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ABSTRACT 
The EPSRC sponsored DISTINCTIVE consortium (Decommissioning, Immobilisation and Storage 
Solutions for Nuclear Waste Inventories) is developing technologies for civil infrastructure repair, in-situ 
subsurface waste immobilisation, and groundwater protection during construction and decommissioning.  
The consortium has contributed to the development of skilled cross-disciplinary civil engineers and 
scientists, that have the knowledge and experience required to develop engineering solutions tailored for 
application within radiologically contaminated sites.  The Structural Integrity Theme focuses on challenges 
ranging from site-scale infrastructure preservation and restoration, through injectable ground barriers for 
risk mitigation, to the remote characterisation and handling of individual waste packages. The main aim of 
the theme is to develop novel engineering solutions, tailored for use on radiologically contaminated sites, 
for: ground protection; infrastructure characterisation; concrete restoration and waste characterisation. 
Technologies should minimise current, and future, radiation exposure of the workforce whilst providing 
economically viable engineering solutions. 
 
INTRODUCTION 
Nuclear power stations contain huge volumes of mainly concrete assets, both above and below ground. 
Many sites have a history of plant-life extensions, multiple phases of construction and changing operational 
requirements that have resulted in complex overcrowded site layouts with ageing structures that contain 
hazardous materials. Further, many of these structural assets have withstood harsh environmental 
conditions (freeze-thaw, high salinity, fluctuating moisture contents) for time-scales well over their design 
lives. These complex structural assets must be monitored, repaired where necessary, and ultimately, 
decommissioned. Critical to their future management is limiting worker radiation exposure, protecting the 
environment and minimising the volume of radiologically contaminated waste for disposal.  
The EPSRC sponsored DISTINCTIVE consortium (Decommissioning, Immobilisation and Storage 
Solutions for Nuclear Waste Inventories), under its Structural Integrity Theme focuses on challenges 
ranging from site-scale infrastructure preservation and restoration, through injectable ground barriers for 
risk mitigation, to the remote characterisation and handling of individual waste packages. The main aim of 
the theme is to develop novel engineering solutions, tailored for use on radiologically contaminated sites, 
for: ground protection; infrastructure characterisation; concrete restoration and waste characterisation. 
Technologies should minimise current, and future, radiation exposure of the workforce whilst providing 
economically viable engineering solutions. The objectives are: 



 

 

 To develop in-situ ground barriers that could act as a ‘second skin’ surrounding on-site structures, such 
as silos and ponds, for prevention of subsurface radionuclide migration. 

 To develop smart solutions for remote crack detection, civil infrastructure health prediction and building 
preservation that can be retrofitted to existing sites. 

 To develop autonomous systems with increased functionality and to coordinate them through a CAD-
based real-time management system, to facilitate planning and execution of decommissioning works. 

These objectives are being met by several linked projects in three work packages, the details of which are 
given in Table I. 
 
TABLE I. Projects, researcher type and university undertaking work in the structural integrity theme, 
organised by work package (aindicates an associated PhD or Post Doctoral Research Associate, PDRA, 
that is not directly funded by the DISTINCTIVE project). 

Project Title Type University 
Physical Ground Barriers for In-Situ Contaminant Containment 
In-situ ground contaminant containment (physical barrier) PDRA Strathclyde 
Immobilisation and containment of radioactive waste using 
colloidal silica-based grout 

PDRAa Strathclyde 

In-situ ground contaminant containment (physical barrier) PhD Strathclyde 
Development of novel, low cost biomineral permeable reactive 
barriers for radionuclide remediation 

PhDa Strathclyde 

Remote Crack Detection, Infrastructure Health Prediction and Building Preservation 
Nano-cracking of cement phases: reactivity and dissolution PhD Strathclyde 
Consolidation in cement and concrete PhD Strathclyde 
Monitoring of moisture and chloride in contaminated storage 
structures   

PhD Strathclyde 

Simulating radiation damage in cement PhDa 
Queen’s Univ. 
Belfast 

Impact of recycled concrete fines on the engineering performance 
of cementitious infill 

PhDa Leeds 

Integrated sensors for infrastructure PhDa Strathclyde 
Development and Real-time Management of Autonomous Systems for Decommissioning 
Production of real-time segmented as-built CAD models for the 
planning and execution of remote and human intervention tasks 

PhD Birmingham 

 
This paper presents highlights of research from each of the three areas: (1) In-situ barriers for groundwater 
protection, (2) Consolidation in cement and concrete, and (3) Real-time management of autonomous 
systems for decommissioning. 
 
IN-SITU BARRIERS FOR GROUNDWATER PROTECTION 
The long and varied UK history of nuclear reactor research, nuclear power production, fuel reprocessing 
and storage of radioactive wastes has resulted in a legacy of ageing structures, multiple waste streams and 
structurally complex sites. On such sites, soils may be radiologically contaminated and some containment 
structures may be in poor condition. To reduce hazard, programmes of waste retrieval, processing and 
storage are underway. During waste retrieval and decommissioning operations, structures (and their 
surrounding soils) are subject to changes in loading conditions, resulting in an increased risk of radionuclide 
releases into the subsurface environment. This risk could be mitigated by the prior formation of ground 
barriers. Near-surface ground barriers are traditionally formed via excavation and emplacement of 
bentonite-slurry trenches, since the high viscosity of cements prevents their injection at shallow depths 



 

 

(<20m below surface). Excavation of soils on radiologically-contaminated sites, however, presents a 
significant hazard to workers and is not desirable. A viable alternative could be colloidal silica, which can 
be injected at low pressure into near-surface soils, and then ‘gelled’ to form low permeability, in-situ 
hydraulic barriers for ground protection.  
Colloidal silica has been successfully adopted as a fluid-flow control system within the petroleum industry 
since the late 1980s [1]. Consolidated core plugs of fully cured colloidal silica were observed to withstand 
applied pressure gradients of more than (56 MPa/m) before exhibiting any permeability change. Passive 
site remediation proposed by Gallagher [2] studied the application of colloidal silica as a non-disruptive 
mitigation technique to sites susceptible to liquefaction. Desirable characteristics were long injection 
periods up to 100 days for low concentration solutions of approximately 10 to 20% colloidal silica 
concentration.  Du Pont Chemicals R & D initiated work examining the feasibility of colloidal silica grout 
as a soil remediation technique through a series of bench-scale laboratory studies. Gelled colloidal silica 
was seen to prevent leaching of fluids containing metals through permeability reduction. Further, high 
affinities for the adsorption of metals from solution were seen by the colloidal silica gel itself [3]. Similarly, 
the stabilization process of chromium contaminated soils using colloidal silica was investigated by 
Yossapol and Meegoda [4]. 
In the 90s, Lawrence Berkley National Laboratory and Brookhaven National Laboratory carried out in-situ 
[5-9] and laboratory [10-12] tests to demonstrate the use of silica colloids for permeation grouting for 
containment technology. For the construction and operation of a nuclear waste repository in hard rock, 
researchers at Chalmers University of Technology investigated the application of colloidal silica grout to 
minimise water ingress in shafts and tunnels. In order to evaluate penetrability, laboratory mechanical tests 
on colloidal silica [13, 14] and field tests [15, 16] were performed. More recently, colloidal silica has been 
adopted in the tunnelling and underground construction industry for preventing water ingress as a secondary 
injection grout during the pre-injection stage (i.e. injecting in advance of the tunnel face during excavation) 
(e.g. Butrón, Gustafson [17], Bahadur, Holter [18]). 
Despite the documented success of colloidal silica based grouts, research has not translated into widespread 
industrial use. Yet colloidal silica has the potential to transform the environmental hazard associated with 
dismantling and decommissioning by pre-treating the ground surrounding, and beneath, nuclear structures. 
Key factors in the limited commercial uptake have been: the lack of a predictive model for colloidal silica 
grout gelling in natural environments, that would allow engineers to predict grout penetration distances; the 
lack of mechanical data on the properties of the grouted soil; the need to investigate grout-radionuclide 
interactions for contaminated soils. 
 
Modeling Colloidal Silica Penetration  
The potential of colloidal silica as a favorable grouting material exists due to: i) its initial low viscosity 
(close to water), ii) its low hydraulic conductivity after gelling (of the order of 10-7 cm/s), iii) the very low 
injection pressures required, iv) its controllable set/gel times (from minutes to several days), v) the fact it 
is environmentally inert and vi) its small particle size (less than hundreds of nanometres). 
Colloidal silica is a stable aqueous suspension of microscopic silica particles (SiO2). In alkaline solutions 
and low electrolyte concentration colloidal silica is stable. Destabilization of the solution and subsequent 
gelation can be induced by destabilization of the particle repulsive forces through the addition of an 
accelerator electrolyte compound. This process, shown in Fig. 1a results in a rapid viscosity increase after 
a given period of time (gel time). Gel time has been proven to depend on colloidal particle size, colloidal 
particle concentration, electrolyte concentration, cation valence, cation atomic mass and temperature (not 
considered here) [19].  
Pedrotti et al. [19] describes an electrochemically inferred analytical model of grout gelling . The model is 
able to predict, for the first time, the grout gelation time and the change in viscosity over time as a function 
of pH, electrolyte, silica particle size and silica concentration. This model is fundamental to the accurate 
simulation of grout penetration in a natural environment. Fig.1b shows an example of the model gel time 
results, versus the experimental data, for variations in solution pH and accelerator concentration. In Figure 



 

 

1c the change in viscosity over time is plotted for a single accelerator concentration of 2M for four different 
values of pH, ranging from 4 to 9. In all experiments, the model provides a good prediction of the 
experimental observations. 
 

 
a)  b)  c)  

Figure 1. a) Gel time, b) gel time prediction [19], Viscosity prediction ([19]) 
 
A key advantage of the model is its ability to simultaneously account for the presence of many different 
cation species in the estimation of grout gel time and viscosity. This capability provides a useful tool for 
the design of grout mixes using colloidal silica, that can take account of the situ groundwater composition, 
overcoming one of the main challenges to grout use within industry. 
The analytical model of colloidal silica gelling has since been implemented within a numerical model of 
grout penetration in a saturated porous media, within the generic finite element software, COMSOL 
Multiphysics ®. The numerical model implements the generalised form of Darcy’s equation for the velocity 
profile of the injected fluid. This equation is coupled with a transport model that simulates the transport of 
two different chemical components: First, the concentration of colloidal silica and second, the concentration 
of the accelerant. At each time-step and for any given spatial point, the numerical model computes the 
viscosity of the colloidal silica using the analytical model described above. 
To validate the numerical model of grout penetration (i.e. injection and then subsequent gelling) an 
experimental injection tank (1.3m x 0.4m x 0.1m) was constructed (Figure 2). The tank was filled with 72 
kg Leighton Buzzard sand with a median grain diameter d50 of 1.2 mm, specific gravity of 2.65 and 
coefficient of conformity of 1.26, resulting in a average porosity of approximately 0.36. The tank was filled 
with 17 litre of water and a layer of clay was placed on top of the sand in order to ensure horizontal flow 
paths (Fig. 2).  
 

 
Figure 2. Experimental tank setup 

 
Injection into the tank was performed via three lateral valves connected to a constant-head reservoir on the 
right hand side (Fig. 2). Outflow was via a single port connected to a constant head reservoir on the left 
hand side.  
 



 

 

Preliminary injection of water containing fluorescein was conducted to calibrate the model parameters for 
flow and transport. Fig. 3 shows the experiment and accompanying numerical simulation for the fluorescein 
injection after 17 minutes. The experiment and the numerical model are in good agreement, giving 
calibrated values for hydraulic permittivity and diffusion of 1.8910-9 m2 and 0.01 m2/s  respectively. 
 

 

 
Figure 3. Fluorescein injection. Experiment and simulation comparison 

 
Colloidal silica grout was injected into the tank using an accelerant concentration in the inflow of 1.7 M of 
NaCl, to produce a predicted grout gel time of 51 minutes. Fig. 4a shows the shape of the grouted sand 
volume post injection, once all of the remaining loose sand had been excavated. Fig. 4b shows the 
corresponding model prediction: an accurate injection distance of the grout was predicted. The final shape 
of the grouted sand differs slightly from the experimental one. This effect is probably due to the slightly 
increased diffusion coefficient that was used in the numerical model, in order to remove numerical 
instability issues. 
Further tank experiments have been performed varying the soil composition, by introducing a clay lens, 
and with the addition of saline in-situ groundwater. All model simulations are a good match to the 
experiments, thus verifying our predictive modelling capability. 
 

a)  

 

b)  

 

 
Figure 4. Grouted sand after colloidal silica injection. a) experimental grouted sand volume, b) finite element model 

prediction. 
 
The Mechanical Behavior of Grouted Soils 
The mechanical behavior of colloidal silica was investigated in Wong et al. [20]. The aim was to evaluate 
the drained stress-strain behavior (1-D compression and shear resistance) of colloidal silica-soil systems 
and to determine the particle interactions between soil and colloidal silica at a micron-scale, so as to provide 



 

 

an understanding of the macroscopic mechanical behavior. A comparison of the shear behavior of sand and 
colloidal-silica grouted sand, for two different curing times, is shown in Figure 5. The colloidal silica-
grouted sand shows an increase in the peak shear strength, when compared to sand only, and odometer tests 
also showed an increase in the stiffness.  

 
Figure 5. Shear test comparison between grouted sand and sand only. 

 
The hydraulic conductivity of the grouted sand is extremely low, ~10-10 m/s, typical of an intact clay. Similar 
experiments with clay-colloidal silica mixtures showed reduced volumetric deformation, increased stiffness 
for low values of stress (~100kPa), and increases in both the peak and the ultimate shear strength. Figure 6 
shows an X-ray scan on a sample of sand grouted with CS. CS fills most of the voids present between the 
sand particles (shown by the dark grey in Figure 6). Air voids would appear black on the image. The whole 
porosity of the sample now depends only (excluding a few remaining bubbles of air) on the porosity of the 
CS matrix. The CS matrix itself is not visible as the pore size is at least 2-3 orders of magnitude smaller 
than the maximum resolution of the scanner (~5 microns for beam settings used). It is evident that no pores 
remain in the grouted sand sample that are due to the original sand structure. 
 

 
Figure 6. X-CT image of sand grouted with CS 

 
Grout-Radionuclide Interaction 
To test the grout-radionuclide interaction we performed a set of four experiments on the desorption of stable 
isotopes of Sr and Cs adsorbed onto simulated soil materials at pH 7 (714±18 ppm Cs and 1051±25 ppm 
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Sr). The composition of the simulated soil is: 45% quartz, 25% kaolinite, 25% ordered mixed layered illite-
smectite (special source clay; CMS: ISCz-1), 3% goethite (FeOOH) and 2% anatase (TiO2). Two desorption 
experiments were performed on unconsolidated samples at 0.8g in 40ml of either 0 or 10mM NaCl, to 
determine the effects of the salinity on the desorption of Sr and Cs. Additionally, two experiments were 
performed on the desorption of Sr and Cs from 0.8g embedded in 6ml of colloidal silica grout with 20ml 
of 10mM NaCl. Two simulated soil samples were embedded in colloidal silica grout, with either 1.4M NaCl 
or 0.2M CaCl2 in the accelerant mixed at a ratio of 5 parts colloidal silica to one part accelerant. The pH 
was measured and solution samples were collected after 10min, 1h, 3h, 5h, 1day and 1 week and analysed 
for Sr and Cs using ion chromatography (Metrohm Professional 850).  
The results of the desorption experiments are shown in Figure 7. These preliminary results highlight a 
couple differences in the desorption mechanism: (1) the increase in the Sr and Cs concentrations in solution 
is retarded in the experiments with grouted simulated soil samples; (2) the absolute concentrations released 
from the grouted simulated soil samples is significantly less compared to the ungrouted simulated soil 
samples; and (3) the pH during the desorption experiments reach ~7 and ~9.5 in the supernatant of the 
ungrouted and grouted soil samples, respectively. To quantify and separate the influences of the pH, the 
elevated Na+ or Ca2+ concentrations resulting from the accelerant and the diffusion limited mobility (rather 
than through groundwater flow) of radionuclides within the colloidal silica grout and the subsequent release 
of these radionuclides into the groundwater experiemtns are ongoing.  
 

 
Figure 7 Sr and Cs concentrations and the pH (pH scale is different in both graphs) in the supernatant during the 

preliminary desorption experiments from unconsolidated simulated soil (ungrouted) and from simulated soil embedded within 
colloidal silica grout using 1.4 M NaCl or 0.2 M CaCl2 in the accelerant (error on the Sr and Cs concentrations is 

approximately 0.5ppm and the error on the pH is estimated at 0.02) 
 
CONSOLIDATION IN CEMENT AND CONCRETE 
Nuclear sites contain very substantial quantities of cement, much of which is well beyond its design life. 
The earliest nuclear assets at the Sellafield site date from the 1940s and, hence, are approaching 80 years 
old. Many ageing structures suffer from crack formation, water penetration and damage mechanisms such 
as alkali-silica reaction. Thus material properties governing water transport, such as porosity, permeability 
and strength are altered during ageing. Portland cement is made up of alite (Ca3SiO5), belite Ca2SiO4, 
tricalcium aluminate (Ca3Al 2O6), and ferrite (Ca2(Al xFe2–x)O5) plus some gypsum (Ca(SO4) 2H2O) and 
limestone powder. Hydrated Portland cement contains two main mineral phases: Ca(OH)2 (portlandite) and 
calcium silicate hydrate (C-S-H), the former has a well-defined crystal structure and the latter is poorly 
crystalline [21]. C-S-H makes up ~ 75 wt% of the final hardened product [22], is responsible for strength 
development, has a variable stoichiometry and the ability to adsorb contaminants and radionuclides, such 
as Cs, Zn, Sr, Co, U etc [23, 24]. The production of more C-S-H through the addition of pozzolanic materials 
gives improved mechanical performance [25] and potentially increased adsorption of radionuclides. Nano-
silica addition to cement paste has been shown to increase C-S-H formation and accelerate hydration of any 
unreacted alite (C3S), due to the high reactivity of small particles [26]. Research under the structural 
integrity theme, reported in full in Maddalena and Hamilton (2017) [27], we inject nano-silica into hardened 



 

 

cement paste which reacts with Portlandite already present into the system to produce new C-S-H and 
reduce porosity, as a potential technique for protecting cement structures from further degradation.  
 
TABLE 1: Characteristics of nano-silica and silica fume. 

Components NS SF 
State Aqueous suspension particles 
Chemical composition 
(>0.2%) 

  

SiO2 50% 99.9% 
Water  50% - 
Particle size range (nm) 5-20 150-1000 
Density (g/cm3) 1.4 1.6 
Specific area (m2/g) 110-160 15-30 

 
The experiments were carried out on pure hardened cement paste, using ordinary Portland cement CEM 
II/A-L class 42.5 N bought from Lagan Cement Ltd and deionized water. Nano-silica (NS) suspension 
LUDOX T-50 and silica fume (SF) ELKEM microsilica were used (TABLE 1). 
Cement samples were prepared by mixing Portland cement and deionized water at a water to cement (w/c) 
ratio of 0.4:1 by mixing in a rotary mixer according to BS EN 196-1:2005. Cement paste was cast into 
plastic moulds (35mm  and 4mm thickness, disc-shaped) and cured under controlled conditions (relative 
humidity: 98 ± 2% and temperature: 21 ± 2 °C). After 28 days, cement discs were oven-dried at 60 °C for 
ca. 100 hours, until the change in mass was negligible. Whilst oven drying is known to affect the pore-
structure of cement, the aim here was to measure mass gain rather than micro-structural characterisation. 
  
Experimental Setup for Cement Consolidation 
Nano-silica injection was carried out by varying three parameters: injection period, percentage of nano-
silica injected and silica particle size with a constant applied pressure head. Silica solutions were prepared 
using nano-silica stock suspension or solid silica fume, mixed with deionized water. In order to investigate 
how the penetration depth in the disc varies with nano-silica content, three different percentages (10, 15 
and 20 wt. %) were used, for a total injection time of 14 days. The effect of injection time was determined 
by keeping cement discs under injection for 7, 14 and 28 days with 10 wt.% nano-silica content. To compare 
the reactivity and effect of particle size on penetration depth, samples were injected with 10% and 20% of 
silica fume for a period of 14 days.  
The cement disc was fixed in place at the bottom of a PVC pipe of 2 m length and 40 mm internal diameter. 
The pipe was clamped vertically in place. A solution of nano-silica of known concentration was slowly 
poured into the pipe from the top, in order to minimize the density gradient. The length of pipe used gives 
a constant hydrostatic pressure of 20 kPa at the bottom of the pipe, where the OPC specimen is placed. 
After filling the pipe, a plastic cap was placed at the top of the pipe to avoid evaporation of the solution. At 
the end of the injection period, the disc was removed and oven-dried at 60 °C for ca. 100 hours.  The sample 
mass was recorded before and after injection to quantify the amount of silica in the pores. Open porosity 
() was determined by measuring the total water amount in each sample after oven-drying at 60 °C and 
overnight saturation in a vacuum chamber according to the standard relationship:  
The ability of injected silica to react with calcium hydroxide (CH) present in the hydrated cement paste to 
form additional calcium silicate hydrates (C-S-H) was determined by the quantity of calcium hydroxide 
and calcium silicate hydrates in the treated hydrated cement paste compared with the control sample by 
thermogravimetric analysis (TGA). Mineralogical composition of silica injected specimens was analyzed 
using powder X-ray diffraction (XRD).  
 
 
 



 

 

Cement Consolidation Results and Discussion 
Mass measurements showed that after 14 days of nano-silica injection, the mass increase is directly 
proportional to the concentration of the silica suspension used. At a given nano-silica content in the pipe of 
10 wt.%, the sample mass shows an exponential trend reaching 2.0 wt.% mass gain after 28 days (Fig. 8a). 
A comparison between nano-silica and silica fume shows the effect of particle size on the injection: 
doubling the concentration of nano-silica results in a mass increase of ca. +1% of the original value, whereas 
doubling the silica fume content results in an increase of ca. +0.1% (Fig. 8b). This is probably due to the 
low particle size range of nano-silica (5–20 nm), able to penetrate into smaller pores. Open porosity 
measurements show that an increase in nano-silica content in the solution produces a significant decrease 
in porosity of ca. 30%, from the initial value (sample OPC, f= 0:30) to the highest concentration at 20 wt.%. 
(sample S20-14 f= 0:21), as shown in Figure 8b. Injection of silica-fume, does not produce a significant 
porosity reduction [28]. 
 

(a) (b) 
Figure 8. Influence of injection time on mass increase and open porosity using a 10 wt.% nano-silica suspension. Figure 
1(b): Influence of silica suspension concentration on mass increase and open porosity after injection for 14 days. [Bars 

represent mass change and open circles represent porosity values]. 
 
Figure 9 shows the reduction of portlandite (CH) as it reacts with nanosilica to form additional C-S-H, 
which was quantified by XRD analysis. This reduction of portlandite by c. 40% from the initial portlandite 
content is higher in comparison with the values found in literature [26, 29], due to a longer treatment time 
and higher applied pressure. There is no evidence of increased portlandite reduction when the nano-silica 
suspension concentration is increased beyond 15 wt.% in the injecting solution. The total increase of C-S-
H formed, c. 20% with respect to the original value, is over-estimated by TGA, due to the presence of other 
minor compounds in the same temperature range (80–150 oC). Accurate estimation is given by semi-
quantitative analyses of XRD patterns. Fig. 9 suggests that the ideal injection period is 14 days, producing 
a portlandite reduction of c. 40%. TG analysis of nano-silica and silica fume for 14 days injection time 
show that both materials offer a comparable portlandite reduction at the highest concentration (20 wt.%). 
 



 

 

 
 

(a) (b) 
Figure 9 Comparison between TGA results and semi-quantitative analysis of XRD data. (a) Effect of nano-silica solution 
wt.% on relative increase of C-S-H and decrease of CH compared to the OPC control sample for 14 days of injection. (b) 

Effect of silica particle-size and concentration on the CH relative content after 14 days of injection. 
 

REAL-TIME MANAGEMENT OF AUTONOMOUS SYSTEMS FOR DECOMMISSIONING 
Research on real-time management of autonomous systems for decommissioning in the DISTINCTIVE 
project has focused on the use of advanced computer vision methods for 3D characterization of buildings, 
scenes or objects, during nuclear decommissioning, especially decommissioning operations which rely on 
robotic interventions. Before any decommissioning operations can begin, the facility or materials being 
decommissioned must be “characterized”, which includes 3D mapping and modeling, as well as identifying 
types and severities of nuclear, chemical, thermal or other hazards. In particular, it is very important to 
identify the kinds of materials which are present in a scene. 3D reconstruction may be needed for concrete-
shielded rooms or "caves", containing legacy plant (e.g. pipes and vessels) which will need to be cut and 
dismantled by a robot and then packed into safe storage containers. Many such caves are many decades old, 
and their content uncertain. Thousands of legacy waste must be cut open and sorted through by robots. 
Real-time 3D modeling of these heaps of assorted objects is necessary to enable robotic grasping and 
manipulation. Furthermore, identification of types of materials is also critically important, so that low-level 
waste can be placed into relatively cheap containers and waste processing routes, while more dangerous 
waste can be accurately identified and placed into much more expensive containers for longer-term storage.  
Research under the structural integrity theme has addressed the problem of developing new computer vision 
methods for real-time, semantic, 3D reconstruction of nuclear waste scenes. This involves real-time 3D 
reconstruction of a scene, but also involves simultaneously recognising different types of materials or 
objects that are present in the scene, and using these material/object categories to “semantically” label all 
parts of the 3D scene model.  
 



 

 

 
Figure 10. Samples of 2D-3D nuclear material database. 

 
The 2D-3D Nuclear Dataset and Virtual Camera System 
After talking directly with nuclear decommissioning experts and obtaining the pictures of real nuclear 
wastes, a 2D-3D nuclear waste database was built. This dataset includes the metal, can, wood, bottle, brick, 
chain, pipe, sponge, glove, fabric and etc., as shown in Figure 10. It contains a large number of RGB images, 
depth images and 3D point cloud models. The 3D model of the nuclear object can be obtained from RGBD 
SLAM. Meanwhile the RGB and depth images of the key frame can be obtained. After getting the 3D object 
model, millions of labelled RGB-D image can be obtained from different viewpoints using our virtual 
camera system for deep learning training. A ground-truth 6DOF camera trajectories can also be provided 
by virtual camera system as a benchmark for 3D reconstruction. 
Research under this project addresses the problem of RGBD object recognition in real-world applications, 
where large amounts of annotated training data are typically unavailable. To overcome this problem, a 
novel, weakly-supervised learning architecture (DCNNGPC) has been developed which combines 
parametric models (a pair of Deep Convolutional Neural Networks (DCNN) for RGB and D modalities) 
with non-parametric models (Gaussian Process Classification). The system is initially trained using a small 
amount of labelled data, and then automatically propagates labels to large-scale unlabelled data. 3D-based 
objectness detection is first run on RGBD videos to acquire many unlabeled object proposals, and then 
DCNN-GPC is employed to label them. The resulting multi-modal DCNN can be trained end-to-end using 
only a small amount of human annotation. Finally, 3D-based objectness detection and multimodal DCNN 
has been integrated into a real-time detection and recognition pipeline. In this approach, boundingbox 
annotations are not required and boundary-aware detection is achieved. A novel method to pretrain a DCNN 
for the depth modality has been developed, by training on virtual depth images projected from CAD models. 
The multi-modal DCNN is pretrained on public 3D datasets, achieving performance comparable to state-
of-the-art methods on the Washington RGBS Dataset. The network is then fine tuned by further training on 
a small amount of annotated data from the dataset of industrial nuclear waste objects (nuclear waste 
simulants) described above (Figure 10). Our weakly supervised approach has been shown to be highly 
effective in solving novel RGBD object recognition applications which lack human annotations.  
 
The Pipeline Of The Work 
The proposed work pipeline (Figure 11 and Figure 12) has three steps: (1) a real-time 3D-based object 
detection approach to generate high-quality objectness proposals in RGBD video stream; (2) DCNN-GPC 



 

 

to propagate small-scale labeled data to moderate-scale in order to train the multi-modal DCNN end-to-
end; (3) real-time detection is integrated with the recognition system. 

 
Figure 11 Flow chart of our proposed weakly-supervised DCNN method. Training is shown in orange and deployment in 

blue. 

 
Figure 12 RGBD point cloud (left) yields objectness proposals (middle). For each such proposal, the multi-modal DCNN 

performs category recognition. The pixel-wise recognition result is projected to obtain a 3D semantic cloud. 
 

The main contributions in the area of real-time management of autonomous systems for decommissioning 
are: 1) Previous RGBD object recognition methods have predominantly been fully-supervised, making 
them unsuitable for rapid deployment in new applications. In contrast, this research uses a weakly 
supervised method, based on Gaussian Process Classification (GPC) combined with DCNN deep learning. 
Unlike previous work, the method does not require bounding box object annotation, and uses very little 
manually-labeled data (0.3%). 2) The approach presented here learns directly from raw depth images, in 
contrast to previous work which relies on extracting low-level features or color-mapping. A new method is 
adopted to pretrain the depth DCNN by using many automatically generated synthetic depth images. 3) A 
new industrial dataset has been constructed, comprising RGBD videos of realistic nuclear waste-like 
objects. The real-time detection and recognition system has been implemented and significantly 
outperforms a fully supervised method i.e R-CNN on this real-world data. 
 
CONCLUSIONS 
This paper presents highlights from research under the Structural Integrity Theme of the UK 
DISTINCTIVE project. We present research highlights from three specific areas. Key findings are: 
(1) In-situ barriers for groundwater protection; 
 An analytical model has been developed for gelling of the grout in natural environments that accounts 

for changes in pH, electrolyte concentration, cation valence, cation molar mass, silica particle size and 
silica concentration.  

 A numerical model has been developed and validated that can simulated grout penetration 



 

 

 Mechanical tests show that colloidal-silica grouted sand is a feasible intervention to prevent soil 
consolidation and to increase soil stability, whilst also proving a low permeability barrier. 

 Preliminary tests on grouted soil desorption showed that colloidal-silica grouting inhibits Sr and Cs 
desorption from contaminated soil.  

 Low-pressure (20 kPa) silica injection has effectively impregnated cement samples. After 14 days of 
injection with a nanosilica suspension of 20 wt.% concentration we observed a total reduction of 30% 
in porosity from the startng value, suggesting this is a potential consolidant for friable or cracked 
concrete. 

(2) Consolidation in cement and concrete; 
 Nano-silica injection is more efficient than silica fume, due to its smaller particle size allowing it to 

penetrate further into the pore structure and react to produce more C-S-H. 
 Some of the silica injected has reacted with the calcium hydroxide naturally present in hydrated cement, 

forming additional binding phases such as C-S-H (and C-A-S-H, calcium-aluminium-silicate hydrate). 
Unreacted silica however has been absorbed and acts as a filler agent reducing porosity. 

(3) Real-time management of autonomous systems for decommissioning; 
 A weakly supervised method has been developed, based on Gaussian Process Classification (GPC) 

combined with DCNN deep learning. Unlike previous work, the method does not require bounding box 
object annotation, and uses very little manually-labeled data (0.3%).  

 The approach learns directly from raw depth images and new method is adopted to pre-train the depth 
DCNN by using many automatically generated synthetic depth images.  

 A new industrial dataset has been constructed, comprising RGBD videos of realistic nuclear waste-like 
objects. The real-time detection and recognition system has been implemented using this database and 
significantly outperforms a fully supervised method i.e R-CNN on real-world data. 
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