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A B S T R A C T

Light-Harvesting Complex II (LHCII) is a chlorophyll-protein antenna complex that efficiently absorbs solar
energy and transfers electronic excited states to photosystems I and II. Under excess light intensity LHCII can
adopt a photoprotective state in which excitation energy is safely dissipated as heat, a process known as Non-
Photochemical Quenching (NPQ). In vivo NPQ is triggered by combinatorial factors including transmembrane
ΔpH, PsbS protein and LHCII-bound zeaxanthin, leading to dramatically shortened LHCII fluorescence lifetimes.
In vitro, LHCII in detergent solution or in proteoliposomes can reversibly adopt an NPQ-like state, via manip-
ulation of detergent/protein ratio, lipid/protein ratio, pH or pressure. Previous spectroscopic investigations
revealed changes in exciton dynamics and protein conformation that accompany quenching, however, LHCII-
LHCII interactions have not been extensively studied. Here, we correlated fluorescence lifetime imaging mi-
croscopy (FLIM) and atomic force microscopy (AFM) of trimeric LHCII adsorbed to mica substrates and ma-
nipulated the environment to cause varying degrees of quenching. AFM showed that LHCII self-assembled onto
mica forming 2D-aggregates (25–150 nm width). FLIM determined that LHCII in these aggregates were in a
quenched state, with much lower fluorescence lifetimes (~0.25 ns) compared to free LHCII in solution
(2.2–3.9 ns). LHCII-LHCII interactions were disrupted by thylakoid lipids or phospholipids, leading to inter-
mediate fluorescent lifetimes (0.6–0.9 ns). To our knowledge, this is the first in vitro correlation of nanoscale
membrane imaging with LHCII quenching. Our findings suggest that lipids could play a key role in modulating
the extent of LHCII-LHCII interactions within the thylakoid membrane and so the propensity for NPQ activation.

1. Introduction

Photosynthetic light harvesting occurs at the thylakoid membranes
of chloroplasts of plants, algae and cyanobacteria [1]. Light-harvesting
(LH) membrane proteins act as a non-covalent scaffold for precise or-
ientation of embedded chlorophyll (Chl) and carotenoid pigments.
Absorption of a photon of sunlight by a pigment molecule promotes an
electron to a higher-energy excited state, which can either decay to its
ground state via fluorescence, or this energy can be non-radiatively
transferred between pigments or dissipated by some other mechanism.
In photosynthetic membranes, excitation energy is efficiently trans-
ferred within and between LH complexes to the photosynthetic reaction
centre (RC) complexes, wherein photochemical charge separation traps
energy in a chemical form (reviewed in [2]). Light-Harvesting Complex
II (LHCII) is formed of a trimer of Lhcb1, 2 and 3 proteins in different

combinations [3], each of which binds 8 Chl a, 6 Chl b and 4 carotenoid
pigments [4, 5]. In plants, LHCII acts as an efficient antenna system for
both photosystem I and II (PSI and PSII) in low light [6, 7], however in
excess light it absorbs more solar energy than can be utilised for pho-
tosynthesis. Light saturation of photosynthesis can prolong the excited
state lifetime of Chl and so increase the probability of Chl triplet for-
mation and so singlet oxygen production, causing photoinhibitory da-
mage to the RCs (reviewed in [8]). In mitigation, plants have evolved a
photoprotective mechanism, known as non-photochemical quenching
(NPQ) of Chl fluorescence, that leads to the safe dissipation of excess
absorbed excitation energy in LHCII as heat (reviewed in [9]). NPQ is
triggered under excess light conditions by the interplay of three factors:
the transmembrane ΔpH [10], the PsbS protein [11] and the enzymatic
de-epoxidation of the LHCII bound xanthophyll violaxanthin to zeax-
anthin [12]. Together these factors bring about a change in
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conformation of LHCII, and possibly the minor LHC antenna complexes
CP24, 26 and 29 [13–15], that leads to formation of dissipative energy
transfer pathways correlated to a dramatic shortening of the Chl excited
state lifetime [16, 17]. The dynamics and efficiency of NPQ formation
and relaxation have been shown to be crucial to plant fitness in fluc-
tuating light environments as experienced in nature [18–20].

NPQ was shown using freeze-fracture electron microscopy to be
accompanied by increased LHCII-LHCII interactions and a remodelling
of the thylakoid membrane in spinach chloroplasts, changes that were
reversed upon lowering the light intensity [21–24]. These increased
LHCII-LHCII interactions were dependent on the presence of PsbS and
ΔpH and were enhanced by the de-epoxidation of violaxanthin to
zeaxanthin [22]. These changes in LHCII organisation in vivo bear si-
milarity to those observed following induction of quenching in vitro in
purified LHCII by manipulation of the detergent/protein or lipid/pro-
tein ratio and/or pH, which also lead to aggregation of LHCII [25–27].
The system of LHCII aggregates has thus become a useful model for
studying NPQ in vitro. In recent years it has been shown that whilst
LHCII-LHCII interactions promote quenching they are not essential,
since switching between quenched and nonquenched states is observed
in isolated LHCII complexes covalently bound to glass [28], suspended
in gels [29] and indeed in single molecule measurements of isolated
complexes bound to a substrate [30, 31] or held in solution electro-
kinetically without chemical modification [32]. In each case, the
quenching was fully reversible and shared many of the same spectro-
scopic features as NPQ in vivo, including distortion of bound Chl, lutein
and neoxanthin pigments [33, 34] and red-shift of the terminal emitter
Chls in LHCII [35, 36]. The photophysical mechanism of NPQ within
LHC complexes remains under debate with both chlorophyll-lutein
[34], chlorophyll-zeaxanthin [37] and chlorophyll-chlorophyll [38]
interactions being implicated.

Whilst studies on purified LHCII in vitro have revealed many details
regarding NPQ, it is unclear how LHCII-LHCII interactions may be
modified by lipids [39], potentially a crucial factor in modulation of
NPQ in vivo. Studies using proteoliposomes have shown a dramatic
quenching of LHCII as the lipid-to-protein ratio is decreased suggestive
of LHCII clustering [27, 40, 41], however this solution-based system is
not conducive to visualization of nanoscale protein organisation. In
principle, a simple well-controlled in vitro system that can be imaged
under liquid by high resolution microscopies could shed light on such
aspects of NPQ control. Herein, we describe such a system by the
binding of purified LHCII (with or without a lipid bilayer) to an opti-
cally transparent and atomically flat mica substrate that is amenable to
nanoscale topographical mapping by atomic force microscopy (AFM)
and functional imaging by fluorescence lifetime microscopy (FLIM).
This allows us to correlate the organisation of just a few LHCII com-
plexes to their exciton dynamics of relevance to NPQ.

2. Materials and methods

2.1. Biochemical protein purification and characterisation

All chemicals were purchased from Sigma-Aldrich (St. Louis, MO)
unless otherwise specified. Extraction and purification of LHCII from
spinach leaves followed a protocol adapted from Johnson and co-
workers [35]. Spinach leaves (purchased from a local supermarket)
were added to ice-cold Preparation medium (300mM sucrose, 5 mM
EDTA, 50mM HEPES, pH 7.5), homogenized in a food blender and li-
quid recovered after filtration through muslin cloth. Chloroplasts were
collected by centrifugation (3000×g, 15min, 4 °C), resuspended in
Break medium (5mM EDTA, 10mM Tricine pH 7.4) and osmotically
burst with an equal volume of Lysis medium (400mM sucrose, 5 mM
EDTA, 10mM Tricine, pH 7.4). Thylakoid membranes were collected by
centrifugation as above and the pellet washed with high EDTA and high
NaBr buffers. Thylakoids were adjusted to 0.5 mg Chl/mL and then
solubilized using a final concentration of 1.0% α-DDM in a 20mM

HEPES buffer for 1 h on ice. LHCII was isolated on continuous gradients
of 8–14% sucrose (in 20mM HEPES pH 7.5 and 0.03% α-DDM), via
ultracentrifugation at 100,000×g for 36 h at 4 °C. The green band at
12% sucrose representing mostly trimeric complexes was harvested.
LHCII was further purified by subsequent size-exclusion chromato-
graphy in 150mM NaCl, 0.03% α-DDM, 20mM HEPES (pH 7.5) at a
flow rate of 0.3mL/min using a 16/600 Superdex 200 prep grade
column on an AKTA Prime FPLC system (GE Healthcare Life Sciences,
PA, USA). Sucrose or salts were diluted and the protein concentrated as
necessary between stages and finally, using 30 kDa Amicon Ultra cen-
trifugal filters (Merck Millipore, UK). Protein purity was assessed via
denaturing SDS-PAGE with Coomassie or Sypro Ruby staining and
protein oligomeric state was assessed via non-denaturing Clear Native
PAGE with Coomassie staining, using pre-made gels (NuPAGE Novex
12% Bis-Tris and NativePAGE Novex 4–16% Bis-Tris, respectively, from
ThermoFisher Scientific) and pre-stained protein ladder (BioRad, CA,
USA).

2.2. Sample preparation for microscopy

Substrates for all microscopy were thinly cleaved mica glued to
glass coverslips with an optically-transparent adhesive (Norland
Products, NY), unless otherwise stated. Samples were prepared on mica
with variations as described in the text. Generally, purified trimeric
LHCII (approx. 10 μM) suspended in 0.03% α-DDM was diluted in de-
tergent-free Buffer A (20mM HEPES, pH 7.5) to the desired final con-
centration and then incubated with the freshly-cleaved mica surface for
20min. Samples were then washed with 10 changes of the desired
imaging buffer and LHCII aggregates could be imaged at this stage. For
experiments with lipids, samples were further incubated with lipid
vesicles (0.5 mg/mL) for 20min and then washed with 10 changes of
the imaging buffer. For AFM, the imaging buffer was 20mM HEPES
(pH 7.5) and the sample was imaged in an open droplet. For FLIM, the
imaging buffer was sparged with N2 gas to displace O2 and additionally
contained the oxygen-scavenging enzyme system of 2.5mM proto-
catechuic acid and 50 nM protocatechuate-3,4-dioxygenase from
Pseudomonas species [42] and then the sample was sealed with a glass
slide to confine an aqueous volume.

Lipids in dry form were purchased from Avanti Polar Lipids
(Alabaster, AL) except the Texas Red DHPE lipid dye (ThermoFisher
Scientific). For the model phospholipid system the lipids used were
100% DOPC. For the model thylakoid system, a mixture similar to those
previously described as natural ratios [43] was adapted for use with
planar surfaces as described by Gräb and co-workers [44], comprising:
35% MGDG, 20% DGDG, 12% SQDG, 8% Soy PG, 25% DOPC (w/v%),
for further methodological details see the Supplementary information.
Lipids were dissolved in 5:1 chloroform: methanol and mixed to the
desired ratios in glass vials in and dried under nitrogen flow for 30min
and then in a vacuum desiccator overnight. Lipids were hydrated in
buffer of choice (20mM HEPES pH 7.5 for DOPC or 150mM NaCl,
20mM MES pH 6.5 for thylakoid lipids) to 1mg/mL and vesicles pre-
pared by probe sonication at 4 °C.

2.3. Atomic force microscopy

AFM was performed under the described aqueous buffers using a
Dimension FastScan and FastScan D type probes (Bruker Nano Surfaces
Division). Parameters were optimized whilst imaging to minimize ap-
plied forces, at low tapping amplitudes and moderate gains, typically
scanning at 1–4 Hz and 1024× 1024 pix. Topographs were processed
and analysed using Nanoscope Analysis software (v1.8).

2.4. Absorption and fluorescence spectroscopy and microscopy

Cuvette-based UV–Vis absorption spectra were acquired using an
Agilent Cary 5000 spectrophotometer. LHCII trimer molar
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concentration was estimated from absorption spectra (where A (675) of
1.0 is 400 nM). Cuvette-based steady-state and time-resolved fluores-
cence spectra were acquired using an Edinburgh Instruments FLS980
spectrophotometer. FLIM was performed on a home-built inverted op-
tical microscope as previously described [28] equipped with a spec-
trometer (Acton 150, Princeton Instruments) and an electron-multi-
plying charge-coupled device (EMCCD) camera (ProEM 512, Princeton
Instruments). Excitation light was filtered by a 472/30 nm bandpass
filter and reflected towards the sample using a dichroic beamsplitter,
emission was passed through the same dichroic towards further emis-
sion filters and the desired detector. For simple fluorescence imaging
the excitation source was a collimated LED and emission was collected
through a 679/41 nm bandpass filter by the EMCCD. For fluorescence
emission spectra and time-resolved measurements, the excitation
source was a LDH 485 nm laser (PicoQuant GmbH) which was focused
to a diameter of ~800 nm and positioned so that the laser spot was at a
selected region of the sample. The laser was driven by a PDL 828 Sepia
II burst generator module (PicoQuant GmbH) operated at a repetition
rate of 0.5MHz with pulse FWHM of ~50 ps. Laser power was set at
between 54.7% and 100% and an ND filter used to modulate excitation
power as desired. We trialled a series of different excitation power
settings (see Supplementary Fig. S1) with estimated fluence at the
sample surface of 0.005 to 2.9mJ/cm2 (pulse energy of 0.03 to
14 pJ= 1013 to 1016 photons/pulse/cm2). These control experiments
carefully adjusting the excitation fluence show that singlet-singlet an-
nihilation affects the magnitude of lifetimes but do not cause the
changes in lifetimes observed due to lipids [45]. A moderate fluence
(0.39 mJ/cm2) and low fluence (0.05 mJ/cm2) were used subsequently.
Note, LHC-II trimers under excess detergent and on a Teflon-coated
glass substrate (to prevent protein-surface association) has 〈τ〉=3.9 ns,
consistent with previously published data for non-quenched LHCII [29].
No significant photo-bleaching was observed by microscopy. Emission
spectra were captured with a slit width of 500 μm and a 150 line mm−1

grating at spectrometer central wavelength of 680 nm, collected
through a 594 nm longpass filter by the EMCCD. Time-resolved spectra
were captured with a slit width of 500 μm and a 300 line mm−1 grating
at spectrometer central wavelength of 682 nm, collected through a 679/
41 nm bandpass filter and focusing slits (effective bandwidth ~5 nm) by
a photomultiplier tube (PMT) detector. Timing electronics were a time-
correlated single-photon counting (TCSPC) module (SPC-150, Becker &
Hickl). Each fluorescence image and the spectra were averages of 8
frames with 0.25 s exposure time; time-resolved measurements gen-
erally had 4 s collection time. Analysis of fluorescence decay curves was
performed using TRI2 software (v2.8.5) fitting to a bi-exponential
function, reconvoluting with the measured IRF, and minimizing re-
siduals and chi2 to< 1.1. All graphs were generated using OriginPro
(v9.1) and figures produced using Xara Photo & Graphic Designer.

3. Results

All relevant raw and analysed data are freely available in an online
repository [46].

3.1. Purification of LHCII trimers

LHCII was prepared following well-established protocols modified
to give a high purity of trimers (see Methods section). Briefly, thyla-
koids were extracted from spinach leaves, digested using α-DDM and
LHCII trimers were isolated by sucrose gradient sedimentation. SDS-
PAGE reveals that LHCII had a reasonable purity after the sucrose
gradient stage (one strong band with Coomassie staining, Fig. 1A) and
indeed material of this purity has often been used in previous studies of
LHCII aggregates [28]. The trimeric form of LHCII was further purified
by subsequent high-resolution size-exclusion chromatography. Minor
contaminants observed in the sucrose gradient sample with a high
sensitivity Sypro Ruby stain were almost entirely removed via the

chromatography stage (Fig. 1B) and small amounts of LHCII monomers
were also removed to produce a final high purity sample where the
trimeric state of LHCII was predominant, as shown by non-denaturing
PAGE (Fig. 1C). LHCII trimers were optically characterized in a dilute,
stable form in detergent solution in standard cuvette-based absorption
and fluorescence spectrometers (at 10 nM LHCII in 0.03% α-DDM): an
absorbance spectrum with Chl a Qy maximum at 675 nm (Fig. 1D), an
emission maximum at 681 nm (Fig. 1D) and a fluorescence decay curve
fitted to an amplitude-weighted fluorescence lifetime of τ=3.8–4.0 ns
(Fig. 1E). These spectroscopy data are characteristic of purified trimeric
LHCII in a highly-emissive native state [29, 31].

In subsequent FLIM measurements of LHCII on a surface, we
monitor the fluorescence emission spectrum and compare its similarity
to the (above) control of native LHCII as an important confirmation that
our protein is intact and functional (no protein damage). By preferential
excitation of chl b and monitoring chl a, this fluorescence emission
measurement assesses intra-complex chl b→ chl a energy transfer and
thus the level of connectivity of LHCII, as described below (and see
Supplementary Fig. S2). In the native LHCII, all chlorophylls and car-
otenoids are highly connected so that energy rapidly equilibrates across
the complex [47]. As a result of downhill energy transfer, steady-state
fluorescence emission spectra of functional LHCII are dominated by the
low-energy “terminal emitter” chl a which have a Qy transition at
681 nm, rather than chl b (Qy transition at 640–650 nm) [29, 31]. In our
measurements of fluorescence emission from surface-bound complexes
we selectively excite chl b via laser excitation at 485 nm (the chl b Soret
band at 480 nm, c.f. the chl a Soret band at 430 nm) and look for
emission>600 nm. Observation of a peak with identical shape and
peak wavelength is good evidence that chl a and chl b are well con-
nected. Thus, by ruling out bulk protein-pigment configurational
changes, we consider that changes to the fluorescence decay curves
(and fitted lifetimes) are due to switching of some LHCII into quenched
states.

3.2. Topographic mapping of the in vitro model of LHCII aggregates

AFM showed that trimeric LHCII self-assembled into domains of
varying sizes onto clean, atomically flat mica substrates (Fig. 2; a gal-
lery of further images is shown in Supplementary Fig. S3). Control was
exercised over the amount of LHCII deposited on the surface, by varying
the concentration of LHCII in the solution incubated with the mica for a
constant time before washing away unbound protein (Fig. 2A–D). A
qualitative trend was shown where the surface coverage increased with
LHCII concentration (Fig. 2G), as may be expected for deposition of self-
associating colloids on a surface. High resolution AFM topographs
(Fig. 2E–F) reveal domains that contain closely-packed particles with
approximate diameters of 10 nm. The maximal height of protrusions
above mica was usually ~6 nm, although heights of 7–8 nm are ob-
served, which may be due to packing constraints lifting the protein
slightly off the mica. These dimensions are in good agreement with the
dimensions of trimeric LHCII from crystal structures [4]. There was no
evidence of large 3-D aggregates, which might be expected if extensive
aggregation occurs in solution prior to surface association or if LHCII
complexes were stacked on the mica substrate. The above observations
support the notion that LHCII trimers associate in a process likely to be
promoted by and nucleated at the flat mica surface. We expect the lu-
menal or stromal surface of LHCII interact with the solid surface, be-
cause electrostatic attractive interactions between the polar extrinsic
residues of LHCII and the mica lattice are more thermodynamically
favourable than an interaction between hydrophobic transmembrane
segments of LHCII and the mica. From the resolution of our AFM data
we cannot distinguish the orientation of LHCII (luminal-side or stromal-
side up). We rule out any significant distortion of the complex by means
of the fluorescence emission measurements (described later) which
provide evidence that the protein is intact and functional.
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3.3. Fluorescence lifetime imaging demonstrates LHCII aggregates in a
highly quenched state

FLIM was used to measure samples on mica substrates identical to
those described above, except that samples were sealed including an
enzyme-based oxygen-scavenging system to provide an oxygen-free
environment for consistent fluorescence studies (see Methods).
Epifluorescence images showed a homogenous level of fluorescence
over hundreds of microns (Fig. 3A, LHCII (aggr.)). The 681–682 nm
emission maximum of LHCII aggregates was very similar to the emis-
sion maximum of a control sample of LHCII in DDM (Fig. 3B, LHCII
(aggr.) vs LHCII (DDM)). Thus, deposition of LHCII on mica did not
denature or damage the complex, or cause major changes to pigment
organisation.

Analysis of the fluorescence decay curves derived from the FLIM

data (Fig. 3C) allowed precise quantification of the amount of
quenching in each sample. LHCII aggregates on mica had much faster
fluorescence decay when compared to LHCII in DDM (Fig. 3C, arrow 1).
Modelling each decay curve as a bi-exponential decay function pro-
duced excellent fitting (chi-squared values< 1.1 and low residuals, see
Fig. 3C). Lifetime component analysis showed that the amplitude-
weighted average lifetime, 〈τ〉, was very short at between 0.20 and
0.29 ns for all surface densities measured when compared to LHCII in
DDM at 2.22 ns, irrespective of excitation fluence (Table 1, for further
data, see Supplementary Fig. S1). Note that the very similar 〈τ〉 for all
surface densities is consistent with the AFM observation that domain
size and therefore the number of connected LHCII did not vary sig-
nificantly with LHCII concentration, merely the overall surface cov-
erage (i.e. number of domains not their size) (Fig. 2A–D). Further
fluorescence decay curves and emission spectra confirming the trends

Fig. 1. Purification of LHCII trimers. Standard denaturing SDS-PAGE of LHCII samples either with Coomassie staining (A), or more sensitive Sypro Ruby fluorescent
staining (equivalent detection to silver staining) (B), or the non-denaturing Clear Native PAGE (C). Pre-stained protein standards (X), crude thylakoid membranes
after α-DDM solubilisation (Thy), LHCII after isolation on sucrose density gradients (1), LHCII trimers after addition purification by size exclusion FPLC chroma-
tography (2). The position of the band expected to represent trimeric or monomeric LHCII is indicated (Tri or Mon, respectively). (D) Cuvette-based absorption
spectrum (blue) and overlaid fluorescence emission scan (red) of LHCII at 10 nM LHCII (in 0.03% α-DDM, 20mM HEPES, pH 7.5). Excitation at 473 nm with slit
width=4 nm, emission slit width=1 nm. (E) Cuvette-based time-resolved fluorescence measurement of the same LHCII sample produced a fluorescence decay
curve as shown, average lifetime=3.85 ns (see Table 1). Excitation with 473 nm pulsed laser, emission slit width= 1 nm. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Visualization of the aggregated domains of LHCII by atomic force microscopy. (A)–(D): Representative AFM topographs showing the arrangements formed by
deposition of LHCII onto mica substrates for 20min at a range of LHCII concentration from 1000 to 100 nM. Substrates were washed with buffer prior to imaging. (E)
High resolution topograph showing LHCII trimers and height profiles (below). (F) 3-D representation of (E). (G) Graph showing the area of the substrate occupied by
LHCII (% of total) vs concentration of LHCII applied.
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described are shown in Supplementary Figs. S4 and S5. Note that the
fluorescence decay of LHCII solution above mica at high concentration
(1000 nM) did not change in a sample studied over many hours
showing that large aggregates did not form in solution. This somewhat
shorter lifetime of 2.2 ns for LHCII diluted with detergent-free buffer
compared to the ~4 ns lifetime measured for isolated dilute LHCII in
high-detergent solution is probably due to a lower detergent-to-protein
ratio [48] which may represent the formation of limited LHCII self-
associations in solution prior to nucleation on the mica promoting ex-
tensive LHCII-LHCII packing.

3.4. Lipids cause a rearrangement of LHCII and a less-quenched system

We investigated the way in which LHCII aggregates are affected by
lipids, as these molecules form the natural biological environment for
membrane proteins. Furthermore, supported lipid bilayers (SLBs) on
glass or mica are an established system for the dynamic study of sim-
plified model membranes [49]. The common phospholipid dioleoyl
phosphocholine (DOPC) (net-neutral, zwitterionic) was initially used in
the current study because it forms high-quality bilayers with laterally-
mobile lipids on hydrophilic substrates [50], and the physical chemistry
of this process is well characterized [51]. Parallel samples of LHCII
deposited onto mica at a moderate concentration (600 nM) were stu-
died, either with or without incubation with lipid vesicles (samples
were washed with fresh buffer prior to imaging, in either case). LHCII-
only samples showed 2-D aggregate structures comparable to previous
experiments (Fig. 4A–B), whereas samples incubated with lipid vesicles
showed major differences likely interpreted as lipid bilayer formation
around LHCII (Fig. 4C–D). Firstly, the majority of protrusions were only
1–2 nm above the immediately obvious surface, which correlates to
extrinsic regions of LHCII protruding above the lipid bilayer. The lipid
bilayer appears highly contiguous with very occasional holes found
every few um2 (as is commonly reported for SLBs formed using this

vesicle rupture technique). The height of the bilayer relative to the mica
support was measured as ~4 nm at these defects (Fig. 4D, blue height
profile), as expected for DOPC [50], therefore LHCII occupied a total
height of 5–6 nm, in agreement with our AFM measurements without
lipids. This confirmed that LHCII was successfully incorporated into the
lipid bilayer.

Secondly, at a qualitative level there appeared to be more space
intervening between neighbouring LHCII and some LHCII particles
were clearly separated by over 20 nm. AFM analysis of these sample
including lipids was more challenging with some poorly defined par-
ticles which may relate to a mobile population of LHCII (AFM scanning
will produce “streaky” protrusions for moving particles). The trend for
greater separation between LHCII in lipid-containing samples was ap-
parent from height profiles drawn across representative pairs of LHCII
(Fig. 4I). To substantiate this we performed a manual analysis of esti-
mated centre-to-centre distance measured between nearest neighbour
LHCII particles (see Table 2 and Supplementary Fig. S6 for further
details). This confirmed a significantly greater average separation be-
tween LHCII due to the presence of lipids (13.5 ± 2.1 versus
10.5 ± 2.2 nm). Whilst there is a degree of uncertainty in the absolute
values due to any errors in AFM scanning, the relatively broad S.D.s
likely reflect genuine heterogeneity of LHCII separation. Thirdly, the
fraction of the substrate surface area occupied by LHCII was sig-
nificantly lower in the sample containing lipids (14% vs 28%, see
Table 2 and Supplementary Fig. S7). This is likely to be due to lipid
vesicles acting as a surfactant and removing some LHCII during the
process of lipids diffusing around the membrane protein and causing
rearrangements. Washing the sample with detergent-free buffer at the
end of the lipid vesicle incubation period before imaging may halt the
process of rearrangements by removing the source of excess lipids. This
third effect may limit the accuracy of defining the protein-to-lipid ratio
and reproducibility between samples.

A further series of experiments was performed using vesicles

Fig. 3. Fluorescence lifetime and spectral imaging microscopy (FLIM) of LHCII on mica under detergent, as aggregates (without lipid), and with lipids.
(A) Representative epifluorescence images of LHCII on mica as aggregates, LHCII (aggr.) (deposited at 1000 nM LHCII trimers for 20min, washed), or after incubation
with lipid vesicles and gentle washing, LHCII (DOPC) (600 μM lipids for 20min). Image brightness was increased for LHCII (aggr.) to be comparable for clarity. (B)
Fluorescence emission spectra acquired of representative diffraction-limited regions from each sample. The alternative lipid sample using thylakoid lipid vesicles is
denoted as LHCII (Thy) and the additional control sample of LHCII in detergent solution ~5 μm above mica are also shown, LHCII (DDM). (C) Picosecond time-
resolved fluorescence decay curves of representative regions from samples. Bi-exponential curve fitting (solid black lines) and residuals shown, labelled as in (B). The
Instrument Response Function (IRF) is shown (dotted line), with a measured full-width at half-maximum (FWHM) of ~170 ps. All decay curves normalized to a
maximum of 1000 counts (dividing raw data for DDM, DOPC, Thy and aggr. by 8.64, 2.44, 2.06 and 1.15, respectively). Arrows represent the proposed process (1): the
deposition of LHCII onto mica and aggregation-induced faster decay, and process (2): addition of lipids causing limited dis-aggregation and slower decay. Note, only
regions of homogeneous fluorescence in observed in LHCII (lipids) were analysed in (B) and (C) for reproducibility, bright spots were avoided. All samples were
measured under N2-sparged buffer solution containing the oxygen-scavenging system of PCD/PCA. (D) Graph showing the average fluorescence lifetime 〈τ〉 against
the concentration of LHCII incubated with mica, as in Table 1.
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composed of natural thylakoid lipids monogalactosyl diacylglycerol
(MGDG), digalactosyl diacylglycerol (DGDG), sulfoquinovosyl dia-
cylglycerol (SQDG), phosphatidylglycerol (PG). Thylakoid lipids are
less tractable as they do not form normal supported lipid bilayers on
planar substrates due to the high content of the non-bilayer (high
curvature) lipid MGDG [52]. Several preliminary experiments were
performed to optimize the lipid composition and buffer conditions for
the thylakoid liposomes in order to achieve a high-quality, contiguous
supported lipid bilayer comparable to those of 100% DOPC. After initial
tests with either the native mixture of thylakoid lipids or 100% DGDG
were unsuccessful, 25% DOPC was incorporated into the thylakoid lipid
mixture to promote formation of planar bilayers [44] which are
amenable to surface-based work. This gave a final adapted mixture
comprised 35% MGDG, 20% DGDG, 12% SQDG, 8% Soy PG, 25%
DOPC (w/w%). These lipids appeared to be well mixed on a surface
(and are thus available to interact with LHCII) as suggested by the
observation that these membranes have excellent lateral lipid mobility
and homogenous appearance both at the microscale (by fluorescence
microscopy, see Supplementary Fig. S8) and nanoscale (by AFM, see
Fig. 4G–H), with no evidence of lipid phase segregation. The buffer
used in the lipid incubation stage was adapted to contain 5mM CaCl2 to
support the association of charged lipids with the substrate (see Sup-
plementary information). We note that divalent cations could affect
LHCII aggregation, but we do not observe any evidence of adverse ef-
fects.

Using the thylakoid-optimized protocol, we performed parallel

experiments on LHCII aggregates, before and after thylakoid lipid ve-
sicle addition. AFM data showed a higher initial surface coverage of
aggregated LHCII (Fig. 4E–F) but after thylakoid liposome addition we
observed the same trend as described for DOPC lipids: reduced surface
coverage of LHCII (Fig. 4G–H) and a significant spacing out of LHCII
protrusions. We did not attempt a quantitative analysis of AFM data
from the thylakoid lipid membranes as the resolution did not appear as
high as for DOPC, probably due to the more challenging nature of the
sample. We conclude that the effect of thylakoid lipids is comparable to
that observed for DOPC, showing no significant difference due to lipid
type.

Fluorescence microscopy of lipid-containing LHCII on mica samples
at a range of LHCII surface densities revealed significant differences to
those without lipids, firstly, a significant increase in the intensity of
fluorescence, approximately 5–10 fold higher with lipids versus without
lipids. We did not attempt to quantify the absolute fluorescence counts
because slight differences in the thickness of mica substrates may at-
tenuate the fluorescence intensity to different degrees; instead we fo-
cussed on fluorescence lifetime data analysis which is not biased by
signal intensity. A second qualitative difference was the observation of
small numbers of brighter fluorescent spots which appeared to be mo-
bile (Fig. 3A, LHCII (DOPC)). These are likely to be lipid vesicles as-
sociated (possibly tethered) to the membrane surface, as commonly
observed in studies on lipid-only bilayers [50]. As the lipids used are
not fluorescent, these surface-associated vesicles must contain LHCII
lifted from the surface. We wished to correlate fluorescence data with

Table 1
Analysis of FLIM data comparing the fluorescence lifetime of LHCII on mica.

Sample [LHCII] (nM)a Lipids/DDM? Excitation fluence (mJ/cm2)f A1 (%) τ1 (ns) A2 (%) τ2 (ns) 〈τ〉 (ns) 〈τ〉 S.D. (ns)

10b DDMb 0.39 98 3.73 2 8.96 3.85 N/A
1000c DDMc 0.39 49 3.32 51 1.17 2.22 0.04
200 None 0.39 24 0.35 76 0.19 0.23 0.07
400 None 0.39 4 0.70 96 0.21 0.22 0.02
600 None 0.39 2 1.08 98 0.21 0.23 0.02
800 None 0.39 3 1.26 97 0.24 0.27 0.01
1000 None 0.39 2 1.28 98 0.23 0.26 0.02
200 None 0.05 41 0.32 59 0.19 0.23 0.04
400 None 0.05 24 0.30 76 0.19 0.21 0.03
600 None 0.05 14 0.32 86 0.18 0.20 0.03
800 None 0.05 23 0.30 77 0.19 0.22 0.03
1000 None 0.05 29 0.38 71 0.25 0.29 0.04
400 PC lipidsd 0.39 19 2.04 81 0.60 0.86 0.08
600 PC lipidsd 0.39 16 1.68 84 0.56 0.73 0.04
800 PC lipidsd 0.39 21 1.33 79 0.47 0.65 0.04
1000 PC lipidsd 0.39 18 1.84 82 0.58 0.81 0.03
400 PC lipidsd 0.05 33 1.46 67 0.72 0.96 0.08
600 PC lipidsd 0.05 17 1.56 83 0.75 0.88 0.04
800 PC lipidsd 0.05 33 1.35 67 0.73 0.93 0.06
1000 PC lipidsd 0.05 26 1.51 74 0.60 0.82 0.07
400 Thy lipidse 0.39 6 2.34 94 0.53 0.65 0.06
600 Thy lipidse 0.39 6 1.70 94 0.51 0.58 0.02
800 Thy lipidse 0.39 14 1.25 86 0.47 0.56 0.11
1000 Thy lipidse 0.39 8 1.78 92 0.51 0.61 0.03

Fitted lifetime components (τ) are expressed in terms of their percentage amplitudes (A).
〈τ〉 is the amplitude-weight average lifetime, standard deviation shown, 8 measurements per sample (except for c, n=3, where signal/noise was very high).
Fitted z-parameter was always approx. 0.1–0.2% of (A1+A2), is not discussed further.

= + +
− −Fluor t A e A e z( ) 1. 2.t t/τ1 /τ2

a Denotes concentration of LHCII solution incubated with mica surface for 20min followed by washing surface with copious buffer to remove unbound protein,
except for (b).

b Control sample, lifetimes measured from 10 nM LHCII in high-detergent solution using a cuvette-based spectrophotometer, data from Fig. 1E (all other samples
measured using FLIM).

c Control sample, lifetimes measured from 1000 nM LHCII in low-detergent solution above mica (~5 μm).
d Incubated with DOPC lipid vesicles (600 μM) for 20min, following LHCII adsorption to mica.
e Incubated with thylakoid lipid vesicles (600 μM) for 20min, following LHCII adsorption to mica.
f Excitation fluence was calculated from the measured average power, known repetition rate and pulse FWHM and estimated losses (for full details, see

Supplementary Fig. S1).
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the AFM mapping, which may not resolve these mobile structures;
therefore, only stable regions of homogenous fluorescence intensity
were analysed.

Emission spectra of these LHCII on mica samples in the presence of
lipids showed the expected LHCII peak shape and maximum at
~681 nm, very similar to the spectra recorded for aggregates, with only
minor peak broadening (Fig. 3B). Thus, the vast majority of protein is
intact and in a native-like lipid environment. Picosecond fluorescence
lifetime measurements on these samples revealed that lipid addition
had indeed reduced the level of quenching by LHCII, manifested here as
a slower decay compared to LHCII aggregates (see Fig. 3C, arrow 2),
which is intermediate compared to LHCII solubilized in DDM. The
average lifetime for lipid-LHCII samples was significantly higher at
〈τ〉=0.65–0.96 ns (DOPC) and 〈τ〉=0.56–0.65 ns (thylakoid lipids)
compared to LHCII aggregates at 〈τ〉=0.20–0.29 ns (see Table 1), in
agreement with the increased fluorescence intensity noted above.
LHCII-lipid samples analysed with moderate fluence (0.39 mJ/cm2)
compared to low fluence (0.05 mJ/cm2) had slightly reduced 〈τ〉 sug-
gesting a subtle effect of potential singlet-singlet annihilation effects
(0.65–0.86 ns compared to 0.82–0.96 ns). Annihilation effects due to
high excitation power were further considered in the Supplementary
information (see Fig. S1).

There did not appear to be a trend between different LHCII con-
centrations for lipid-containing samples (see Fig. 3D) and any differ-
ences are expected to reflect inconsistencies between lipid vesicle

surfactant effects and washing processes which may be challenging to
standardize (i.e. controlling the fluid dynamics caused by pipetting).
Irrespective of sample to sample differences and (with or without) po-
tential annihilation effects causing variation in absolute values, several
repeated sample sets confirmed that the lifetimes observed after lipid
addition were consistently significantly higher than before, see Fig. 3D.
For additional fluorescence decay curves and emission spectra con-
firming these trends see Supplementary Figs. S4 and S5. Considering
the separate lifetime components (Table 1): whilst LHCII aggregates
were dominated almost entirely by the fast component τ2 (0.25 ns) with
A2 > 95%, LHCII incorporated within lipid membranes had a lesser
amplitude contribution A2=80–95% of fast component τ2 (0.4–0.6 ns)
and A1=5–20% contribution of the slower component τ1 (1.3–2.0 ns)
which suggests two sub-populations of LHCII in different quenched
states, similar to the two states found for LHCII in DDM with roughly
50% contribution each from the fast and slow components (at τ2–1.2 ns
and τ1 > 3 ns).

4. Discussion

4.1. Observation of quenched LHCII aggregates vs less-quenched LHCII in
membranes

Aggregates of LHCII, the commonly studied in vitro model for NPQ,
were directly visualized as tightly-packed 2-D assemblies on a mica

Fig. 4. LHCII domains on mica before and after addition of lipids.
(A) AFM topograph of aggregated LHCII domains (deposited at 600 nM for 20min, washed). (C) AFM topograph of a parallel sample to (A), but after incubation with
DOPC lipid vesicles (600 μM for 20min) and gentle washing. (E) AFM topograph of aggregated LHCII domains (deposited at 1000 nM for 20min, washed with salts).
(G) AFM topograph of a parallel sample to (E), but after incubation with thylakoid lipid vesicles (600 μM for 20min) and gentle washing. (B), (D), (F), (H) Higher
magnification regions of (A), (C), (E), and (G), respectively, with height profiles (below). (I) Series of height profiles across representative LHCII protrusions. Red:
across LHCII in aggregates from (A); or blue: across LHCII in DOPC SLBs from (C). (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Table 2
Analysis of AFM measurements comparing the effect of lipid membranes on LHCII organisation on mica.

Sample [LHCII] (nM)a Lipids/DDM? Surface coverage with LHCII ± S.D. (% total substrate area)c Nearest neighbour LHCII distance ± S.D. (nm)d

600 None 27.9 ± 1.6 10.5 ± 2.2
600 Lipidsb 14.2 ± 1.4 13.5 ± 2.1

a Denotes concentration of LHCII solution incubated with mica surface for 20min followed by washing surface with copious buffer to remove unbound protein.
b Incubated with DOPC lipid vesicles for 20min, following LHCII adsorption to mica.
c Mean of at least 4 AFM images taken of different regions of the substrate, standard deviation (S.D.) shown.
d Mean of well-resolved LHCII-LHCII pairs, S.D. shown (n=49, 51, respectively).
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substrate by AFM with single-protein resolution and optically char-
acterized by FLIM. We show that within this highly tractable system
LHCII quenching may be manipulated through the simple addition of
lipids, with reduced LHCII-LHCII interactions promoting a more fluor-
escent state of the complex (see schematic representation, Fig. 5). AFM
showed that the mica surface area % coverage with LHCII could be
controlled by varying concentration of LHCII in the incubation solution,
but that LHCII always associated into domains (Fig. 2). After sub-
sequent incubation with lipid vesicles, AFM revealed that LHCII in-
corporated into lipid membranes and rearranged into a more widely-
spaced configuration (Fig. 4, Table 2). FLIM on parallel samples (Fig. 3,
Table 1) showed that LHCII fluorescence lifetime decreased as follows:
LHCII (in detergent solution) > LHCII (in lipid membranes on
mica) > LHCII (aggregates on mica). The effects were very similar
whether considering a model bilayer of phospholipids or the natural
thylakoid lipids. Singlet-singlet annihilation effects did not affect this
trend but may decrease lifetimes by 10–30% (shown by variation of
excitation fluence Figs. 3D, S1). To our knowledge, this is the first in
vitro correlation of high resolution protein arrangement (via AFM) to
the quenched state (via FLIM) of just a few LHCII assemblies. We
conclude that lipids cause important changes in vitro that may be im-
portant within the natural thylakoid membrane, namely that lipids
modulate the extent of LHCII-LHCII interactions and therefore the
propensity for the complex to activate NPQ.

4.2. Advantages of the mica substrate and the biological importance of the
lipid environment for FLIM/AFM

Muscovite mica is a sheet silicate that can be cleaved to reveal a
near-perfectly flat hydrophilic surface and has long been used as an
ideal support for samples in AFM studies, including the majority of
high-resolution studies on LH membranes [53–58] and on phase-seg-
regating SLBs [59]. However, mica is not ideal for optical microscopy as
it not entirely transparent, nor rigid, thus glass is a more common
substrate for optical microscopy for ease-of-use considerations.

Furthermore, the surface chemistry of cleaved mica is not straightfor-
ward [60], whereas silane chemistry for functionalization of bor-
osilicate glass is well-established. Vasilev et al. [28] demonstrated a
novel protocol for nanoscale array patterning of LHCII, with covalent
attachment of the protein to glass. The authors showed that detergent
induced reversible switching of surface-bound LHCII between quenched
and nonquenched states. In the current study we take an alternative
approach by using thinly-cleaved mica as a flat substrate which pro-
vides a non-specific, non-covalent ionic association to the protein/lipid
materials and is amenable to high resolution AFM. This substrate pro-
moted the controlled self-assembly of LHCII and apparent confinement
in two dimensions producing single-layer protein domains (Fig. 2), as
compared to the large 3-D aggregates assumed to occur when detergent
is removed from LHCII in aqueous solution [25, 26]. Note that if we
instead used a hydrophilic glass coverslip as a substrate (without any
silanization) very little LHCII was found on the surface by AFM or
fluorescence microscopy (data not shown). We could control the frac-
tion of the mica surface covered with LHCII into either isolated rela-
tively-small 25–100 nm width patches or a densely packed network
(Fig. 2). The fact that across all measured LHCII surface coverages we
found that the degree of quenching is similar (Table 1) confirms that
long-range energy transfer between many LHCII is not critical for
quenching in aggregates. Thus, controllable 2-D cluster formation of
LHCII on mica allowed correlation of spatial information of AFM that is
crucial to confirm the protein arrangement for clear interpretation of
functional information gained by optical imaging.

The fact that protein (and lipid) association with the surface is non-
covalent allows rearrangement or removal of components which may
be desirable or undesirable. It is well-known that lipid bilayers sup-
ported on glass or mica (SLBs) are fluid [49], i.e. lateral diffusion of
lipid molecules occurs, due to a 0.5 nm thick water layer spontaneously
formed between the substrate and during lipid bilayer self-assembly
[61]. We note that SLBs of both DOPC and the thylakoid lipid mixture
showed high fluidity on mica (Fig. S8) expected for high quality con-
tiguous membranes. We should also consider the lateral diffusion (or
not) of LHCII. On mica LHCII in 2-D aggregates appears to be immobile
due to its interaction with the substrate (Fig. 2). This could be modu-
lated in future studies by use of a polymeric cushion layer to allow
membrane protein diffusion [62]. The technical difficulty that we found
when imaging LHCII samples after lipid membrane formation by AFM
(Fig. 4, streaky/blurred regions of images) could hint that some of the
LHCII that remains within the lipid bilayer is now laterally-mobile, but
this is yet to be confirmed. Another consideration is the orientation of
LHCII, which may be 50/50% “up”/“down”, compared to the specific
luminal/stromal orientation of LHCII in natural thylakoids. Alter-
natively, LHCII orientation can be controlled by crosslinking of specific
residues to the substrate [28], although this would disallow protein
diffusion. A challenge of the transient nature of the LHCII-mica inter-
action is that we found a portion of LHCII was removed from the surface
by lipid vesicles (manifested as a reduced surface area coverage,
Table 2), which may limit the consistency between samples. If the
laterally-mobile LHCII could be controlled this would be relevant for
the biological situation, as LHCII rearrangements within natural thy-
lakoid membrane are involved in NPQ [22].

Detergents are often suggested to mimic the native environment of
transmembrane proteins, but single-chain surfactants are clearly very
different to lipids and may stabilize various non-native protein con-
formations. We have demonstrated an intermediate level of complexity
where a native-like membrane environment can be generated by ad-
dition of lipid vesicles to pre-formed protein clusters and protein-pro-
tein/lipid communication is allowed, the same logic as applied in
proteoliposome studies, but with the advantage of depositing the
samples on a planar support allowing high-resolution microscopy of
AFM and FLIM. By extension, the lipid membrane environment also
allows the option of inclusion of membrane-soluble cofactors of re-
levance to photosynthesis, for example, a recent study constructed in

Fig. 5. Schematic of possible arrangements of LHCII on mica.
Cartoon representation showing how LHCII in 2-D aggregates on a surface (with
a possible detergent perimeter) has low fluorescence (quenched state) because
of self-associations due to tight packing, in comparison to the greater LHCII
separation we observe when in a lipid bilayer and greater fluorescence (less
quenched). These interactions are likely to be driven by thermodynamics and
the hydrophobic effect, shielding apolar regions of the protein from water.
These AFM images (adapted from Fig. 4, all to scale) were acquired on the same
day with the same AFM probe and are therefore highly comparable and “more
space” around LHCII is apparent with lipids. Positions of LHCII were estimated
for this cartoon based on space-filling requirements where AFM resolution is
imperfect.
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vitro multi-layer membrane with quinones diffusing between enzymes
[63]. Further, there is the potential to extract and introduce new
components into any fluid SLB to modulate the membrane composition
[64] or force the direct membrane insertion of small membrane pro-
teins from detergent solution [65]. Developing a surface-based con-
trollable membrane could provide the flexibility to directly visualize
the effects of LHC and photosystem protein diffusion and rearrange-
ment [22, 40] or the effect of PsbS diffusing through the membrane to
LHCII [66].

4.3. Discussion of the exciton dynamics within LHCII

The protein scaffold of LHCII configures its bound pigments pre-
cisely with chlorophyll-chlorophyll and chlorophyll-carotenoid se-
parations of 10–15 Å [4], leading to rapid energy transfer and within
one monomer (intra-monomer) and spatial equilibration across the
trimeric LHCII complex (including somewhat slower inter-monomer
transfers) likely to occur in tens of ps [45, 47, 67]. Thus, considering
this relatively fast equilibration the overall lifetime represents the
fastest dissipative pathway. In the emissive state of LHCII this is re-
flected as fluorescent decay rate similar to a typical single isolated Chl
(lifetime ~4 ns) as energy is transferred to the terminal lower-energy
Chl a pigments and emitted at approximately 681 nm, a broad peak due
to subtle differences in the local environment around pigments. Alter-
natively, in the quenched state of LHCII a faster non-radiative dis-
sipative pathway occurs and there is less fluorescence (with life-
time<1 ns). Our sequential AFM/FLIM measurements provide protein
mapping with 1–2 nm lateral resolution and optical information of a
sub-micron region of interest (ensemble of ~100–500 LHCII within the
focussed laser spot) with temporal resolution for fluorescence lifetimes
of ~200 ps. As expected, we observe these signatures characteristic of
highly-emissive LHCII emission with 〈τ〉=2–4 ns in detergent solution,
whereas, when 2-D aggregates of LHCII assemble the lifetime is greatly
decreased to 〈τ〉=0.2–0.29 ns, approximately at our temporal resolu-
tion limit (Fig. 3, Table 1). Multi-exponential decay fits suggest that
each exponential represents a different decay pathway. The two life-
time components we observed are expected to represent two separate
states of LHCII each with a single dissipative route rather than two
dissipative pathways per LHCII, as proposed by others [27], due to
above-mentioned very rapid intra-complex energy equilibration. In
agreement with these studies, we observe by FLIM that both the long
and short lifetime component of LHCII are concomitantly reduced from
detergent to lipids to aggregates, as the average distribution of each
state we observe gets progressively quenched. Cuvette-based spectro-
meters make an ensemble measurement of billions of complexes
therefore may miss rare events, but can achieve higher temporal re-
solution of< 25 ps due to higher signal-to-noise via longer collection
times and narrower IRF. A previous report of aggregated LHCII trimers
in solution concluded an average of one LHCII in a highly-quenched
state per 4 LHCII trimers (〈τ〉 of 190 ps including an extremely short at
25–40 ps decay component and several longer components) [68]. Our
observations where just a few LHCII are averaged reveal 2-D clusters
ranging from 25 to 150 nm width and containing from 5 to 50 LHCII
trimers and average lifetime of ~250 ps, supporting this conclusion.

Note that whilst we observed dramatic fluorescence intensity and
lifetime changes, the shape of the LHCII emission peak was largely
unchanged and positioned at 681–682 nm in our FLIM of LHCII whether
in solution, in aggregates or in lipid membranes (Fig. 3). Recent single
molecule spectroscopy of isolated complexes has shown that LHCII
spontaneously switches between the nonquenched and multiple quen-
ched states due to the inherent protein conformational disorder of
LHCII [30], the latter having characteristic lower energy (red) states of
LHCII previously only detectable under cryogenic temperatures as
fluorescence peaking at 700 nm [36]. Importantly, the known NPQ-
inducing conditions of pH and Zea simply shifted the population to
access the quenched state for a greater time [31, 32]. These single-

molecule studies proposed a three state model between a nonquenched
state (high 681-nm emission and long lifetime) and two quenched states
(low emission at 700 or> 760 nm, short lifetime). The molecular me-
chanism for energy dissipation in the NPQ state is that additional dis-
sipative pathways become accessible due to subtle conformational
shifts of the protein changing the pigment configuration, bringing
terminal Chls critically closer to low-energy carotenoids, potentially
involving charge-transfer (CT) states or hybrid mixed CT-exciton states,
leading finally to non-radiative energy dissipation from the S1 state of
carotenoids as heat [16, 17, 33, 34]. Kruger and van Grondelle recently
reviewed differences between quenching due to high pigment con-
centration, aggregates and photoprotection in NPQ [69].

In the current study, we likely do not observe the red-shifted
emission spectra of low-energy states because our FLIM system mea-
sures the ensemble of the> 100 complexes within the focused laser
spot and the likelihood that these NPQ-states have low fluorescence
intensity and are only accessed for 1–2% of the time [31]. Thus, we
simply state that our FLIM measurements are in full agreement with
previous bulk spectroscopy measurements of NPQ, and, whilst our ex-
periments do not currently observe them, current NPQ mechanistic
proposals appear reasonable. We expect that protein-protein interac-
tions which are strong within aggregates but are limited by the in-
troduction of lipids (Fig. 5), are another effect that shifts the population
towards accessing an NPQ-like conformation. In order to observe the
low-signal low-occupancy red states of quenched complexes in future
LHCII/lipid/mica FLIM experiments, one could study LHCII at a suffi-
ciently low dilution within the lipid membranes that on average there is
only 1 complex present within the laser spot (the strategy employed by
single molecule studies), or alternatively, very high spatial optical re-
solution (< 10 nm) would be required to resolve the densely-packed
complexes. The former is challenging for our set-up to collect sufficient
signal and the latter would be highly technically challenging requiring
super-resolution detection of native chromophores (rather than idea-
lized fluorophores designed for super-resolution applications). We have
shown proof-of-concept for the utility of nanoscale topography and
optical detection of low-number of complexes for observing NPQ
switching, we suggest that extending this combinatorial approach to
also incorporate metal nanoparticles for localized enhancement of ex-
citation or emission [70] could allow the ultimate in vitro platform for
mapping how NPQ changes and exciton dynamics change within na-
tive-like membrane environments with single-protein optical and to-
pographic resolution.

4.4. Challenges and advantages of the thylakoid lipid system

The natural lipids of thylakoid membranes are unusual galactoli-
pids, and these provide the most realistic mimic of the natural mem-
brane environment, rather than common phospholipids. The most
prevalent thylakoid lipid, monogalactosyldiacylglycerol (MGDG), has a
high degree of negative curvature and is essential for correct thylakoid
multi-layer stacking [71]. LHCII requires the bound lipids DGDG and
PG to maintain its trimeric form [4, 72] and a membrane environment
including MGDG and DGDG increases the stability and activity of LHCII
and PSII [73, 74]. The thylakoid membrane environment will also be
important for any process which requires in-membrane protein-protein
interactions e.g., PsbS [66]. However, the highly-curved lipid MGDG is
challenging to work with as it forms inverse hexagonal (HII) phases
[52]. Proteoliposomes containing LHCII and thylakoid lipids are stable
due to the inherent curvature of a vesicle and are becoming the stan-
dard for in vitro studies of NPQ in solution [27, 40, 41, 43, 66, 75, 76],
however, proteoliposomes are not conducive to high resolution ima-
ging. Few studies have achieved the formation of planar bilayers of
thylakoid lipids on a solid support as required for high resolution mi-
croscopy, due to the high curvature of MGDG [44]. We have demon-
strated that it is possible to generate membranes including LHCII with
thylakoid lipid mixtures on solid supports, and found similar protein
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rearrangements and similar intermediate levels of quenching as when
using DOPC phospholipids (Figs. 3–4; Table 1).

5. Conclusions

The experimental system we have demonstrated in which lipids and
LHCII are assembled on a mica surface may be considered as a highly-
simplified analogue to the natural thylakoid membrane system with the
added advantage that planar domains of LHCII can be readily imaged
with AFM, unlike highly curved liposomes, allowing nanoscale ar-
rangement of complexes to be correlated with their functional proper-
ties. Indeed, the lifetime of the LHCII-lipid-mica system (〈τ〉 of
0.5–0.9 ns) parallels that found in liposomes and for native thylakoid
membranes within chloroplasts: for example, Moya and co-workers
found 〈τ〉 ~0.7 ns in proteoliposomes at high protein/lipid ratio [27]
whereas Johnson and Ruban found 〈τ〉 from 0.6 to 1.6 ns, for chlor-
oplasts undertaking NPQ in the presence of zeaxanthin [35]. This
‘poised’ state of LHCII found in lipid bilayers has been found to be more
amenable to alterations in pH and xanthophyll content and so could
provide a useful mimic of the in vivo system [66, 76]. The current study
shows that the LHCII-lipid-mica system provides several advantages
over common solution-based proteoliposome studies, but requires fur-
ther refinement to mitigate the effect of lipids removing LHCII from the
surface and to observe single-molecule mechanistic details. Future
analysis of this system could include the addition of the PsbS protein,
the xanthophylls zeaxanthin or violaxanthin and alteration of the pH in
order to study their crucial NPQ-related effects in a controlled and
traceable biologically-relevant membrane environment.
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