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Abstract

Magnetic Resonance Imaging (MRI) offers high-

resolution in vivo imaging and rich functional and anatom-

ical multimodality tissue contrast. In practice, however,

there are challenges associated with considerations of scan-

ning costs, patient comfort, and scanning time that con-

strain how much data can be acquired in clinical or re-

search studies. In this paper, we explore the possibility

of generating high-resolution and multimodal images from

low-resolution single-modality imagery. We propose the

weakly-supervised joint convolutional sparse coding to si-

multaneously solve the problems of super-resolution (SR)

and cross-modality image synthesis. The learning process

requires only a few registered multimodal image pairs as

the training set. Additionally, the quality of the joint dic-

tionary learning can be improved using a larger set of un-

paired images1. To combine unpaired data from different

image resolutions/modalities, a hetero-domain image align-

ment term is proposed. Local image neighborhoods are nat-

urally preserved by operating on the whole image domain

(as opposed to image patches) and using joint convolutional

sparse coding. The paired images are enhanced in the joint

learning process with unpaired data and an additional max-

imum mean discrepancy term, which minimizes the dissimi-

larity between their feature distributions. Experiments show

that the proposed method outperforms state-of-the-art tech-

niques on both SR reconstruction and simultaneous SR and

cross-modality synthesis.

1. Introduction

With the rapid progress in Magnetic Resonance Imag-

ing (MRI), there are a multitude of mechanisms to generate

tissue contrast that are associated with various anatomical

1Unpaired data/images: acquisitions are from different subjects without

registration. Paired data/images: acquisitions of the same subject obtained

from different modalities are registered.

or functional features. However, the acquisition of a com-

plete multimodal set of high-resolution images faces con-

straints associated with scanning costs, scanner availability,

scanning time, and patient comfort. In addition, long-term

longitudinal studies such as ADNI [24] imply that changes

exist in the scanner or acquisition protocol over time. In

these situations, it is not uncommon to have images of the

same subject but obtained from different sources, or to be

confronted with missing or corrupted data from earlier time

points. In addition, high-resolution (HR) 3D medical imag-

ing usually requires long breath-hold and repetition times,

which lead to long-term scanning times that are challenging

or unfeasible in clinical routine. Acquiring low-resolution

(LR) images and/or skipping some imaging modalities alto-

gether from the acquisition are then not uncommon. In all

such scenarios, it is highly desirable to be able to generate

HR data from the desired target modality from the given LR

modality data.

The relevant literature in this area can be divided

into either super-resolution (SR) reconstruction from sin-

gle/multiple image modalities or cross-modality (image)

synthesis (CMS). On the one hand, SR is typically con-

cerned with achieving improved visual quality or overcom-

ing the resolution limits of the acquired image data. Such

a problem is generally under-determined and ill-posed,

hence, the solution is not unique. To mitigate this fact,

the solution space needs to be constrained by incorporat-

ing strong priors. Prior information comes in the form of

smoothness assumptions as in, for example, interpolation-

based SR [20, 28]. State-of-the-art methods mostly adopt

either external data or internal data to guide the learn-

ing algorithms [25, 30]. On the other hand, due to vari-

ations in optimal image representations across modalities,

the learned image model from one modality data may not be

the optimal model for a different modality. How to reveal

the relationship between different representations of the un-

derlying image information is a major research issue to be

explored. In order to synthesize one modality from another,

recent methods in CMS proposed utilizing non-parametric
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methods like nearest neighbor (NN) search [8], nonlinear

regression forests [19], coupled dictionary learning [26],

and convolutional neural network (CNN) [10], to name a

few. Although these algorithms achieve remarkable results,

most of them suffer from the fundamental limitations as-

sociated with supervised learning and/or patch-based syn-

thesis. Supervised approaches require a large number of

training image pairs, which is impractical in many medical

imaging applications. Patch-based synthesis suffers from

inconsistencies introduced during the fusion process that

takes place in areas where patches overlap.

In this paper, we propose a weakly-supervised convo-

lutional sparse coding method with an application to neu-

roimaging that utilizes a small set of registered multimodal

image pairs and solves the SR and CMS problems simul-

taneously. Rather than factorizing each patch into a linear

combination of patches drawn from a dictionary built under

sparsity constraints (sparse coding), or requiring a training

set with fully registered multimodal image pairs, or requir-

ing the same sparse code to be used for both modalities in-

volved, we generate a unified learning model that automat-

ically learns a joint representation for heterogeneous data

(e.g., different resolutions, modalities and relative poses).

This representation is learned in a common feature space

that preserves the local consistency of the images. Specifi-

cally, we utilize the co-occurrence of texture features across

both domains. A manifold ranking method picks features

of the target domain from the most similar subjects in the

source domain. Once the correspondence between images

in different domains is established, we directly work on a

whole image representation that intrinsically respects local

neighborhoods. Furthermore, a mapping function is learned

that links the representations between the two modalities in-

volved. We call the proposed method WEakly-supErvised

joiNt convolutIonal sparsE coding (WEENIE), and perform

extensive experiments to verify its performance.

The main contributions of this paper are as follows: 1)

This is the first attempt to jointly solve the SR and CMS

problems in 3D medical imaging using weakly-supervised

joint convolutional sparse coding; 2) To exploit unpaired

images from different domains during the learning phase,

a hetero-domain image alignment term is proposed, which

allows identifying correspondences across source and target

domains and is invariant to pose transformations; 3) To map

LR and HR cross-modality image pairs, joint learning based

on convolutional sparse coding is proposed that includes a

maximum mean discrepancy term; 4) Finally, extensive ex-

perimental results show that the proposed model yields bet-

ter performance than state-of-the-art methods in both recon-

struction error and visual quality assessment measures.

2. Related Work
With the goal to transfer the modality information from

the source domain to the target domain, recent devel-

opments in CMS, such as texture synthesis [6, 10, 13],

face photo-sketch synthesis [9, 36], and multi-modal re-

trieval [23, 29], have shown promising results. In this pa-

per, we focus on the problems of image super-resolution and

cross-modality synthesis, so only review related methods on

these two aspects.

Image Super-Resolution: The purpose of image SR

is to reconstruct an HR image from its LR counter-

part. According to the image priors, image SR methods

can be grouped into two main categories: interpolation-

based, external or internal data driven learning methods.

Interpolation-based SR works, including the classic bilin-

ear [21], bicubic [20], and some follow-up methods [28,

41], interpolate much denser HR grids by the weighted

average of the local neighbors. Most modern image SR

methods have shifted from interpolation to learning based.

These methods focus on learning a compact dictionary or

manifold space to relate LR/HR image pairs, and presume

that the lost high-frequency (HF) details of LR images can

be predicted by learning from either external datasets or

internal self-similarity. The external data driven SR ap-

proaches [3, 7, 38] exploit a mapping relationship between

LR and HR image pairs from a specified external dataset.

In the pioneer work of Freeman et al. [7], the NN of an LR

patch is found, with the corresponding HR patch, and used

for estimating HF details in a Markov network. Chang et

al. [3] projected multiple NNs of the local geometry from

the LR feature space onto the HR feature space to esti-

mate the HR embedding. Furthermore, sparse coding-based

methods [27, 38] were explored to generate a pair of dictio-

naries for LR and HR patch pairs to address the image SR

problem. Wang et al. [35] and Huang et al. [14] further

suggested modeling the relationship between LR and HR

patches in the feature space to relax the strong constraint.

Recently, an efficient CNN based approach was proposed

in [5], which directly learned an end-to-end mapping be-

tween LR and HR images to perform complex nonlinear

regression tasks. For internal dataset driven SR methods,

this can be built using the similarity searching [25] and/or

scale-space pyramid of the given image itself [15].

Cross-Modality Synthesis: In parallel, various CMS

methods have been proposed for synthesizing unavailable

modality data from available source images, especially in

the medical imaging community [26, 33, 34]. One of the

well-established modality transformation approaches is the

example-based learning method generated by Freeman et

al. [8]. Given a patch of a test image, several NNs with

similar properties are picked from the source image space to

reconstruct the target one using Markov random fields. Roy

et al. [26] used sparse coding for desirable MR contrast syn-

thesis assuming that cross-modality patch pairs have same

representations and can be directly used for training dictio-

naries to estimate the contrast of the target modality. Sim-
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Figure 1. Flowchart of the proposed method (WEENIE) for simultaneous SR and cross-modality synthesis.

ilar work was also used in [17]. In [1], a canonical cor-

relation analysis-based approach was proposed to yield a

feature space that can get underlying common structures of

co-registered data for better correlation of dictionary pairs.

More recently, a location-sensitive deep network [33] has

been put forward to explicitly utilize the voxel image co-

ordinates by incorporating image intensities and spatial in-

formation into a deep network for synthesizing purposes.

Gatys et al. [10] introduced a CNN algorithm of artistic

style, that new images can be generated by performing

a pre-image search in high-level image content to match

generic feature representations of example images. In addi-

tion to the aforementioned methods, most CMS algorithms

rely on the strictly registered pairs to train models. As ar-

gued in [34], it would be preferable to use an unsupervised

approach to deal with input data instead of ensuring data to

be coupled invariably.

3. Weakly-Supervised Joint Convolutional

Sparse Coding

3.1. Preliminaries

Convolutional Sparse Coding (CSC) was introduced in

the context of modeling receptive fields preciously, and later

generalized to image processing, in which the representa-

tion of an entire image is computed by the sum of a set

convolutions with dictionary filters. The goal of CSC is to

remedy the shortcoming of conventional patch-based sparse

coding methods by removing shift variations for consistent

approximation of local neighbors on whole images. Con-

cretely, given the vectorized image x, the problem of gen-

erating a set of vectorized filters for sparse feature maps is

solved by minimizing the objective function that combines

the squared reconstruction error and the l1-norm penalty on

the representations:

argmin
f ,z

1

2

∥

∥

∥

∥

∥

x−
K
∑

k=1

fk ∗ zk

∥

∥

∥

∥

∥

2

2

+ λ

K
∑

k=1

‖zk‖1

s.t. ‖fk‖22 ≤ 1 ∀k = {1, ...,K} ,

(1)

where x is an m × n image in vector form, fk refers to the

k-th d× d filter in vector form, zk is the sparse feature map

corresponding to fk with size (m+ d− 1) × (n+ d− 1)

to approximate x, λ controls the l1 penalty, and ∗ de-

notes the 2D convolution operator. f =
[

fT1 , ..., fTK
]T

and

z =
[

zT1 , ..., z
T
K

]T
are K filters and feature maps stacked

as the single column vector, respectively. Here, the inequal-

ity constraint on each column of vectorized fk prevents the

filter from absorbing all the energy of the system.

Similar to the original sparse coding problem, Zeiler et

al. [39] proposed to solve the CSC in Eq. (1) through alter-

natively optimizing one variable while fixing the other one

in the spatial domain. Advances in recent fast convolutional

sparse coding (FCSC) [2] have shown that feature learn-

ing can be efficiently and explicitly solved by incorporating

CSC within an alternating direction method of multipliers

(ADMMs) framework in the Fourier domain.

3.2. Problem Formulation

The simultaneous SR and cross-modality synthesis prob-

lem can be formulated as: given a three-dimensional LR

image X of modality M1, the task is to infer from X a

target 3D image Y that is as similar as possible to the

HR ground truth of desirable modality M2. Suppose that

we are given a group of LR images of modality M1, i.e.,

X = [X1, ...,XP ] ∈ R
m×n×t×P , and a set of HR images

of modalityM2, i.e., Y = [Y2, ...,YQ] ∈ R
m×n×t×Q. P

and Q are the numbers of samples in the training sets, and

m, n denote the dimensions of axial view of each image,

while t is the size of the image along the z-axis. Moreover,

in both training sets, subjects of source modality M1 are

mostly different from target modality M2, that is, we are

working with a small number of paired data while most of

them are unpaired. Therefore, the difficulties of this prob-

lem vary with hetero-domain images, e.g., resolutions and

modalities, and how well the two domains fit. To bridge im-

age appearances across heterogeneous representations, we

propose a method for automatically establishing a one-to-

one correlation between data in X and Y firstly, then em-

ploy the aligned data to jointly learn a pair of filters, while

assuming that there exists a mapping function F (·) for

associating and predicting cross-modality data in the pro-

jected common feature space. Particularly, we want to syn-

thesize MRI of human brains in this paper. An overview of

our proposed work is depicted in Fig. 1.

Notation: For simplicity, we denote matrices and 3D im-
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ages as upper-case bold (e.g., image X), vectors and vec-

torized 2D images as lower-case bold (e.g., filter f ), and

scalars as lower-case (e.g., the number of filter k). Image

with modality M1 called source modality belongs to the

source domain, and with modalityM2 called target modal-

ity belongs to the target domain.

3.3. HeteroDomain Image Alignment

The design of an alignment A (·) from X to Y requires

a combination of extracting common components from

LR/HR images and some measures of correlation between

both modalities. In SR literature, common components are

usually accomplished by extracting high-frequency (HF)

edges and texture features from LR/HR images, respec-

tively [3, 38]. In this paper, we adopt first- and second-

order derivatives involving horizontal and vertical gradi-

ents as the features for LR images by Xhf
p = G ∗ Xp.

G =

[

G1
1, G

2
1

G1
2, G

2
2

]

, and each gradient G has the same length

of z-axis as input image while g1
1 = [−1, 0, 1], g2

1 = g1
1

T
,

and g1
2 = [−2,−1, 0, 1, 2], g2

2 = g1
2

T
. For HR images,

HF features are obtained through directly subtracting mean

value, i.e., Yhf
p = Yp −mean(Yp). To define the hetero-

domain image alignment term A (·), we assume that the in-

trinsic structures of brain MRI of a subject across image

modalities are also similar in the HF space since images of

different modalities are more likely to be described differ-

ently by features. When HF features of both domains are

obtained, it is possible to build a way for cross-modality

data alignment (in particular, a unilateral cross-modality

matching can be thought as a special case in [16]). To this

end, we define a subject-specific transformation matrix A as

A =







K(Xhf
1 ,Yhf

1 ) · · · K(Xhf
1 ,Yhf

Q )
...

. . .
...

K(Xhf
P ,Yhf

1 ) · · · K(Xhf
P ,Yhf

Q )






, (2)

where K(Xhf
p ,Yhf

q ) is used for measuring the distances

between each pair of HF data in X and Y computed by the

Gaussian kernel as

K(Xhf
p ,Yhf

q ) =
1

(
√
2πσ)3

e−
|Xhf

p −Y
hf
q |2

2σ2 , (3)

where σ determines the width of Gaussian kernel. In or-

der to establish a one-to-one correspondence across differ-

ent domains, for each element ofX , the most relevant image

with maximum K from Y is preserved while discarding the

rest of the elements:

A =







max (K (1, :))
. . .

max (K (P, :))






, (4)

where max (K (p, :)) denotes the maximum element of the

p-th row of A. We further set max (K (p, :)) to 1, and

all the blank elements to 0. Therefore, A is a binary ma-

trix. Since A is calculated in a subject-specific manner,

each subject of X can only be connected to one target of

the most similar brain structures. Hence, images under a

hetero-domain can be treated as being the registered pairs,

i.e., Pi = {Xi,Yi}Pi=1
, by constructing virtual correspon-

dence: A(X ,Y) =
∥

∥Xhf − AYhf
∥

∥

2

2
.

3.4. Objective Function

For image modality transformation, coupled sparse cod-

ing [18, 38] has important advantages, such as reliability

of correspondence dictionary pair learning and less mem-

ory cost. However, the arbitrarily aligned bases related to

the small part of images may lead to shifted versions of the

same structures or inconsistent representations based on the

overlapped patches. CSC [39] was then proposed to gener-

ate a global decomposition framework based on the whole

image for solving the above problem. In spired by CSC and

the benefits of coupled sparsity [18], we introduce a joint

convolutional sparse coding method in a weakly-supervised

setting for hetero-domain images. The small number of

originally registered pairs are used to carry the intrinsic re-

lationship between X and Y while the majority of unpaired

data are introduced to exploit and enhance the diversity of

the original learning system.

Assume that the aforementioned alignment approach

leads to a perfect correspondence across X and Y , such

that each aligned pair of images possesses approximately

identical (or the same for co-registered data) information.

Moreover, to facilitate image mappings in a joint manner,

we require sparse feature maps of each pair of correspond-

ing source and target images to be associated. That is, sup-

pose that there exists a mapping function F (·), where the

feature maps of LRM1 modality images can be converted

to their HR M2 versions. Given X and Y , we propose to

learn a pair of filters with corresponding feature maps and a

mapping function together with the aligned term by

arg min
Fx,Fy,Zx,Zy,W

1

2

∥

∥

∥

∥

∥

X−
K
∑

k=1

Fx
k ∗ Zx

k

∥

∥

∥

∥

∥

2

F

+
1

2

∥

∥

∥

∥

∥

Y −
K
∑

k=1

F
y
k ∗ Z

y
k

∥

∥

∥

∥

∥

2

F

+ β
K
∑

k=1

‖Zy
k −WkZ

x
k‖

2

F

+λ

(

K
∑

k=1

‖Zx
k‖1 +

K
∑

k=1

‖Zy
k‖1

)

+ γ
K
∑

k=1

‖Wk‖2F

+
∥

∥Xhf − AYhf
∥

∥

2

2
s.t. ‖fxk ‖

2

2
≤ 1, ‖fyk ‖

2

2
≤ 1 ∀k,

(5)

where Zx
k and Z

y
k are the k-th sparse feature maps that es-

timate the aligned data terms X and Y when convolved
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with the k-th filters Fx
k and F

y
k of a fixed spatial support,

∀k = {1, ...,K}. Concretely, X denotes the aligned im-

age from P with LR and M1 modality; Y denotes the

aligned image from P containing HR and M2 modality.

A convolution operation is represented as ∗ operator, and

‖·‖F denotes a Frobenius norm chosen to induce the con-

volutional least squares approximate solution. Fx and Fy

are adopted to list all K filters, while Zx and Zy repre-

sent corresponding K feature maps for source and target

domains, respectively. A (X ,Y) is combined to enforce the

correspondence for unpaired auxiliary subjects. The map-

ping function F (Zx
k,Wk) = WkZ

x
k is modeled as a linear

projection Wk of Zx
k and Z

y
k by solving a set of the least

squares problem (i.e., minW
∑K

k=1
‖Zy

k −WkZ
x
k‖

2

F
). Pa-

rameters λ, β and γ balance sparsity, feature representation

and association mapping.

It is worth noting that Pi = {Xi,Yi}may not be perfect

since HF feature alignment in Eq. (4) is not good enough

for very heterogeneous domain adaptation by matching the

first- and second-order derivatives of X and means of Y ,

which leads to suboptimal filter pairs and inaccurate re-

sults. To overcome such a problem, we need additional con-

straints to ensure the correctness of registered image pairs

produced by the alignment. Generally, when feature dif-

ference is substantially large, there always exists some sub-

jects of the source domain that are not particularly related

to target ones even in the HF subspace. Thus, a registered

subject pairs’ divergence assessment procedure should be

cooperated with the aforementioned joint learning model to

handle this difficult setting. Recent works [4, 22, 42] have

performed instance/domain adaptation via measuring data

distribution divergence using the maximum mean discrep-

ancy (MMD) criterion. We follow such an idea and em-

ploy the empirical MMD as the nonparametric distribution

measure to handle the hetero-domain image pair mismatch

problem in the reproducing kernel Hilbert space (RKHS).

This is done by minimizing the difference between distri-

butions of aligned subjects while keeping dissimilar ’regis-

tered’ pairs (i.e., discrepant distributions) apart in the sparse

feature map space:

1

P

P
∑

i=1

K
∑

k=1

‖Wk(i)Z
x
k(i)− Z

y
k(i)‖

2

H

=

K
∑

k=1

(WkZ
x
k)

TMiZ
y
k = Tr(

K
∑

k=1

Z
y
kM(WkZ

x
k)

T ),

(6)

where H indicates RKHS space, Zx
k(i) and Z

y
k(i) are the

paired sparse feature maps for Pi = {Xi,Yi} with i =
1, ...P , Mi is the i-th element of M while M denotes the

MMD matrix and can be computed as follows

Mi =

{

1

P
, Zx

k(i),Z
y
k(i) ∈ Pi

− 1

P 2 , otherwise.
, (7)

By regularizing Eq. (5) with Eq. (6), filter pairs Fx
k and

F
y
k are refined and the distributions of real aligned subject

pairs are drawn close under the new feature maps. Putting

the above together, we obtain the objective function:

arg min
Fx,Fy,Zx,Zy,W

1

2

∥

∥

∥

∥

∥

X−
K
∑

k=1

Fx
k ∗ Zx

k

∥

∥

∥

∥

∥

2

F

+ γ

K
∑

k=1

‖Wk‖2F

+
1

2

∥

∥

∥

∥

∥

Y −
K
∑

k=1

F
y
k ∗ Z

y
k

∥

∥

∥

∥

∥

2

F

+ β
K
∑

k=1

‖Zy
k −WkZ

x
k‖

2

F

+λ

(

K
∑

k=1

‖Zx
k‖1 +

K
∑

k=1

‖Zy
k‖1

)

+ Tr(
K
∑

k=1

Z
y
kM(WkZ

x
k)

T )

+
∥

∥Xhf − AYhf
∥

∥

2

2
s.t. ‖fxk ‖22 ≤ 1, ‖fyk ‖

2

2
≤ 1 ∀k.

(8)

3.5. Optimization

We propose a three-step optimization strategy for effi-

ciently tackling the objective function in Eq. (8) (termed

(WEENIE), summarized in Algorithm 1) considering that

such multi-variables and unified framework cannot be

jointly convex to F, Z, and W. Instead, it is convex with

respect to each of them while fixing the remaining variables.

3.5.1 Computing Convolutional Sparse Coding

Optimization involving only sparse feature maps Zx and

Zy is solved by initialization of filters Fx, Fy and map-

ping function W (W is initialized as an identity matrix).

Besides the original CSC formulation, we have additional

terms associated with data alignment and divergence reduc-

ing in the common feature space. Eq. (8) is firstly converted

to two regularized sub-CSC problems. Unfortunately, each

of the problems constrained with an l1 penalty term cannot

be directly solved, which is not rotation invariant. Recent

approaches [2, 12] have been proposed to work around this

problem on the theoretical derivation by introducing two

auxiliary variables U and S to enforce the constraint in-

herent in the splitting. To facilitate component-wise multi-

plications, we exploit the convolution subproblem [2] in the

Fourier domain2 derived within the ADMMs framework:

min
Zx

1

2

∥

∥

∥

∥

∥

X̂−
K
∑

k=1

F̂x
k ⊙ Ẑx

k

∥

∥

∥

∥

∥

2

F

+
∥

∥Xhf − AYhf
∥

∥

2

2

+Tr(

K
∑

k=1

Ẑ
y
kM(WkẐ

x
k)

T ) + β

K
∑

k=1

∥

∥

∥
Ẑ

y
k −WkẐ

x
k

∥

∥

∥

2

F

+λ

K
∑

k=1

‖Ux
k‖1 s.t. ‖Sx

k‖22 ≤ 1,Sx
k = ΦT F̂x

k,U
x
k = Zx

k ∀k,

2Fast Fourier transform (FFT) is utilized to solve the relevant linear

system and demonstrated substantially better asymptotic performance than

processed in the spatial domain.
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min
Zy

1

2

∥

∥

∥

∥

∥

Ŷ −
K
∑

k=1

F̂
y
k ⊙ Ẑ

y
k

∥

∥

∥

∥

∥

2

F

+
∥

∥Xhf − AYhf
∥

∥

2

2

+Tr(

K
∑

k=1

Ẑ
y
kM(WkẐ

x
k)

T ) + β

K
∑

k=1

∥

∥

∥
Ẑx

k −WkẐ
y
k

∥

∥

∥

2

F

+λ
K
∑

k=1

‖Uy
k‖1 s.t. ‖Sy

k‖
2

2
≤ 1,Sy

k = ΦT F̂
y
k,U

y
k = Z

y
k ∀k,

(9)

whereˆapplied to any symbol indicates the discrete Fourier

transform (DFT), for example X̂← f(X), and f(·) denotes

the Fourier transform operator. ⊙ represents the Hadamard

product (i.e., component-wise product), ΦT is the inverse

DFT matrix, and s projects a filter onto a small spatial sup-

port. By utilizing slack variables Ux
k , U

y
k and Sx

k , S
y
k, the

loss function can be treated as the sum of multiple subprob-

lems and with the addition of equality constraints.

3.5.2 Training Filters

Similar to theoretical CSC methods, we alternatively opti-

mize the convolutional least squares term for the basis func-

tion pairs Fx and Fy followed by an l1-regularized least

squares term for the corresponding sparse feature maps Zx

and Zy . Like the subproblem of solving feature maps, filter

pairs can be learned in a similar fashion. With Ẑx
k , Ẑ

y
k and

Wk fixed, we can update the corresponding filter pairs F̂x
k ,

and F̂
y
k as

min
Fx,Fy

1

2

∥

∥

∥

∥

∥

X̂−
K
∑

k=1

F̂x
k ⊙ Ẑx

k

∥

∥

∥

∥

∥

2

F

+
1

2

∥

∥

∥

∥

∥

Ŷ −
K
∑

k=1

F̂
y
k ⊙ Ẑ

y
k

∥

∥

∥

∥

∥

2

F

s.t. ‖fxk ‖22 ≤ 1, ‖fyk ‖
2

2
≤ 1 ∀k,

(10)

The optimization with respect to Eq. (10) can be solved

by a one-by-one update strategy [35] through an augmented

Lagrangian method [2].

3.5.3 Learning Mapping Function

Finally, Wk can be learned by fixing Fx
k , F

y
k, and Zx

k , Z
y
k:

min
W

K
∑

k=1

‖Zy
k −WkZ

x
k‖

2

F
+

(

γ

β

) K
∑

k=1

‖Wk‖2F

+Tr(

K
∑

k=1

Z
y
kM(WkZ

x
k)

T ),

(11)

where Eq. (11) is a ridge regression problem with a regular-

ization term. We simplify the regularization term R(tr) =
Tr(

∑K
k=1

Z
y
kM(WkZ

x
k)

T ) and analytically derive the so-

lution as W = (Zy
kZ

x
k
T −R(tr))(Zx

kZ
x
k
T + γ

β
I)−1, where

I is an identity matrix.

Algorithm 1: WEENIE Algorithm

Input: Training data X and Y, parameters λ, γ, σ.

1 Initialize Fx
0 , F

y
0 , Zx

0 , Z
y
0 , Ux

0 , U
y
0 , Sx

0 , S
y
0 , W0.

2 Perform FFT Zx
0 → Ẑx

0 , Z
y
0 → Ẑ

y
0 , Fx

0 → F̂x
0 ,

F
y
0 → F̂

y
0 , Ux

0 → Ûx
0 , U

y
0 → Û

y
0 , Sx

0 → Ŝx
0 ,

S
y
0 → Ŝ

y
0 .

3 Let Ẑ
y
0 ←WẐx

0 .

4 while not converged do

5 Fix other variables, update Ẑx
k+1

, Ẑ
y
k+1

and Ûx
k+1

,

Û
y
k+1

by (9).

6 Fix other variables, update F̂x
k+1

, F̂
y
k+1

and Ŝx
k+1

,

Ŝ
y
k+1

by (10) with Ẑx
k+1

, Ẑ
y
k+1

, Ûx
k+1

, Û
y
k+1

and

Wk.

7 Fix other variables, update Wk by (11) with

Ẑx
k+1

, Ẑ
y
k+1

, Ûx
k+1

, Û
y
k+1

, F̂x
k+1

, F̂
y
k+1

, and

Ŝx
k+1

, Ŝ
y
k+1

.

8 Inverse FFT F̂x
k+1
→ Fx

k+1
, F̂

y
k+1
→ F

y
k+1

.

9 end

Output: Fx, Fy , W.

3.6. Synthesis

Once the training stage is completed, generating a set

of filter pairs Fx, Fy and the mapping W, for a given test

image Xt in domain X , we can synthesize its desirable HR

version of style Y . This is done by computing the sparse

feature maps Zt of Xt with respect to a set of filters Fx,

and associating Zt to the expected feature maps Ẑt via W,

i.e., Ẑt ≈WZt. Therefore, the desirable HRM2 modality

image is then obtained by the sum of K converted sparse

feature maps Ẑt
k convolved with desired filters F

y
k (termed

(SRCMS) summarized in Algorithm 2):

Yt =

K
∑

k=1

F
y
kWkZ

t
k =

K
∑

k=1

F
y
kẐ

t
k. (12)

Algorithm 2: SRCMS

Input: Test image Xt, filter pairs Fx and Fy ,

mapping W.

1 Initialize Zt
0.

2 Let Ẑt
0 ←WZt

0, Yt
0 ← FyWZt

0.

3 while not converged do

4 Update Zt
k+1

and Ẑt
k+1

by (9) with Yt
k, and W.

5 Update Yt
k+1
←WẐt

k+1
.

6 end

7 Synthesize Yt by (12).

Output: Synthesized image Yt.
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Ground Truth (PSNR, SSIM) ScSR (31.60, 0.9354) Zeyde (33.68, 0.9544) ANR (34.16, 0.9569)

NE+LLE (34.12, 0.9555) A+ (34.70, 0.9599) CSC-SR (34.75, 0.9601) WEENIE (35.34, 0.9632)

Figure 2. Example SR results and corresponding PSNRs, SSIMs

(zoom in for details).

4. Experimental Results

We conduct the experiments using two datasets, i.e.,

IXI3 and NAMIC brain mutlimodality4 datasets. Follow-

ing [11, 35, 38], LR counterparts are directly down-sampled

from their HR ground truths with rate 1/2 by bicubic inter-

polation, boundaries are padded (with eight pixels) to avoid

the boundary effect of Fourier domain implementation. The

regularization parameters σ, λ, β, and γ are empirically set

to be 1, 0.05, 0.1, 0.15, respectively. Optimization vari-

ables F, S, Z, and U are randomly initialized with Gaus-

sian noise considering [2]. Generally, a larger number of

filters leads to better results. To balance between compu-

tation complexity and result quality, we learn 800 filters

following [11]. In our experiments, we perform a more

challenging division by applying half of the dataset (pro-

cessed to be weakly co-registered data) for training while

the remaining for testing. To the best of our knowledge,

there is no previous work specially designed for SR and

cross-modality synthesis simultaneously by learning from

the weakly-supervised data. Thus, we extend the range of

existing works as the baselines for fair comparison, which

can be divided into two categories as follows: (1) brain MRI

SR; (2) SR and cross-modality synthesis (one-by-one strat-

egy in comparison models). For the evaluation criteria, we

adopt the widely used PSNR and SSIM [37] indices to ob-

jectively assess the quality of the synthesized images.

Experimental Data: The IXI dataset consists of 578

256 × 256 × n MR healthy subjects collected at three hos-

pitals with different mechanisms (i.e., Philips 3T system,

Philips 1.5T system, and GE 3T system). Here, we uti-

lize 180 Proton Density-weighted (PD-w) MRI subjects for

image SR, while applying both PD-w and registered T2-

weighted (T2-w) MRI scans of all subjects for major SR-

CMS. Further, we conduct SRCMS experiments on the pro-

cessed NAMIC dataset, which consists of 20 128×128×m
subjects in both T1-weighted (T1-w) and T2-w modalities.

As mentioned, we leave half of the dataset out for cross-

validation. We randomly select 30 registered subject pairs

3http://brain-development.org/ixi-dataset/
4http://hdl.handle.net/1926/1687

Figure 3. Performance comparisons of different SR approaches.

Metric(avg.) ScSR [38] Zeyde [40] ANR [31] NE+LLE [3] A+ [32] CSC-SR [11] WEENIE

PSNR(dB) 31.63 33.68 34.09 34.00 34.55 34.60 35.13

SSIM 0.9654 0.9623 0.9433 0.9623 0.9591 0.9604 0.9681

Table 1. Quantitative evaluation (PSNR and SSIM): WEENIE vs.

other SR methods on 95 subjects of the IXI dataset.

for IXI, and 3 registered subject pairs for NAMIC, respec-

tively, from the half of the corresponding dataset for train-

ing purposes, and process the reminding training data to be

unpaired. Particularly, all the existing methods with respect

to cross-modality synthesis in brain imaging request a pre-

processing, i.e., skull stripping and/or bias corrections, as

done in [34, 26]. We follow such processes and further val-

idate whether pre-processing (especially skull stripping) is

always helpful for brain image synthesis.

4.1. Brain MRI SuperResolution

For the problem of image SR, we focus on the PD-w sub-

jects of the IXI dataset to compare the proposed WEENIE

model with several state-of-the-art SR approaches: sparse

coding-based SR method (ScSR) [38], anchored neighbor-

hood regression method (ANR) [31], neighbor embedding

+ locally linear embedding method (NE+LLE) [3], Zeyde’s

method [40], convolutional sparse coding-based SR method

(CSC-SR) [11], and adjusted anchored neighborhood re-

gression method (A+) [32]. We perform image SR with

scaling factor 2, and show visual results on an example slice

in Fig. 2. The quantitative results for different methods are

shown in Fig. 3, and the average PSNR and SSIM for all

95 test subjects are listed in Table 1. The proposed method,

in the case of brain image SR, obtains the best PSNR and

SSIM values. The improvements show that the MMD reg-

ularized joint learning property on CSC has more influence

than the classic sparse coding-based methods as well as the

state-of-the-arts. It states that using MMD combined with

the joint CSC indeed improves the representation power of

the learned filter pairs.

4.2. Simultaneous SuperResolution and Cross
Modality Synthesis

To comprehensively test the robustness of the proposed

WEENIE method, we perform SRCMS on both datasets

involving six groups of experiments: (1) synthesizing SR

T2-w image from LR PD-w acquisition and (2) vice versa;

(3) generating SR T2-w image from LR PD-w input based

on pre-processed data (i.e., skull strapping and bias correc-
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Source with pre-
processing

Source Target ground truth with 
pre-processing

Target ground truth MIMECS with pre-
processing

WEENIE with pre-
processing + reg only

WEENIE with pre-
processing

WEENIE

T
2-w

 ->
 P

D
-w

P
D

-w
 ->

 T
2-w

Figure 4. Visual comparison of synthesized results using different methods.

Metric(avg.)

IXI

PD− >T2 T2− >PD PD− >T2+PRE T2− >PD+PRE

WEENIE MIMECS WEENIE(reg) WEENIE MIMECS WEENIE(reg) WEENIE

PSNR(dB) 37.77 31.77 30.60 30.93 33.43 29.85 30.29 31.00

SSIM 0.8634 0.8575 0.7944 0.8004 0.8552 0.7503 0.7612 0.8595

Metric(avg.)

NAMIC

T1− >T2 T2− >T1

MIMECS Ve-US Ve-S WEENIE MIMECS Ve-US Ve-S WEENIE

PSNR(dB) 24.36 26.51 27.14 27.30 27.26 27.81 29.04 30.35

SSIM 0.8771 0.8874 0.8934 0.8983 0.9166 0.9130 0.9173 0.9270

Table 2. Quantitative evaluation (PSNR and SSIM): WEENIE vs. other synthesis methods on IXI and NAMIC datasets.

Figure 5. SRCMS results: WEENIE vs. MIMECS on IXI dataset.

Figure 6. SRCMS: WEENIE vs. MIMECS on NAMIC dataset.

tions) and (4) vice versa; (5) synthesizing SR T1-w image

from LR T2-w subject and (6) vice versa. The first four

sets of experiments are conducted on the IXI dataset while

the last two cases are evaluated on the NAMIC dataset. The

state-of-the-art synthesis methods include Vemulapalli’s su-

pervised approach (V-S) [34], Vemulapalli’s unsupervised

approach (V-US) [34] and MR image exampled-based con-

trast synthesis (MIMECS) [26] approach. However, Vem-

ulapalli’s methods cannot be applied for our problem, be-

cause they only contain the cross-modality synthesis stage

used in the NAMIC dataset. Original data (without degra-

dation processing) are used in all Vemulapallis methods.

MIMECS takes image SR into mind and adopts two inde-

pendent steps (i.e. synthesis+SR) to solve the problem. We

compare our results on only using registered image pairs

denoted by WEENIE(reg) (that can directly substantiate the

benefits of involving unpaired data) and the results using

all training images with/without preprocessing for the pro-

posed method against MIMECS, V-US and V-S in above

six cases and demonstrate examples in Fig. 4 for visual in-

spection. The advantage of our method over the MIMECS

shows, e.g., in white matter structures, as well as in the over-

all intensity profile. We show the quantitative results in Fig.

5, and Fig. 6, and summarize the averaged values in Table

2, respectively. It can be seen that the performance of our

algorithm is consistent across two whole datasets, reaching

the best PSNR and SSIM for almost all subjects.

5. Conclusion

In this paper, we proposed a novel weakly-supervised

joint convolutional sparse coding (WEENIE) method for

simultaneous super-resolution and cross-modality synthe-

sis (SRCMS) in 3D MRI. Different from conventional joint

learning approaches based on sparse representation in su-

pervised setting, WEENIE only requires a small set of reg-

istered image pairs and automatically aligns the correspon-

dence for auxiliary unpaired images to span the diversities

of the original learning system. By means of the designed

hetero-domain alignment term, a set of filter pairs and the

mapping function were jointly optimized in a common fea-

ture space. Furthermore, we integrated our model with a

divergence minimization term to enhance robustness. With

the benefit of consistency prior, WEENIE directly employs

the whole image, which naturally captures the correlation

between local neighborhoods. As a result, the proposed

method can be applied to both brain image SR and SR-

CMS problems. Extensive results showed that WEENIE

can achieve superior performance against state-of-the-art

methods.
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