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Abstract—In this paper, we focus on reducing the on-grid en-
ergy consumption in Heterogeneous Radio Access Networks (Het-
Nets) supplied with hybrid power sources (grid and renewables).
The energy efficiency problem is analyzed over both short- and
long-timescales by means of reactive and proactive management
strategies. For short-timescale case, a renewable-energy aware
User Equipment (UE)-Base Station (BS) association is proposed
and analyzed for the cases when no storage infrastructure
is available. For long-timescale case, a traffic flow method is
proposed for load balancing in renewable energy BSs, which is
combined with a model predictive controller (MPC) to include
forecast capabilities of the renewable energy source behavior in
order to better exploit a Green HetNet with storage support.
The mechanisms are evaluated with data of solar measurements
from the region of Valle de Aburrá, Medellı́n, Colombia and
wind estimations from the Moscow region, Russian Federation.
Results show how the green association proposal can reduce on-
grid energy consumption in a HetNet by up to 34%, while is able
to exceed the savings obtained by other methods, including the
best-signal level policy by up to 15%, additionally providing high
network efficiency and low computational complexity. For the
long-timescale case, MPC attainable savings can be up to 22%
with respect to the on-grid only Macro-BS approach. Finally,
an analysis of our proposals in a common scenario is included,
which highlights the relevance of storage management, although
emphasizing the importance of combining reactive and proactive
methods in a common framework to exploit the best of each
approach.

Index Terms—Renewable Energy, Energy-aware management,
Wireless networks and cellular networks, Energy- Efficiency,
Green Radio, Heterogeneous Networks

I. INTRODUCTION

The fast pace of growth in mobile networks is well-known.

The latest advances in 4G-LTE, and lately the motivated

research towards 5G and beyond, show that progress will

continue rapidly over the following years. This evolution is

a result of the ever-increasing data traffic as a result of

an exponential rise of the number of subscribers and mo-

bile devices, which run data-hungry applications, i.e., video

streaming, cloud storage, social networking, and multimedia

content. According to [1], mobile traffic will increase at a

compound annual growth rate of 46% for the period of 2016

to 2021, with currently more than 8 billion mobile devices

in service. For the telecommunications industry this implies a

need to increase infrastructure deployment for the Core and

Radio Access Network (RAN), which means higher capital

and operational expenditures, i.e., CAPEX and OPEX respec-

tively. One important item related to OPEX are the energy

costs, which could be lowered by means of renewable energy

utilization. In addition, the utilization of conventional energies

like fossil fuels increase CO2 footprint caused by operating the

network. Despite the hard work and initiatives to mitigate and

improve systems efficiency the figure for 2020 is expected to

reach 2.3% (1.3Gtons CO2) of the global emissions (55Gtons

CO2) [2]. Furthermore, the use of conventional energy supply

present obstacles for implementation in developing countries

due to the limited ability to bear the costs, resource availability

and the associated technologies needed. For example, accord-

ing to statistics in 2011, around 1.3 billion people did not have

access to electricity [3].

For the above mentioned reasons, the use of renewable

energy (RE) is highly important for global development. Par-

ticularly for the Information and Communication Technologies

(ICT) sector, many proposals and initiatives have targeted

ways of reducing energy consumption and using energy in

a more efficient way for mobile networks. These research ini-

tiatives have been called collectively Green Radio [4]. Results

have shown that most of the energy consumption in a cellular

network is due to the base station (BS), whose consumption

depends on the traffic load and fluctuations throughout time

[5]. Hence, an appropriate UE to BS association mechanism

that makes it possible to balance downlink traffic loads among

BSs can be key to reduce on-grid consumption by benefiting

of the capabilities of a number of renewable energy powered

BSs and the possibilities to exploit the renewable energy

availability.

In this article, we focus on energy-aware UE-BS association

mechanisms to reduce on-grid consumption in heterogeneous

mobile networks (HetNet) with hybrid power sources, i.e., a

combination of renewable and on-grid energy. In particular,

as Illustrated in Fig. 1, we present contributions regarding

different strategies, which range from reactive green UE-

BS association methods for the short-timescale to proactive

schemes that can use information about the long-timescale

renewable energy dynamics to boost the performance. Our
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aim is to show how two complementary reactive and proactive

strategies improve energy efficiency at different levels, where

the dynamics of the renewable power sources used stress the

relevance of short- and long- timescales in the decision making

process.

Fig. 1: Energy Strategy Classification based on Timescale and Control type

A. Control Strategy based on the Timescale

Regarding the renewable energy sources and traffic be-

havior, it is relevant to consider how networks operate over

long- and short- timescales [6]. Over a long-timescale, traffic

patterns change according to the time of the day (temporal

variability of traffic) and decisions about energy management

must be made taking into account the renewable energy source

availability during a rather long period of time. Proactive

control methods are very suitable in this case as they exploit

forecast information to make control decisions and prediction

data could be easily obtained. On the other hand, for short-

time scale, reactive control mechanisms are very useful as

they provide instantaneous response based on the current

state of the system. This brings more control on the quality

experience provided for users. Over a short-timescale, cell

selection decisions are made assuming that the operational

transitions of the base station due to traffic dynamics are nearly

static. However, we need a fast response to abrupt fluctuations

in the energy source at our disposal and reactive association

schemes are more appropriate. In contrast, the integration of

reactive methods for an optimal usage of battery storage is

difficult as rapid energy fluctuations cannot be anticipated.

1) Short-timescale: Initially, the UE-BS association prob-

lem is analyzed over the short-timescale with a reactive control

strategy, considering a hybrid powered network without battery

support, with wind considered as a renewable energy source.

The wind profile is highly fluctuating which has a significant

effect on UE-BS association dynamics. Also wind behaves

differently when compared with photovoltaic energy, in the

fact that it could be available for very long periods without

diurnal interruption, which justifies the absence of batteries in

our assumption. The on-grid consumption at the macrocellular

level is reduced by load balancing supported on hybrid pow-

ered small cells by means of a green renewable energy aware

policy for UE-BS association. This first part of the models in

this paper rely on estimations of wind of the region of Moscow,

Russian Federation. This scenario is particularly interesting

as it provides an insight into the potential capabilities of

wind to power a wireless network in a region with a great

wind potential but which is less attractive in terms of solar

energy throughout the year. In addition, some other UE-BS

association mechanisms are introduced for the sake of com-

parison. A traditional best-signal UE-BS association scheme;

a discrete branch-and-bound UE-BS association optimizer and

last but not least, a greedy association algorithm based on the

transmission rate and the signal level provided, as presented

in [7]. To evaluate in a more complete way the performance

of our proposal at this timescale, an analysis of computational

complexity and user experience are made in comparison with

the benchmark schemes.

2) Long-timescale: Later in the paper, the problem is ana-

lyzed over a long-timescale with a proactive control strategy

to manage the aggregated BS traffic load per hour and a

Photo-voltaic (PV) system with storage energy support. This

study corresponds to an extended analysis of our work in

[8], which uses solar radiation data from the Vallé de Aburrá

region, Medellin, Colombia. The results of this second part

provide useful insights without loss of generality and are valid

for other kinds of renewable energy based systems. A model

predictive controller (MPC) based on a traffic flow perspective

is evaluated to reduce grid energy consumption over the

long-timescale. The MPC incorporates weather forecasts in

the flow allocation decision process. In the control field,

MPC appears as a general way in global industry to solve

control problems with multiple variables and heterogeneous

characteristics [9]. For this reason, it is fairly common to find

applications of MPC in communication systems. For instance,

in [10], authors apply MPC to manage the power signal in

the BS and reduce the negative impact of disturbance in the

transmission process. Likewise, the reduction of co-channel

interference through distributed power adaptation using MPC

is addressed in [11]. To the best of our knowledge, the MPC

approach has not yet been proposed for energy management in

HetNets powered with renewable energy. In order to provide a

wider analysis of our proposals, the MPC analysis is extended

by adding granular traffic variability and compared with the

traditional best-signal and our own UE-BS green association

mechanism for short-time scale using battery support in order

to provide some useful insights on the advantages of storage

management.

B. Contributions and Outline

A novel reactive energy-aware UE-BS association and a

proactive energy management schemes are proposed to reduce

grid consumption in HetNets powered by hybrid sources,

considering the different characteristics of short- and long-

timescale behaviors and the unique characteristics of wind

and solar energy sources. In particular, the contributions of

this paper are the following:

1) A reactive control mechanism which consists of a heuris-

tic based method, proposed to prioritize UEs associating with

a green powered Small Cell BS (SCBS) over short-timescales,
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irrespective of whether other BSs provide better signal levels.

For the green SCBS nodes, it is considered that the absence

of batteries make it possible to evaluate the real impact of

the association mechanism on the grid consumption reduction,

as well the viability of avoiding the need to use a storage

system, fully relying on the surrounding green sources. This

is particularly attractive for forms of energy like wind which

can be continuously present for long periods of time. An

analysis of user experience and complexity is provided, which

is sensible for the resolution in the short-timescale.

2) For the long-timescale case, a proactive control mech-

anism based on MPC is presented that includes the current

system state and weather forecast in the energy management

process. In addition, the MPC solution has a low complexity

with respect to other type of optimal strategies, which makes

it possible to be implemented in real systems. This solution

when combined with a storage system is particularly relevant

in the solar energy context.

3) Finally, the proactive control mechanism is extended to

more granular traffic and compared with the reactive control

approach. It is shown how MPC with battery support performs

better than the best signal and green UE-BS association in

terms of storage management. Nevertheless, in absence of

storage the much simpler reactive UE-BS green association

mechanism is more adequate. This lead us to conclude that

whole solution should be a joint approach of our short and

long-time scale mechanisms.

This paper is organized as follows: In Section II, a selection

of related works on the Green UE-BS Association mechanisms

for Radio Access Heterogeneous Networks is provided. The

system model considered used in the paper is described in

Section III. Section IV presents the proposed renewable energy

aware UE-BS association algorithm for the short-timescale

cases, as well as the characteristics of our case study. In

Section V the MPC scheme for the long-timescale case is

presented. In Section VI, the performance of the proposed

mechanisms are evaluated for the different scenarios in short

and long-time scale. Finally, in Section VII the conclusions

are provided.

II. RELATED WORKS

In Green Radio, particular attention has been given to BS

topology management approaches including load balancing

and traffic redistribution by switching off a number of BSs

during low traffic periods also known as night zones [12]. This

is related to the concept of cell zooming, which is a form of

cell-breathing applied for energy efficient topology manage-

ment to enable sleep modes in underutilized BS infrastructure.

This algorithm is firstly described in [13]. Other authors extend

the work in this direction by providing solutions which deals

with proper load balancing and congestion management in

works like [14] and [15]. The work is further extended in

[16], which provides insights on how to perform the cell-

breathing, BS switching-off and traffic offloading for Hetnets

with small cells. This work is later complemented in [17]

which deals in addition with hybrid energy for HetNets by

proposing a UE-BS association multimetric approach. In [18]

authors present a combined radio resource management for

green Het-Nets which use differentiated policies based on

traffic which emphasizes sleep modes for low traffic and load

balancing for higher traffic demands. Authors in [19] propose

hybrid scenarios with on-grid and renewable energy powered

small cells coexisting by means of coordinated ON/OFF

small cell layer schemes, while providing offloading support

for the load of macrocellular layer. A Hybrid Hetnet cloud

based scenario is studied in [20], while proposing a joint

energy aware centralized scheme which splits the solution

for 1) UE association method for short-timescale rapid traffic

fluctuations 2) a BS Operation (ON/OFF) state mechanism

in order to deal with the overall network consumption. Other

approaches like [21] consider more innovative heterogeneous

scenarios including Drone BS systems which could provide

support to the land infrastructure and facilitate the topology

reconfiguration.

Many other works avoid the use of sleep modes mostly

relying on the renewable energy possibilities. In [22] for

example, a load balancing mechanism for cell selection is

presented, which redistributes load toward renewable energy

powered cells by topology management based on dynamic

variation of cell sizes. Also in the same direction, a cell size

optimization algorithm is proposed for hybrid energy supplied

radio access networks in [23]. The problem is divided in two

phases: 1) green/on-grid energy allocation problem for the

cell layout 2) cell adaptation based on the results of energy

allocation. On the other hand, an offline gradient descent

based method combined with a heuristic online mechanism

for Green UE association are proposed in [24]. The same team

from [24] provides a more extended optimization analysis for

HetNets environments in [25] by providing a two-dimensional

time/space optimization approach. In [26], a virtualized dis-

tributed algorithm is proposed to define green UE-BS associ-

ations in a Cloud/Soft RAN architecture, where decisions are

performed into a centralized server which provides a global

UE-BS association pairing mechanism based on collecting

network information related to energy resources and load in

order to further effectuate the BS topology reconfiguration and

UE association. On the other hand, authors in [27] provide

a deep study on how the traditional UE association based

on best received signal could cause network congestion and

unbalance while an energy aware metric provides inherently

better resource usage and load balancing. In [28] a contribution

to the energy aware UE association is done by providing a

iterative mechanism of traffic load estimation for centralized

(or virtualized) decision mechanisms. Very recently, in [29] a

reinforcement learning decision making approach is used for

Renewable Energy HetNets. The goal of this approach is to

to determine an optimal policy for scheduling and resource

allocation which maximizes energy efficiency by following

the stochastic behavior and dynamics of the renewable energy

availability and channel conditions.

As observed, there are a vast type of proposals in this

area. Many of them have inspired our work in some points,

however there are differences in network models, objectives,

and methodology, which is difficult for a fair comparison.

Nevertheless, for the short-time scale case we have chosen
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Fig. 2: Scenario: A HetNet powered by hybrid Power Grid sources: a) SCBS using solar

panel with a storage system b) SCBS powered with a wind turbine system c) MBS fully

powered by the conventional electrical grid.

two benchmark approaches, a discrete optimizer and greedy

algorithm, which are rather generic and provide good insights

for analysis. Our short-time scale proposal is a component

of our overall idea, which aims to establish a low complex-

ity method, which provides instantaneous response to user

requirements in scenarios when storage is not necessarily

available. For the long-time scale, the capabilities of the Model

Predictive Control (MPC) provide a boost on the autonomy of

the renewable energy based infrastructure, which could be only

exploited in the presence of storage. Both approaches should

be perceived as complementary to each other by exploiting the

best of each approach in specific scenarios.

III. SYSTEM MODEL

We consider a single Macro Base Station (MBS) and

multiple Small Cell Base Stations (SCBS) powered with a

renewable energy supply. In this way, as shown in Fig. 2, it

is possible to have a MBS powered by on-grid energy and a

deployment of SCBSs powered solely by renewable energy.

Also if needed, these SCBSs could be connected to a battery

storage system. The MBS provides the main coverage and

capacity, whereas the SCBSs deployed in the MBS coverage

are placed to enhance the network capacity and offload traffic

from the MBS.

A geographical area L ⊂ R2 is defined, where B base

stations and U users are deployed. We consider x ∈ L denotes

a location and j ∈ B corresponds to the index of the j-th BS.

We define by convention that MBS is represented by j = 1.

Each time slot has a length of τ seconds and our time of

analysis corresponds to T time slots where t ∈ T is the t-
th time slot [30]. The SCBSs update the respective cell sizes

every τ seconds by changing the transmission power according

to the amount of available renewable energy.

A. Renewable Energy Generation Model

Traditionally, when speaking about renewable power

sources for cellular systems, solar and wind power are con-

sidered as the most important, mainly due to their degree

of technology development and their energy potential. In

order to determine the variation in the amount of renewable

energy it is possible to combine validated models like the

System Advisor Model- SAM developed by NREL (National

Renewable Energy Laboratory) [31] and the real data on the

behavior of green sources in the geographical area of interest.

Over short-timescales, wind is the selected energy source.

In this case, estimated data has been used to characterize a

Weibull probability distribution that represents the expected

wind speed in a specific location and a time interval [32]. From

this prediction, it is possible to determine an approximation of

the energy produced by a micro turbine in a given period of

time. The Weibull distribution used in a wind system design

is:

p(v) =
k

c

(v

c

)k−1

e−(
v
c )

k

(1)

where v is the wind speed in m/s, c is the scale parameter of

the distribution and k is the shape parameter.

For the long-timescale case, a different renewable energy

source model is introduced. Solar radiation data is used from

Medellı́n provided by the Colombian Institute of Hydrol-

ogy, Meteorology and Environmental Studies - IDEAM [33].

Specifically, the IDEAM model provides information about the

amount of kWh/m2 in the target area. This information, com-

bined with technical characteristics of solar panels, provides

the photovoltaic energy availability per hour to power green

small cells.

At the t-th time slot, the available renewable energy EG
t,j

at the SCBSs j depends on the renewable energy generation

rate ξt in the time slot plus the stored energy EG
t−1,j , and

renewable energy consumption Ct−1,j in the previous time

slot as follows:

EG
t,j = EG

t−1,j − Ct−1,j + ξt (2)

B. Energy Consumption Model

The ICT-EARTH project provides a power model for the

base station, which consists of a static and a dynamic power

component. The static component is related to the minimal

energy required for normal operation of the BS (e.g. power

supply, air conditioning). This corresponds to the power con-

sumption of a BS in idle mode. In contrast, the dynamic

power component is originated by the traffic load and it can

be approximated by a linear model. Therefore, the power

consumption for a BS j is a function of traffic load given

by [5]:

Pj = ∆jP
T
j (ρj(t)) + P s

j (3)

where ∆j is the slope of load-dependent power consumption,

PT
j is the transmission power, ρj(t) is the traffic load at t-th

time slot and P s
j is the static power component. The EARTH

model can be adjusted for any kind of BS by modifying the

model parameters.

C. Traffic Model

We consider that downlink traffic behaves as an inhomo-

geneous Poisson point process with arrival rate per unit area

λ(x). Likewise, the spatial variability is also included in the

model by using a uniform distribution for the traffic size with
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mean value µ(x) [34]. In this sense, a traffic request arriving

at x where user i is located, converts the user i into an active

user. Another key element is the user transmission rate. In a

time slot renewable energy availability and/or network traffic

requests change considerably. According to the above, if a

mobile user i at location x is associated with a BS j in the

t-th time slot, the transmission rate for this user rt,i(x) can

be expressed according to the resource blocks (RBs) assigned

and its modulation scheme [35]. The transmission rate for each

user is fixed in a given time slot according to the mobile user

modulation scheme which depends on conditions of channel.

In our model, each BS assigns one RB to each active connected

user until availability is finished. A user with a resource block

assigned has guaranteed its allocation throughout the time

interval. It is assumed that a user can only be associated with

one BS (MBS or SCBS) in each time slot. Assuming also that

mobile users are uniformly distributed in the coverage area

of all the BSs, the normalized traffic load on a BS in one

time slot, can be expressed as the relationship between the

number of active users per BS at the time slot, and the amount

of available resources to serve users (i.e. a max. number of

users simultaneously) [18]. If the number of active users is

larger than the available resources in a BS and association

with another BS is not possible, a new incoming user cannot

be served.

For simplicity, we consider that our system uses two dif-

ferent bands for the MBS and SCBSs sets with known and

static frequency reuse [26]. This makes it possible to assume

a static value of interference from neighboring SCBSs into

another SCBS, while assuming orthogonality between the

MBS and the SCBS layer. Moreover, taking into account

the current existence of Inter-Cell Interference Coordination

(ICIC) schemes for fixed small cell deployments with backhaul

support, the assumption of a static value could be accepted as

valid for future deployments of this type with shared pool of

resources [36].

In the long timescale case, the traffic profiles presented in

[37] are used to model the load traffic of the MBS. Such

measurements were done at 30-minute intervals in cells of a

mobile network operator. In this way, it is possible to establish

a normalized profile for weekdays and another for weekends.

Furthermore, from the daily profiles, it is possible to define

the maximum MBS power consumption.

IV. REACTIVE CONTROL SCHEME: CELL SELECTION

ALGORITHM

Given the impact of active users in the overall energy con-

sumption, one can focus on minimizing the on-grid consump-

tion by balancing the downlink traffic loads among BSs with

an appropriate UE-BS association scheme. In this first part,

we propose a reactive control scheme that modifies the BS

selection procedure by giving priority to green BSs over a grid-

powered MBS. Initially we compare with a best received signal

association method. Then a branch-and-bound optimization

and transmission rate aware heuristics are also included [7].

In this scope, storage is not considered in order to show the

capabilities of the algorithms with this type of limitations.

Nevertheless, wind power is considered as it perfectly fits with

this scheme due to the continuous availability of this energy

resource.

A. Cell Selection Algorithm

To overcome the perceived negative environmental and

economic impacts of on-grid energy with respect to renewable

energy, a user association policy incentives users to connect

to renewable energy cells. The objective of the algorithm is

to check first the possibility to attach one user request to

a green SCBS according to a fitness function, even if the

received signal level of the MBS is stronger. The output of the

algorithm is the association matrix Yi,j with i = 1, 2, ..., U and

j = 1, 2, ..., B. Therefore, yi,j = 1 if user i is served by the

BS j and 0 otherwise. The proposed user association algorithm

can be condensed in the next steps:

1. Definition of initial system parameters. The system

defines users positions U(x) = {U1(x1), . . . ,UN (xN )},

renewable energy potential for each SCBS and MBS trans-

mission power PT
j .

2. Definition of initial signal level available for each user.

All users are associated with a virtual BS zero at the begin-

ning of the process, to enable comparison. The theoretical

received signal level from BS zero si,0, is a very small

number equivalent to a base station without transmission

power. Next, the system calculates signal level matrix Si,j

with i = 1, 2, ..., U and j = 1, 2, ..., B. Where si,j is the

received signal level for the user i from the BS j. For this

calculation, the user position, transmission power of BS,

path loss, and antenna gain are considered.

3. Checking signal levels from green base stations The

system executes a loop verification of the user’s received

signal, starting with the green SCBSs, si,j with j =
2, 3, ..., B. The system selects the SCBS that provides the

best signal level. If the signal level is higher than the

threshold ϕ, the user is connected with the green base

station, otherwise, the system checks the MBS level. If

none of the received signals is enough to provide service,

the user is associated with the BS zero and accounted as

an unserved user.

4. Assigning users to green BSs. If the user i is connected

with a green SCBS j and this BS has available resources,

a fixed number of resource blocks is assigned to the user

until the transmission is finished, and yi,j = 1. If the SCBS

has no available resources, the centralized manager checks

if another green SCBS can be used to serve the user. If

some neighbour SCBS has resources, the user is connected

to a new green SCBS. If no green SCBS has resources nor

enough renewable energy in the time slot of interest, the

user is assigned to the MBS and yi,1 = 1. It is important

to note that, in this work, it is assumed that in a time slot a

user has a fixed number of resource blocks assigned. In our

case, for the sake of simplification on the dimensioning,

we assume one RB per connection. Since the target of

the paper is the association process, the scheduling and

dynamic assignation of resource blocks are out of the scope.
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Fig. 3: Diagram of the Cell Selection Algorithm using a green-policy

5. Computation of Grid consumption and number of

served users. Finally, the amount of grid consumption is

calculated for the time slot:

Gridcon =
∆(j=1)P

T
(j=1)

UA

U
∑

i=1

yi,1 + SC (4)

where UA is the total availability for active users in the

MBS and SC corresponds to the static Power Consumption

of the MBS. Also the total number of UEs redistributed to

the SCBSs is calculated in order to have load balancing

statistics.

The purpose of this heuristic algorithm is that at each time

slot, the network utilizes the available renewable energy, with

on grid energy left as a last resource. A graphical explanation

is provided in Fig. 3. For this scenario, we consider that

UM
j is the maximum number of users that a BS can serve

in a time instant. For the SCBSs, UM
j allows up to 100

users for j = 2, ..., B, while UM
j=1 is equal to UA for the

MBS. We have dimensioned the MBS to accept up to 3

times more UEs than a single SCBS at maximum capacity, by

assuming a 3-sector BS site with specific assigned frequency

bands per sector. Nevertheless, we make the assumption of

using an omnidirectional antenna site to simplify the macrocell

modeling. The rate of UE arrivals is relatively slow such that

the MBS can serve the total of active incoming UEs even when

the SCBS layer is not available.

B. Benchmark Association Strategies

In this subsection, two additional UE-BS association mecha-

nisms are introduced for comparison. The first scheme is based

on a discrete branch-and-bound discrete optimizer to assign

UEs to BSs and the second uses a greedy algorithm to select

the best BS for a UE.

The optimal UE-BS policy to reduce the overall system

grid consumption can be obtained by solving the following

optimization problem:

min
y

=

T
∑

t=1

U
∑

i=1

yi,1 (5)

s.t.
U
∑

i=1

yi,j ≤ UM
j j = 2, 3, . . . , B (6)

yi,jsi,j ≥ ϕ (7)

US =

∑B
j=1

∑U
i=1 yi,j

UA
≥ ε (8)

∑

j∈B

yi,j ≤ 1 ∀i ∈ U (9)

yi,j ∈ {0, 1} ∀i, ∀j (10)

where Eq. (5) is the objective function, which focuses on mini-

mizing consumption from the grid with an optimal assignment

of active users to available BSs over each time slot. Equations

(6)-(10) are the problem constraints: Eq. (6) establishes that a

BS j can serve a maximum of UM
j users simultaneously; Eq.

(7) means the user’s received signal level constraint, where

si,j is the signal level received by user i from BS j and ϕ is

the minimum signal level required by a user to have service;

Eq. (8) stands for the minimum ratio of users served (US) out

of a total of active users (UA); Eq. (9) requires that a user is

served only by one BS in a time slot; and Eq. (10) establishes

that yi,j is a binary variable. In the same way, ε represents

a QoS criteria for the discrete optimizer and it is defined as

85% of active users.

The second method is based on a greedy algorithm. This

algorithm allows ranking the BSs according to the following

utility function:

wi,j = ϕnorm +
ri,j
RM

(11)

where ϕnorm is the normalized signal level received by a user

with respect to the best-signal level. The second term is the

normalized transmission rate that for the UE i from a BS j
in a time slot, ri,j is the transmission rate offered by BS j
and RM is the maximum possible user rate, - i.e., when the

modulation scheme is QAM64.

The greedy mechanism works as follows: in a first round, a

UE evaluates all potential BSs ranking them according to the

utility obtained. This process is done by all UEs. Once all BSs

are evaluated by all users, the association process continues

by assigning each UE to the chosen BSs, while BS capacity

still is not yet reached. The process continues until assigning

all UEs to a BS.



7

C. Case Study

The considered case study scenario is composed of one

MBS and several (4, 16 and 36) overlapping SCBSs providing

a second layer deployment. The MBS is powered by on-grid

energy and is always active, ensuring permanent coverage over

the geographic area. It is important to note that according

to the coverage characteristics of the SCBSs, 36 SCBSs are

required to cover the MBS coverage area. In the same way, to

evaluate the contribution of SCBSs in the energy efficiency of

the HetNet, the number of base stations is tested for reduced

configurations with 4 SCBSs and 16 SCBSs cases. These

values were selected to limit the small cell layer coverage by

10% and 50% of the network at full deployment (36SCBSs

+1MBS), while keeping the symmetry of SCBSs with respect

to the MBS. The QoS objective is defined as a reduction of

the average transmission rate lower than 5%. This percentage

is equivalent to the degradation caused by changing the QoS

classes in LTE Networks [38].

The technical parameters of the simulation are based on

a LTE system [35] located within a geographical area of

3.5km2 with the wind profile parameters for Moscow. The ge-

ographical characteristics of Moscow result in a high average

wind speed. Moscow is located in the northern hemisphere,

with altitude 156 m.a.s.l., and seasonal temperatures between

-10 ◦C in winter and 24 ◦C in summer [39]. To estimate

the average wind speed in Moscow, we use [40], where the

authors develop a study of wind conditions in the center of

Moscow using measurements over two years. They present a

characterization of wind behavior according to the season, time

day, and altitude of measurement station. In order to choose

conditions according to high traffic data scenarios, an average

wind speed for daytime in summer, measured between 60 and

80 m is selected. The mean wind speed in these conditions

is 3.6 m/s with standard deviation σ = 2.9. Therefore, it is

possible to define three sectors for Moscow city, with the

following average wind speed: 4.0 m/s, 3.6 m/s and 4.5 m/s

[41], [42].

According to [5], the load traffic consumption slope is 4.7
for the MBS and 4.0 for SCBS. The static power consumption

of the MBS is 130W and 6.8W for a small cell. The maximum

transmission power of the MBS is 43 dBm and 22 dBm for

the small cells. Users move according to a random walk point

model [43] with an average speed of 4 km/h.

Each SCBS has an associated micro turbine that provides

renewable energy, without a battery system. Solar energy

dynamics are not taken into account here, but will be discussed

in the next section. The reason to select in the short-timescale

case a scenario without batteries is that it allows the dynamics

of the UE-BS association to be seen without being influenced

by a storage system which will converge to some stable level of

accumulated energy, thereby preventing the association mecha-

nism to be analyzed in presence of environmental fluctuations.

In addition, for the wind case it is possible to rely on the

continuous availability of the renewable energy source, which

makes it less critical the necessity of a storage system. Lag

power time is not considered in this model. The simulation

parameters are shown in Table I.

Parameter Value

Coverage Area (L) 3.5 km2

Pool of users (U ) up to 1000 UE

(not simultaneously activated)

System LTE

BW LTE 20 MHz (100RBs) SCBS Layer

20 MHz for each MBS sector

RB Allocation one RB per connection

MBS/SCBS Antenna Type Omnidirectional

N MBS / N. SCBS A single MBS + 4 - 16 - 36 SCBSs

Tx power MBS (PT
j=1

) 43 dBm

Max. Simult UE MBS

(UM
j=1

= UA)
up to ∼ 300 UE

Max. Simult UE SCBS

(UM
j,j=2,...B )

up to ∼ 100 UE

Tx power SCBS

(PT
j,j=2,...B )

22 dBm max

Static Power Cons. MBS

(P s
j=1

)
130 W

Static Power Cons. SCBS

(P s
j,j=2,...B )

6.8 W

Consumption Slope MBS

(∆j=1)
4.7

Consumption Slope SCBS

(∆j,j=2,...B )
4.0

Pathloss Model Cost 231 model

Antenna Gain 15 dBi

Signal Level Threshold (ϕ) -107.5 dBm

Simulation time step (τ ) 1s

Size of request file 500 kb

Mobility Model Random walk point

Mobility Speed 4 km/h

TABLE I: Simulation Parameters

Given the average wind potentially available, a commercial

micro turbine was selected with a start-up threshold wind

speed of 2 m/s and an energy potential of 26W for wind speeds

between 2m/s and 3m/s.

In order to capture most of benefits of wind power, these

microturbines could be deployed on the roof-top of buildings,

with power distributed by cables for the indoor and outdoor

SCBSs nearby. Wind dynamics are updated every minute and

the simulation time step corresponds to 1 second. There are 3

possible renewable energy scenarios shown in Fig. 4, where

(a) SCBSs have not enough renewable energy, (b) the SCBSs

of only one sector have renewable energy to operate and (c,

d) one or more sectors have available renewable energy. In

the figure the big red circle represents the MBS coverage area

whereas the green smaller circles are the SCBS coverage areas.

BS locations are represented as color diamonds.

V. PROACTIVE CONTROL SCHEME: TRAFFIC FLOW - MPC

For long-timescale, a proactive MPC scheme based on a

traffic flow is evaluated to reduce grid energy consumption on

a HetNet where SCBSs are powered by Photovoltaic (PV) en-

ergy with energy storage system. The MPC is implemented to

incorporate a weather forecast in the flow allocation decision

process. This model is quite suitable when a storage system

is affordable or absolutely necessary to be included into the

system. In this section, the traffic behavior is treated in an

aggregated form. This means that the average load of a BS j,

i.e., ρj per hour basis, is considered instead of individual UE-

BS associations considered for the reactive control scheme in

the short-timescale scenario.

The network scenario is similar to that presented in Section

IV, except that an energy storage system for the SCBSs is
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Fig. 4: SCBS coverage area as a function of Green energy availability
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Fig. 5: Traffic flow approximation.

included and PV is used instead of using wind energy. The goal

is to minimize on-grid consumption by balancing downlink

traffic loads among the green SCBSs. The SCBSs update their

state (on/off) every hour by changing the transmission power

according to the amount of renewable energy available at their

location. If the energy provided by a PV panel is more than

the amount required for a given SCBS, it is stored in the

battery. The stored energy is used when the energy produced

by the PV panel is insufficient to power the SCBS. This is

a particular relevant for the solar energy in comparison to

the wind scenarios, which is more likely to be continuously

available.

A mechanism based on traffic flows is considered to solve

a linear optimization problem of load assignment at the BS.

This perspective uses a relaxation of the discrete problem

and generates a solution with the optimal flow exchanged

between BSs. In this case, a flow is a real value representing

an aggregation of users, in other words, the traffic load density

of a BS in a time slot. This provides a solution with the

optimal flows exchanged between BSs [44]. Fig. 5 presents

an illustration of the system, where each node represents a

base station and the variable xi,j is the flow sending from BS

i to BS j.

The mechanism uses input information from a matrix Fi,j

with the potential flows that can be exchanged between BSs

in each time slot. This matrix is built from the active BSs ac-

cording to the renewable energy available, the SCBS capacity

and the BS adjacency matrix. The F matrix is a combination

between the base station adjacency matrix and the information

related to resource block availability in each of one of the

BSs. This matrix is useful to define the maximum base station

capacity, which in short-timescale would be equivalent to the

constraint provided by the parameter UM
j . This BS capacity

information can be provided to the controller by collecting

the data through the backhaul. The potential matrix flow and

the available capacity in each BS are used as constraints of a

linear optimization problem that minimizes the sum of flows

from any base station to the MBS. The Fi,j matrix can be

described as follows:

Fi,j =







y1,1a1,1C1 . . . y1,ja1,jCj

...
...

...

yi,1ai,1C1 . . . yi,jai,jCj






(12)

where yi,1=1 if BS j has sufficient renewable energy to operate

in the time slot and yi,j=0 otherwise. Likewise, if ai,j=1 BS

i is adjacent to BS j, this means that a user served by BS i
can be transferred to BS j due to such an adjacency. Finally,

Cj is the number of resource blocks available to serve users

on the BS j in the time slot.

On the other hand, a MPC is an advanced computer-based

control approach that uses a mathematical model to predict the

system evolution and calculate its optimal inputs according

to a cost function during a N step prediction horizon. At

each time step, optimal inputs are calculated for the next N
time steps according to a cost function. The first component

associated to the next incoming slot is obtained from the

optimal input sequence and then applied. Any of the following

N−1 remaining elements of the input sequence are discarded

and therefore not used. This procedure can be depicted as a

sliding window optimization process throughout the time, as

the process is repeated at the next time step and so on [45].

In general, the MPC model can be written as:

x(k + 1) = x(k) + u(k) + w(k) (13)

where x are the states of the system, u are the control actions

to optimize, w are disturbances and k corresponds to a time

instant. In our case, the states of the system are the amount

of users and the battery load in a BS for a time slot; the
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Fig. 6: MPC Scheme.

control actions are related with the flows to exchange load

between BSs, and last but not least, the traffic and weather

forecast are the disturbances. This type of modeling allows

predicting future states of the system from an initial state

x(0) considering the effect of weather and traffic forecast. The

MPC is based on the traffic flow scheme and incorporates

a prediction horizon that allows it to take into account the

forecast of the renewable energy source and the network

characteristics in the decision-making process. The general

scheme of the controller appears in the Fig. 6.

The MPC optimization problem is described in equations

(14) - (17):

min
∀xi,j(k)

N−1
∑

k=0

B
∑

i=1

xi,1(k + 1) (14)

s.t.
B∑

i=1

xi,j(k) ≤ Fi,j(k) j = 1, . . . , B, k = 0, . . . , N − 1, (15)

B∑

j=1

xi,j(k) = xi(k) i = 1, . . . , B, k = 0, . . . , N − 1, (16)

0 ≤ xi,j(k) i = 1, . . . , B, j = 1, . . . , B, k = 0, . . . , N − 1, (17)

where xi,j(k + 1) is the traffic flow from BS i to BS j in

a future time slot of the prediction horizon. Eq. (14) is the

objective function, which seeks to minimize the flows to the

MBS (BS 1) and hence reduces the overall consumption from

the grid of the cellular network. The constraint in Eq. (15)

specifies that the flow between two BSs cannot exceed the

limits established by the potential flows matrix. Constraint in

Eq. (16) imposes flow conservation. It means that summations

of flows cannot exceed the load of originating BS i. Finally,

Eq. (17) defines that flows must be positive. Once the solution

to this problem is found, a rounding process is executed to

obtain integer values and assign users to BSs according to

these values.

The solution of the optimization problem is a sequence of

N matrices X(k) ∈ Z
B×B that define the flows exchanged

between BSs and they minimize grid consumption along the

prediction horizon

X(k) =







x1,1(k) x1,2(k) . . . x1,B(k)
...

...
...

...

xB,1(k) xB,2(k) . . . xB,B(k)






(18)

for k = 0, . . . , N−1. Only the components of the optimal ma-

trix flows X(0) are actually applied. The rest of the sequence

is discarded. It is important to notice that the choice of the

size N for the prediction horizon is fundamental. N should be

large enough to provide enough visibility to the predictor for

making a decision, however not too large as N could increase

unnecessarily the computation process. Actually, there exists

an optimal N which provides the best optimization solution.

A value N larger than the optimal could introduce error due to

the fact that obtained inputs based on far remote future entries

of forecast information could introduce inaccuracies.

The MPC could be used for other types of renewable energy

and not just PV. However, in order to exploit the energy

management capabilities of this approach a storage system

is required. The MPC implementation is not modeled based

on individual UE-BS associations as we have done for short-

timescale case. Our model here is based instead on BS traffic

flows. This makes difficult to granularly deal with specific

user quality requirements in the short-timescale. Notice that

transitions depend on the capability of load balancing from

one BS to another. This is represented by the matrix F , which

determines if flows can be fully transferred or not. If the

overall QoS requirements are increased, many of these paths

would disappear and some UEs should stay in their original

BSs which provide best transmission conditions but at a high

energetic cost if the power comes from the grid. This brings

a sort of trade-off between network capacity performance and

energy efficiency as some QoS sacrifice should be done to

reduce on-grid consumption. It must be noted that although

MPC solution brings a long-time scale energy management

still the network should require a reactive association approach

in the short-time scale to respond to abrupt fluctuations and

instantaneous UE requirements in the scenario.

For analysis of MPC proposal we have chosen the solar be-

havior from the city of Medellı́n using the model as described

in subsection III-A. Valle de Aburrá, Medellı́n, Colombia, is

very representative of Equatorial region (22◦C, 68% humid-

ity). This region has been historically dominated by fuel based

energy supply and hydroelectric systems. Although hydroelec-

tric power is a renewable energy source, the construction of

the dam structure and the energy central facilities may impact

on the ecosystem, life species and social communities around

[46]. Considering the favorable geographical conditions of

Latin-America, renewable energies should be good choice for

the continent strategical development.

VI. ANALYSIS OF THE RESULTS

A. Analysis of green user-BS association mechanism (Short-

timescale, Moscow City)

The simulations were developed using Matlab R©. Despite

of some of simplifications made in the case study, this is

representative of a real scenario where the complexity of

the association process is caused in part by the number of

base stations and active users. The wind speed changes every

minute. The confidence interval was calculated with data

obtained from 5 simulations with 900 samples by simulation.

The selected confidence level is 95%, equal to ±1 kilo-

Joule [kJ] for the average grid consumption. As previously
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mentioned, the system at full deployment is composed by one

on-grid MBS and several SCBSs. These SCBSs depend on

the availability of renewable energy and can increase the cell

size up to 200m (22dBm max). A number of 36 SCBS are

required to completely cover the geographical area of 3.5km2.

In addition, a pool of 1000 potential users is considered in the

coverage area.

Firstly, the results throughout time are presented taking the

small cell deployment at full capacity. In Fig. 7, a full 36

SCBSs deployment is depicted while the renewable energy

conditions change in time. In the short-timescale, the temporal

variability of traffic on the cellular network is not considered,

and for this reason a simulation horizon of 1 hour (3600

time slots) is sufficient to evaluate the behavior of proposed

association mechanism. The figure shows the contrast of the

grid consumption for the best signal and green energy policy

for the city of Moscow. A reduction in the grid consumption

can be observed when a larger number of SCBSs become op-

erationally active. Such an energy reduction is more effective

for the implemented green association policy. It is noticeable

that the strength of the presented green policy becomes more

significant due to the high wind speed profiles of the city

of Moscow. This makes it possible that a larger number of

SCBSs can be active for a longer period, while offloading

traffic load from the MBS, therefore reducing the on-grid

power consumption.

0

5

10

15

20

25

30

35

40

45

50

1 6 11 16 21 26 31 36 41 46 51 56

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

A
ct

iv
e

 S
C

B
S

s

Time (minutes)

k
il

o
-J

o
u

le
s

MBS On-Grid Consumption 

Active SCBSs Signal Level Policy (kJ) Green Policy (kJ)

Fig. 7: Comparison of grid Consumption according to wind potential.

In these simulations, at the best wind conditions the full

SCBS layer (36SCBSs) + MBS deployment can cover up to

90% of the users of the deployed pool. Now we conduct an

analysis to observe the effect on capacity as we gradually

change the number of SCBSs. This makes it possible to find

the optimal deployment configuration where the downlink

throughput is increased and on-grid consumption is effectively

reduced. We effectuate this analysis for 4, 16 and finally 36

SCBSs full deployment.

As mentioned before, for the sake of comparison, two new

association schemes were included, a discrete optimizer and a

greedy algorithm. The simulation time is two hours with time

slots of one second. Also in this case, the temporal variability

of traffic is not considered as 2 hours is a still a short period

of time where we may consider traffic as nearly constant. As
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Fig. 8: Mbits/J Energy Efficiency Metric

mentioned previously in Fig. 7, thanks to the inclusion of the

green SCBSs, we observe a significant reduction of the on-

grid consumption, which is also observable in Table II for

the different UE-BS association mechanisms. It can be seen

that the discrete optimizer has the best energy savings for all

cases, followed by the proposed Green Policy, which reduces

the grid consumption up to 34% with respect to the case using

MBS On-grid only. It is important to note that the greedy

algorithm has a lower consumption than the best-signal level

policy and slightly near than our proposed green policy. This

greedy algorithm has an enhanced approach to the one of the

pure best signal approach as it allows some optimization of

the global resource allocation while still targets somehow the

best signal to optimize the spectrum efficiency.

Due to the wind potential, Moscow city appears to be a good

candidate to implement such kind of initiatives using wind

energy. Notice that the on-grid energy is not reduced by the

same amount as we increase the density of SCBSs. This means

that including more SCBSs may not necessarily help to reduce

proportionally the network consumption, but could actually

lead to over-dimensioning, impacting both CAPEX/OPEX if

the renewable energy resources or the amount of energy are

insufficient to exploit the installed infrastructure. This can be

a relevant criterion to be taken into account as a designer

must choose the right density of small cells in function of the

available resources.

To compare the energy efficiency of different schemes.

the ratio of the amount of information transmitted per unit

of energy [Mbits/J] is calculated. Fig. 8 shows the obtained

results with this metric. Also we provide in the same figure

information about the total downlink throughput in all cases.

For all the SCBS deployments the green policy exhibits the

best gains, which are around 8% to 15% in terms of Mbits/J

with respect to the best signal approach. Notice also that the

throughput degradation for the green policy is just around

2-3%. In contrast notice that in the case of the Discrete

Optimizer this degradation is much more pronounced. Despite

that in terms of Mbits/J, the discrete optimizer and green

policy seem similar, we can see that behind the discrete

optimizer concentrates all the effort only on reducing energy

consumption, while sacrificing on the downlink throughput
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Number of SCBS

Average Grid

Consumption -

Best Signal level

(kJ)

Savings Green

Policy vs Best

Signal level (%)

Savings Green

Policy vs.

On-Grid only

Scenario (%)

Savings Discrete

Optimizer vs.

Best Signal level

(%)

Savings Discrete

Optimizer vs.

On-Grid only

Scenario (%)

Savings Greedy

Alg. vs. Best

Signal level (%)

Savings Greedy

Alg. vs On-Grid

only Scenario

(%)

On Grid 380 - - - - - -

4 SCBS 374 9.6 11.1 16.6 17.9 10.4 11.8

16 SCBS 331 15.7 26.6 19.3 29.7 14.5 25.5

36 SCBS 282 10.6 33.7 14.5 36.6 9.7 32.4

TABLE II: On-grid Energy Consumption reduction for each of the association schemes analyzed

figures. With respect to the greedy approach, we can see values

are very tight in terms of throughput with respect to the green

policy, which is also reflected in the resulting Mbits/J metric.

Regarding the complexity, the solution for the optimization

problem formulated in Eq. (6), i.e. discrete optimizer, leads to

a exponential combinatorial number of possibilities. Regarding

the computational time required for the simulations, Table

III shows a comparison of the results of implementing the

different association mechanisms with 36 SCBS and different

number of users in the network. It can be observed that the

optimizer increases its computational time notably when the

number of users grows. With respect to the proposed green

policy, we can observe lower computational time with respect

to the discrete optimizer and the greedy scheme. Such time

values remain practically constant despite the growth of users,

thus representing a good option for improving consumption in

scenarios with a large number of users.

User Association

Scheme
500 Users 750 Users 1000 Users

Signal Level Policy 179.6 249.2 273.8

Green Policy 236,8 297.1 318.6

Discrete Optimizer 1532.6 4385.7 7574.1

Greedy Algorithm 341.6 416.3 425.9

TABLE III: Computation Time for the Simulations[s]

Mechanism 2Mbps ≥ ri 2Mbps> ri ≥1.2Mbps ri >1.2Mbps

Signal Level

Policy
1.9% 20.4% 77.7%

Green Policy 1.2% 15.1% 83.7%

Discrete

Optimizer
1.0% 13.7% 85.3%

Greedy

Algorithm
1.1% 14.0% 84.9%

TABLE IV: Evaluation of User experience

In addition, we present an evaluation of the user experience

from the UE throughput perspective. Given their reactive

characteristics, it is relevant to analyze this here, as short-

timescale algorithms are intended to respond to instantaneous

UE requests. In Table. IV, we divide the UE throughput

distribution in equidistant ranges taking into account that UE

throughput for our simulations ranges from 600kbps to a little

bit more than 2Mbps. The percentage of the population of UEs

in each of theses ranges is shown. As observed, the best signal

approach presents the best throughput levels. In contrast, we

observe around approximately 5-7% degradation shift for the

other mechanisms including our green association approach.

Nevertheless, the green association presents a little bit less

degradation than approaches like the discrete optimizer as our

technique is able to find a better balance of signal level, while

economizes on-grid energy. In contrast, the discrete optimizer

is absolutely aimed to maximize such energy reduction ne-

glecting the quality of the UE-BS association.

These results show that renewable energies like wind are a

feasible alternative to supply next generation cellular networks.

However, it is important to mention that as seen in the results

correct planning of the solution must be carried out to avoid

over-provisioning or sub-utilization of the installed small cell

infrastructure. On one hand, there exists some point where

the density of the small cells may exceed the traffic demand

without providing additional energy savings and therefore an

optimal balance must be found. On the other hand, the success

of using a green small cell deployment greatly depends on the

availability of renewable energy to allow the operation of the

deployed green SCBSs as in the case of Moscow which counts

with high speed wind profiles.

B. MPC (Long-timescale, Medellı́n city)

The following analysis is extended from our work in [8].

The case study as mentioned earlier uses some solar behavior

data from Medellı́n city. Our scenario is composed of one

MBS and 8 overlapping SCBSs. In this case, each SCBS has

a renewable energy storage system. In contrast to the short-

timescale case, the temporal variability of traffic on the cellular

network is considered in this case. The time slot granularity

corresponds to 1 hour in order to observe the behavior of

the proposed solutions over 10 days, including traffic patterns

for weekdays and the weekend. For displaying the results

we concentrate on a window of 72 hours, one day during

the weekend and two weekdays, as the traffic patterns only

differ significantly during this transition. The MPC target is

to manage the renewable energy available and optimize its

use according to the storage capacity and the weather and

consumption forecasts.

To evaluate the performance of the MPC, several predic-

tion horizons (N) were used. Table V shows a performance

comparison between a reactive flow optimizer strategy (N=1)

and the best MPC horizon. It can be observed that both

mechanisms reduce the average grid consumption, but MPC

provides greater reductions. The best response of the MPC

corresponds to N=5, where the lowest on-grid consumption is

obtained. This horizon size makes it possible to make the most

accurate decisions based on the forecasts. A higher N could

result in an error due to including estimations of far remote

future slots. The power grid consumption saved with MPC is

22 kJ compared to the baseline scenario (On-grid energy only)

which represents 13% savings.

Fig. 9.a and Fig. 9.b shows the grid energy consumption and

stored energy behavior for each mechanism over the previously

mentioned window of 72 hours. In this analysis, the prediction
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Mechanism
Avg. Grid Consumption

(kJ)
Savings (%)

On-grid energy only 168 -

Reactive flow optimizer (N=1) 152 9.5

MPC (N=2) 150 10.7

MPC (N=5) 146 13.1

MPC (N=6) 147 12.5

MPC (N=9) 149 11.3

TABLE V: MPC Performance Comparison

(a)

(b)

Fig. 9: a) Long-timescale grid consumption b) Stored Energy Pattern Behavior

horizon of MPC is set to 5 hours. It can be observed that

for both schemes, reactive flow optimizer and MPC, it is

possible to reduce the grid consumption in the network and

take advantage of the renewable energy available. However,

it is remarkable that in some periods the MPC makes the

decision to use grid energy even when renewable energy is

available. Here, it is important to note that MPC uses weather

and traffic forecast, to decide when is better to use renewable

energy and when to store it with the target of reducing overall

grid consumption. It means that the predictive strategy with

its far-sighted solution, allows the storage of renewable energy

for use during periods of high traffic load where such energy

is not available. This makes it possible to boost the SCBSs

autonomy, while the association can be refined by a reactive

green Association technique in the short-timescale for better

response to instantaneous UE requirement needs.

An important design decision during the planning process

is to determine the energy storage capacity of the batteries.

Fig. 10 shows the grid consumption behavior with different

levels of storage capacity. It is possible to observe that by

increasing storage capacity up to 70W-h at each SCBS, it

reduces grid consumption up to 22%. Increasing the capacity

more does not improve grid consumption savings, since there

exists a minimal idle power consumption for the MBS required

to guarantee coverage. In addition, we can observe that for

other schemes like flow optimizer or the case where prediction

window is set to N=2, the required optimal storage capacities

needed actually is higher as a result of not being capable to

fully exploit the prediction knowledge in the decision making

process and being more prone to allocate renewable energy in

the current time slots.
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Fig. 10: Average Grid Consumption vs Energy Storage Capacity.

Finally, we provide an analysis of the radiation harvesting

efficiency and its impact on the on-grid energy reduction in

Fig. 11. This change of the efficiency is just a illustrative

way to understand what happens when the renewable energy

availability increases. We notice how when reduce the effi-

ciency to 50% the attained savings are reduced around 3-4%

with respect to 1.0× efficiency, whereas when we increase

the radiation harvesting efficiency by 2 times, the enhancement

could be just around 2% (N=1, N=2) and maximum up to 3.4%

(N=5). It is interesting to notice that the changes on the on-grid

consumption are not strictly proportional to the changes on the

harvesting efficiency. The reason is that there are other network

constraints like the radio resource and storage capacities, as

well as the SCBS neighbor availability in the surroundings

that could limit the load redistribution. These elements are

fundamental for a correct dimensioning of the small cell radio

access network infrastructure.

We have observed how the MPC approach provides an effi-

cient way of managing energy over long-timescale, in contrast

with the short-timescale association algorithm that is intended

to address rapid decisions to respond to the fluctuations of

a renewable energy sources. MPC in combination with a

storage system is a robust and efficient solution when the

environmental conditions slowly change and planning based

on a forecast is possible. This approach matches well with

157
156

151
152

150

146

149

147

141

130

135

140

145

150

155

160

Reactive Flow Optimizer 

(N=1)

MPC (N=2) MPC (N=5)

On-Grid Consumption as a Function of the Radiation 

Harvesting Efficiency

0.5x Radiation Level 1x Radiation Level 2x Radiation Level

+3.3%

-2.0%

-2.0%

+4.0%

-3.4%

+3.4%

k
il

o
-J

o
u

le
s

Fig. 11: On-Grid Consumption as function of changes in the Radiation Harvesting

Efficiency. Percentages correspond to changes with respect to 1.0× efficiency
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the behavior of solar radiation in the daytime period and the

correct utilization of storage infrastructure.

C. Comparison of Reactive and Proactive strategies in a

common scenario and synthesis toward a joint approach

To evaluate the performance of the proposed mechanisms,

a new scenario with spatial and temporal traffic variability

is considered. To include the temporal variability of traffic,

three different arrival rates per area unit λ(x) are used along

the simulation horizon. The prediction horizon is N = 5, the

number of users set to 1000 and the renewable source used

is wind. The deployment consists of 8 SCBSs and one MBS,

where each SCBS has a battery with 30 W of capacity, fully

charged at t = 0.
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Fig. 12: Normalized MBS (blue) and SCBS load(red). (a) Traditional scheme. (b) Green

Policy (c) MPC scheme (N=5). On grid Consumption: a)165.3kJ, b) 138.7kJ c) 123.8kJ.

In Fig. 12, the normalized load MBS after offloading is

presented with (a) the traditional signal level policy, (b) with

the green policy and last but not least, (c) with the MPC

scheme. It is possible to notice that the MPC scheme reduce

the grid consumption up to 25% compared with best signal

level policy. On the other hand, if we compare the short

time scale green policy vs. the MPC approach, we notice that

MPC exhibits a clear advantage of performance by reducing

the on-grid consumption by 10% with respect to the green

policy. MPC optimizes the battery capacity of SCBSs by

using information about the weather and traffic forecasts. It

is important also to note that with MPC the average load of

the SCBSs changes from 17% to 43% when compared with

best signal case, showing a better utilization of the available

infrastructure by means of load balancing.

In the previous scenario, we have used the proactive capa-

bilities of MPC to outperform Green Association assuming a

very granular forecast resolution in the order of minutes. MPC

could potentially be applied in these kind of scenarios but the

accuracy of the prediction must be guaranteed with a good

time resolution which is difficult. We can actually notice that

reactive and proactive approaches are complementary to each

other instead of competitors. In large regions with different

kind of geography, we can imagine a two-layer scheme,

where an upper management layer operating with a wide view

of the system is responsible for the deployment of optimal

energy planning strategies by deciding on the evolution of the

network and the best options depending on the geography and

renewable resources available. On the other hand, a physical

layer of customized deployed infrastructure where proactive

and reactive mechanisms can be used depending on the

particular characteristics of each geographical environment,

implementation and financial aspects, i.e. CAPEX/OPEX. If

we consider a combined approach as in a hierarchical ar-

chitecture, the proactive mechanism could exploit the long-

timescale dynamics of energy renewable sources while the

reactive green mechanism can deal with rapid fluctuations or

changes in the scenario. This means that while the long-term

knowledge makes it possible to optimize the energy autonomy

of SCBSs, the short-time scale is more suitable for responding

to specific UE requirements at lower time granularity. This

idea is illustrated in Fig. 13.

Fig. 13: Energy management & Planning Architecture

VII. CONCLUSION

Two different energy management schemes for HetNets

powered by hybrid energy sources were presented. First of

all, a reactive UE-BS association scheme operating over the

short-time scale was proposed. The idea of this association

policy is to prioritize renewable energy consumption over grid

electricity consumption by preferring BS nodes powered by

renewable power. The green policy has shown good perspec-

tives of implementation due to its low complexity, high energy

efficiency and low degradation in terms of the user experi-

ence. In addition, a proactive MPC scheme has been studied

for a long-timescale case to minimize grid consumption by

implementing a traffic flow strategy. It is shown how the

MPC based scheme results in low grid energy consumption by

providing an energy management storage framework. Finally,

it is important to note that the proposed green policy and MPC

could be combined in a hierarchical control scheme over the

same network applied to specific situations where their reactive

and proactive capabilities are complementary to each other and

can be even jointly exploited.
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