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Simulation and Synthesis in Medical Imaging
Alejandro F. Frangi, Fellow, IEEE, Sotirios A. Tsaftaris, Member, IEEE, and Jerry L. Prince, Fellow, IEEE

(Invited Editorial)

Abstract—This editorial introduces the Special Issue on Simu-
lation and Synthesis in Medical Imaging. In this editorial, we pro-
vide working definitions to so-far ambiguous terms of simulation
and synthesis in medical imaging. We also briefly discuss the syn-
ergistic importance of mechanistic and phenomenological models
of medical image generation. Finally, we provide an overview of
the twelve papers that were accepted covering both mechanistic
(5) and phenomenological (7) medical image generation. This rich
selection of papers covers applications in cardiology, retinopathy,
histopathology, neurosciences, and oncology. It also covers all
mainstream diagnostic medical imaging modalities.

Index Terms—Simulation, Synthesis, Modelling, Imaging.

I. INTRODUCTION

THE medical image community has always been fasci-

nated by the possibility to create simulated or synthetic

data upon which to understand, develop, assess, and validate

image analysis and reconstruction algorithms. From very ba-

sic digital phantoms all the way to very realistic in silico

models of medical imaging and physiology, our community

has progressed enormously in the available techniques and

their applications. For instance, mechanistic models (imaging

simulations) emulating the geometrical and physical aspects

of the acquisition process have been used now for a long

time. Advances on computational anatomy and physiology

have further enhanced the potential of such simulation plat-

forms by incorporating structural and functional realism to the

simulations that can now account for complex spatio-temporal

dynamics due to changes in anatomy, physiology, disease

progression, patient and organ motion, etc. More recently,

developments in machine learning together with the growing

availability of ever larger scale databases have provided the

theoretical underpinning and the practical data access to de-

velop phenomenological models (image synthesis) that learn

models directly from data associations across subjects, time,

modalities, resolutions, etc. These techniques may provide

ways to address challenging tasks in medical image analysis

like cross-cohort normalization, image imputation in the pres-

ence of missing or corrupted data, transfer of knowledge across

imaging modalities, views or domains. To this date, however,

these two main research avenues (simulation and synthesis) re-

main independent efforts despite sharing common challenges.

This special issue provides a birds’ eye overview the state-

of-the-art in methods and algorithms at the bleeding edge
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of synthesis and simulation in/for medical imaging research.

We hope this collection will stimulate new ideas leading to

theoretical links, practical synergies, and best practices in

evaluation and assessment common to these two research

directions. We solicited contributions from cross-disciplinary

teams with expertise, among others, on machine learning,

statistical modelling, information theory, computational me-

chanics, computational physics, computer graphics, applied

mathematics, etc.

II. CONTEXT AND DEFINITIONS

It is helpful at this point to define the concepts of simulation

and synthesis in the context of this special issue, that is,

in medical imaging. We noted that while the concept of

simulation is, in general, very ample and unspecific, on the

other side, there was virtually no formal definition for image

synthesis.

The concepts of image simulation and synthesis can be

ambiguous (or even exchangeable) if one attends to the

definitions of these terms by authoritative dictionaries like

Oxford (OED) or Merriam-Webster (MWD):

Simulation [OED] n • 3. The technique of imitating the

behaviour of some situation or process (whether economic,

military, mechanical, etc.) by means of a suitably analogous

situation or apparatus, esp. for the purpose of study or

personnel training.

Simulation [MWD] n • 3a: the imitative representation of

the functioning of one system or process by means of the

functioning of another a computer simulation of an industrial

process; b: examination of a problem often not subject to

direct experimentation by means of a simulating device.

Synthesis [OED] n • 1. Logic, Philos., etc.: a. The action of

proceeding in thought from causes to effects, or from laws or

principles to their consequences. (Opposed to analysis n. 3).

Synthesis [MWD] n • 1 a : the composition or combination of

parts or elements so as to form a whole.

The concept of synthesis currently in use in computer vision

and medical image analysis contrasts strikingly as almost

opposite to that traditionally used in philosophy or science1. In

computer graphics, realistic image synthesis ”is the process of

creating images that are, in some way, accurate representations

1The Oxford English Dictionary provides contextual quotes that illustrate
this contrast. For instance, from T. Hobbes in Elements Philos. iii. xx. 230,
1656: ”Synthesis is Ratiocination from the first causes of the Construction,
continued through all the middle causes till we come to the thing it selfe
which is constructed or generated.”, and from I. Newton in Opticks (ed. 2) iii.
i. 380, 1718: ”The Synthesis consists in assuming the Causes discover’d, and
establish’d as Principles, and by them explaining the Phnomena proceeding
from them.” Source: http://www.oed.com/view/Entry/196574.

http://www.oed.com/view/Entry/196574
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of a real scene. Often, but not always, the images are meant

to be viewed by a human observer. Therefore, the accuracy

is with respect to the human visual system. Sometimes the

image needs to be predictive, guaranteeing that the viewer

would have the same visual experience if they were actually

in the scene. In some cases the image need only be plau-

sible, the viewer is convinced that the scene could actually

be real.” 2 While medical image computing is interested in

visually plausible results, one is usually also interested in the

quantitative assessment of the synthesised images or, at least,

in figures of merit that are meaningful for the intended task

(e.g. diagnostics, planning, prognosis, et.c). In the sequel, we

attempt to provide some distinction and definition between the

concepts of image synthesis and image simulations based on

the literature and praxis of our medical imaging community.

At one level, in using the concepts of simulation and

synthesis, our community usually makes a fundamental onto-

logical distinction best described by referring to mechanistic

and phenomenological models, respectively. By simulation, we

usually start of from first principles while in synthesis we start

off with abundant data. We also usually assume behind these

concepts a natural information processing direction: from data

to models, in the case of synthesis; and from models to data,

in the case of simulation. Simulation implies the existence

of an abstraction of the knowledge we possess, usually in

the form of first principles, that is used to derive instances

of that knowledge in an scenario that is fully controlled

by the selection of simulation parameters. Synthesis, on the

contrary, implies the ability to extract or summarise (synthe-

sise) knowledge from a collection of representative examples

from a wider population or phenomenon. This is usually

accomplished through statistical or phenomenological models

unless a mechanistic model is available in which case on is

able to perform data assimilation or parameter identification

resulting in a mechanistic model. Conversely, one is able to

simulate new image (or shape) examples from an image (or

shape) synthesis method but we tend to talk then of generative

models and these are usually phenomenological in nature.

We offer the following two definitions:

(Image) Synthesis [ours] n • The generation of visually

realistic and quantitatively accurate images through learning-

based generative models of phenomenological mature with

application to the problems of interpolation, super resolution,

normalisation, modality propagation, etc.

(Image) Simulation [ours] n • The application of mechanistic

first principles from imaging physics, organ physiology, and/or

their interaction to produce virtual images that are visually

realistic and physically/clinically plausible, and generated

under controlled imaging protocols.

III. MECHANISTIC OR PHENOMENOLOGICAL?

It is beyond the possibilities of this editorial to review the

considerable progress made over the past decades in both

physical models of image formation as well as in machine

learning techniques for image synthesis. This special issue is

2Smits B, https://www.cs.utah.edu/∼bes/graphics/overview

a modern and exciting excerpt of the most recent develop-

ments. We would like, however, to put these two approaches

underpinning these special issue in the wider context of current

trends in science and data science.

There are opportunities and limitations in approaching im-

age generation from a mechanistic or a phenomenological

standpoint, some of epistemological reach. Some people argue

that with increasing availability of big data, computational

resources, and breakthroughs in artificial intelligence, data-

driven phenomenological models will eventually supersede the

need of mechanistic theories 3, while others seriously content

this viewpoint 4. The complexity of image generation process,

the need to model detailed and accurately the geometry and

physics of imaging as well as the variability and uncertainty

associated with anatomical and physiological factors, all seem

to favour those challenging the need or feasibility of gener-

ating truly accurate medical images from first principles. In

Chapter 12 of his book, Helbing 5 presents an interesting

cautionary argument that contrasts with Anderson’s vision of

Big Data (assuming that we no longer will need theory and

science). Fig III shows Helbing’s model for digital growth

in computational resources doubling about every 18 months

(Moore’s law), and data resources doubling about every 12

months (soon every 12 hours!). While these two resources

follow an exponential growth, the complexity of the processes

that these resources help to elucidate or decide on (e.g. para-

metric complexity of the computational methods, ontological

complexity of health data) follow a factorial growth as they

are based on combinatorial combinations and system networks,

respectively. The above implies the problem of ”dark data”, i.e.

the share of data we will not be able to process is increasing

with time. As a consequence, we need to know what data to

process and how, which requires science and understanding of

the underlying mechanisms that relate data and phenomena so

that algorithmic complexity can be tractable.

IV. SPECIAL ISSUE STATISTICS

Twenty-four manuscripts were received for this special

issue. Two were immediately rejected while another ten were

rejected after a revision round. Twelve papers were final

accepted after peer-review covering both mechanistic (5) and

phenomenological (7) modelling and data generation. This

rich selection of papers covers applications in cardiology,

retinopathy, histopathology, neurosciences, and oncology. It

also covers all mainstream diagnostic medical imaging modal-

ities. Two manuscripts were dealt with by Associate Editors

Mehrdad Gangeh and Hayit Greenspan to avoid potential

conflicts of interest. Each paper was reviewed, at least, by

three expert reviewers.

3Anderson C. ”The end of theory: the data deluge makes the sci-
entific method obsolete, Wired, http://archive.wired.com/science/discoveries/
magazine/16-07/pb theory, Jul 23, 2008

4Mazzocchi F. ”Could Big Data be the end of theory in science? A few
remarks on the epistemology of data-driven science”. EMBO Rep. 2015
Oct;16(10):1250-5.

5Helbing D, Thinking Ahead-Essays on Big Data, Digital Revolution, and
Participatory Market Society, Springer, 2015.

https://www.cs.utah.edu/~bes/graphics/overview
http://archive.wired.com/science/ discoveries/magazine/16-07/pb_theory
http://archive.wired.com/science/ discoveries/magazine/16-07/pb_theory
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Fig. 1. Helbing’s model for digital growth where systemic complexity (e.g.
algorithmic parametric complexity and complexity of health data) grows at
a factorial rate compared to the exponential rate of data and computing
resources. Courtesy of D Helbing. Reprinted with permission.

V. SPECIAL ISSUE OVERVIEW

The special issue comprises 12 papers covering both sim-

ulation and synthesis. Simulation papers focus on either gen-

erating computational phantoms of anatomy or physiology

in health and disease, or aim at developing computational

phantoms of image formation. In the first category of sim-

ulation papers, Seagars et al. start off by reviewing what

is arguably one of the most widespread digital phantoms

in computational human anatomy and physiology of the hu-

man thorax. The authors overview the four dimensional (4D)

eXtended CArdiac-Torso (XCAT) series of phantoms, which

cover a vast population of phantoms of varying ages from

newborn to adult, each including parametrised models for

the cardiac and respiratory motions. This paper illustrates

how these phantoms found great use in radiation dosimetry,

radiation therapy, medical device design, and even the security

and defence industry. Abadi et al. extend upon the capabilities

of the XCAT series of computational phantoms, and propose

a detailed lung architecture including airways and pulmonary

vasculature. Eleven XCAT phantoms of varying anatomy

were used to characterize the lung architecture. The XCAT

phantoms were utilized to simulate CT images for validation

against true clinical data. As the number of organs described as

numerical phantoms as XCAT models increases, the potential

use of such models as a tool to virtually evaluate the current

and emerging medical imaging technologies increases. The

paper by Garcı́a et al., the authors consider the challenging

task of evaluating the correlation of the parenchymal patterns

(i.e. local breast density) as provided by mammography with

MRI volume information. Differences in distributions (MRI

versus x-ray) and radical deformation present (due to how

the breast is imaged during mammography and MR) render

this problem also relevant from a registration perspective. The

authors in tackling this challenge, employ a subject-specific

biomechanical model of the breast to assist the MRI volumes

to X-ray mammograms. When converged, a direct projection

of the MR-derived glandular tissue permits the comparison

to the corresponding mammogram. Roque et al. a reaction-

diffusion model of tumour growth. The predicting tumour

growth (based on models) and particularly its response to

therapy is a critical aspect of cancer care and a challenge

in cancer research. In this work, the authors derive an image-

driven reaction-diffusion model of avascular tumour growth,

that permits proliferation, death and spread of tumour cells,

and accounts for nutrient distribution and hypoxia. The model

parameters are learned (and evaluated) based on longitudinal

time series of DCE-MRI images. Rodrigo et al. study the

influence of anatomical inaccuracy in the reconstruction of

Electrocardiographic Images (ECGI) in non-invasive diagnosis

of cardiac arrhythmias. The precise position of the heart inside

the body is important for accurate reconstructions but often

not accurately known. They explored the curvature of L-

curve from the Tikhonov regularization approach, which is

one methodology used to solved the inverse problem, and

dicovered that optimization of the maximum curvature min-

imizes inaccuracies in the atrial position an orientation. Such

automatic method to remove inaccuracies in atrial position

improves the results of ECGI. Moreover, it allows to apply

ECGI technology also where the electric recording, usually

done via Body Surface Potential Mapping (BSPM) and the

anatomical CT/MRI images are not recorded one after another,

which could lead to potential expand of ECGI use to larger

group of patients. Polycarpou et al. propose a digital phantom

to synthesise 3D+t PET data using a fast analytic method.

The proposed method derives models of cardiac respiration

and motion based on real respiratory signals derived from

PET-CT images are combined with MRI-derived motion mod-

elling and high resolution MRI images. In addition, this

study incorporates changes in lung attenuation at different

respiratory cycle positions. The proposed methodology and

derived simulated datasets can be useful in the development

and benchmarking of motion-compensated PET reconstruction

algorithms by providing associated ground-truth of various

controlled imaging scenarios.

This issue also comprises several papers using phenomeno-

logical or data-driven methods for image synthesis or gen-

erating annotated reference datasets. Some methods are hy-

brid combining both generative with mechanistic approaches.

Zhou et al., for instance, undertake to generate realistic syn-

thetic cardiac images, of both ultrasound (US), and cine and

tagged Magnetic Resonance Imaging (MRI), corresponding to

the same virtual patient. This method develops a synthesis by

registration approach where an initial dataset is segmented,

transformed and warped -as needed- to generate a motion- and

deformation-informed set of both cMRI, tMRI and US. Only

the motion model in this method is derived from an actual

physical model while the image intensity is created through

mapping reference values from literature. In a related paper,

Duchateau et al. also focus on the automatic generation of

a large database of annotated cardiac MRI image sequences.

Their approach, like the one of Zhou et al., combines both

mechanistic motion models of cardiac electro-mechanics with

anatomical augmentation via data-driven non-rigid deforma-

tions. The proposed method requires the existence of a small

database of cine CMR sequences that serve as seed to augment
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the anatomical variability by creating simulations of cardiac

electro-mechanics under diverse conditions. Augmented data

is created by warping image intensities in the original sequence

through the electromechanical simulation. This method en-

sures the material point correspondence between frames com-

plies with a mechanistic electromechanical model yet image

appearance is not altered compared to that of the original

dataset used. The authors apply this approach to generate a

database of subjects myocardial infarction under controlled

conditions in infarct location and size. Finally, Mattausch and

Goksel’s paper focuses on how to reconstruct the distribu-

tion of ultrasound image scatterers of tissue samples non-

invasively. The recovered scatterer map will inform a realistic

ultrasound image simulation under different viewing angles

or transducer profiles. The robustness of this technique relies

on obtaining images from multiple view points to accurately

assess scatterer distribution, without which the forward prob-

lem is not accurately solved. Besides an inversion strategy,

the authors contribute a novel beam-steering technique to

insonate the tissue rapidly and conveniently acquiring multiple

images of the same tissue. The authors also demonstrates

that the scatterer map offers a new tissue representation more

convenient to edit the tissue definition to create controlled

variations.

Several papers focus on machine learning for image syn-

thesis to tackle problems as diverse as generating benchmark

data, image normalisation, super resolution or cross-modality

synthesis, to name just a few. One topic attracting several

submissions is adversarial learning. For instance, Costa et al.

propose a combination of adversarial networks and adversarial

auto-encoders to develop synthetic retinal colour images. Ad-

versarial auto-encoders are use to learn a latent representation

of retinal vascular trees and generate corresponding retinal

vascular tree masks. Adversarial learning, in turn, is use to

map these vascular masks into colour retinographies. The

authors present a learning approach that jointly learns the

parameters of the adversarial network and auto-encoder. The

authors extensively validated of the quality of their synthetic

images. The data produce can help generating valuable la-

belled ground-truth data for testing or training retinal image

analysis methods. Ben Taieb and Hamarneh also use adver-

sarial learning to address the problem of histopathology nor-

malisation. Recognizing the large variability between staining

processes in different histopathology laboratories, the authors

propose a method that aims to emulate stain characteristics

from one laboratory to the other. Treated as a style transfer

problem (to adopt the term from computer vision literature)

the authors proposed a deep neural network that learns to

map input images to output images that best match the

distribution characteristics of a reference set of data, thus

achieving stain normalization. A combination of generative,

discriminative and task specific networks jointly optimized

achieve the desired objective of finding stain normalizations

suitable for segmentation or classification tasks. Chartsias et

al. propose an approach to MRI synthesis that is both multi-

input and multi-output and uses fully convolutional neural

networks. The model has two interesting properties: it is robust

to handle missing data, and, while it benefits from, does not

require, additional input modalities. The model was evaluated

on the ISLES and BRATS datasets and demonstrate statisti-

cally significant improvements over state-of-the-art methods

for single input tasks. Using dictionary learning, Huang et al.

present a method that can synthesize data across modalities

using paired and unpaired data. Relying on the power of cross

modal dictionaries they establish matching functions that can

discover cross-modal sparse embeddings even when unpaired

and unregistered data are available. Furthermore, considering

that across modalities different distributions may be present,

a manifold geometry formulation term is considered. They

extensively evaluate their method on two publicly available

brain MRI datasets.
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