete Graphs,” International

Journal of Computer Vision, vol. 87, no. 1, pp. 93–117, 2010.
[40] R. Wu, M. Nongpiur, M. He, L. Sakata, D. Friedman, Y. Chan,

R. Lavanya, T. Wong, and T. Aung, “Association of narrow angles
with anterior chamber area and volume measured with anterior-segment
optical coherence tomography,” Arch. Ophthalmol., vol. 129, no. 5, pp.
569–574, 2011.

[41] G. Tan, M. He, W. Zhao, L. Sakata, J. Li, M. Nongpiur, R. Lavanya,
D. Friedman, and T. Aung, “Determinants of Lens Vault and Association
With Narrow Angles in Patients From Singapore,” American Journal of

Ophthalmology, vol. 154, no. 1, pp. 39–46, 2012.
[42] N. Dalal and B. Triggs, “Histograms of oriented gradients for human

detection,” in CVPR, vol. 1, 2005, pp. 886–893.


