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Abstract 

 The problem of observing rare events is pervasive among the molecular dynamics community 

and an array of different types of methods are commonly used to accelerate these long timescale 

processes. Typically, rare event acceleration methods require an a priori specification of the event to 

be accelerated. In recent work, we have demonstrated the application of boxed molecular dynamics 

to energy space, as a way to accelerate rare events in the stochastic chemical master equation. Here 

we build upon this work and apply the boxed molecular dynamics algorithm to the energy space of a 

molecule in classical trajectory simulations. Through this new BXD in energy (BXDE) approach we 

demonstrate that generic rare events (in this case chemical reactions) may be accelerated by multiple 

orders of magnitude compared to unbiased simulations. Furthermore, we show that the ratios of 

products formed from the BXDE simulations are similar to those formed in unbiased simulations at 

the same temperature.  

 



1. Introduction 

Molecular dynamics (MD) simulations have become a widely used computational tool for 

understanding molecular problems in a wide range of fields, spanning biochemistry1, surface 

chemistry2, combustion, etc.3 Such simulations can be used to obtain detailed microscopic insights 

into molecular behaviour, but the simulation of many real phenomena remains both technically and 

computationally challenging. The increasing efficiency of force evaluation routines (using molecular 

mechanics, quantum mechanical approaches, and machine learning) has to some extent served to 

emphasize another significant difficulty in using MD to simulate molecular change, which arises from 

the so-called “rare event” problem. Because chemical and molecular change generally occurs on 

timescales (ns, s or even ms) which are many orders of magnitude larger than the fundamental 

timescale of the simulation (fs),4-10 it is often the case that a significant amount of computational 

resource is required to observe chemical change within a molecular dynamics simulation.  

Over the past few years, a range of rare event acceleration techniques have been described in 

the literature. Popular approaches include milestoning,11-12 forward flux sampling,13-14 transition 

interface sampling,15 nested sampling approaches,16-17 nonequilibrium umbrella sampling,18 

metadynamics 19-20 and boxed molecular dynamics (BXD).4-10, 21-24 These methods typically require 

that one has some prior insight into the appropriate collective variable(s) required to accelerate the 

“event” of interest. For a wide range of chemical problems (e.g., free energy sampling in enzyme 

catalysed reactions, passage of ions through channels, solution phase chemical reactions, etc.), this is 

a sensible approach, owing to the fact that one often has a reasonable hypothesis as to which collective 

variables are likely to play an important role. It’s worth pointing out that there is a tradeoff between 

a given rare event method’s efficiency, and the quantity of ‘prior’ information which it requires. The 

more information one has to constrain the search space, the more efficient the method; the less 

information one has to constrain the search space, the more expensive the method. Therefore, in cases 

where one has reasonable starting hypotheses for how a particular event might happen, the methods 

outlined above save on valuable computational clock cycles. 

For cases where one wishes to accelerate the “discovery” of chemical reactions or molecular 

change, with limited prior insight and a lack of reasonable starting hypotheses, it is often unclear 

which collective variables to bias in the first place. In such cases, the challenge is to utilize algorithms 

in order to generate mechanistic hypotheses. Automated generation of reaction networks is a 

burgeoning field of research,25-32 with a range of approaches. For example, some groups utilise MD 

simulations in order to determine reactive pathways for a given molecular species. 28-29, 31, 33-34 For 

such approaches, the utility of MD depends on minimising the number of simulation steps and thus 

the CPU time required to see a reaction event. There have been a number of studies designed to tackle 

such a problem. For example, metadynamics in conjunction with a SPRINT coordinate representation 



of a chemical system has been used successfully in this context to explore the combustion mechanism 

of methanol. 34 There are related general acceleration techniques based on the application of bias 

potentials such as the hyperdynamics,35 “accelerated molecular dynamics”,36  and “temperature 

accelerated dynamics” 37 techniques. There is a separate group of related general acceleration 

methods based upon parallel tempering or replica exchange.38-39 Other approaches have used a 

“piston” style constraint in order to smash species together at high collision energies,29 while others 

have simply focused upon high energy MD simulations 28 in order to discover new chemistries.  

In this paper we present an alternative method in which we extend the BXD algorithm to 

adaptively bias the potential energy of the system. Using such an approach, we demonstrate that the 

‘discovery’ of reactive events in MD simulations may be accelerated by several orders of magnitude. 

A related method called “boxed molecular kinetics” (BXK)40 has recently been applied to accelerate 

rare events in kinetic Monte Carlo master equation simulations. This method described herein is 

essentially the analogue of BXK for the MD domain. This paper is organised as follows. Section 2 

focuses on the background and development of the BXD in energy (BXDE) methodology and 

discusses some practical implementation issues. In Section 3, we utilize this new BXDE method in 

conjunction with reactive molecular dynamics simulations of an isoprene peroxy system. This is a 

species of significant atmospheric interest which is known to undergo a number of different reaction 

pathways41-43 and as such provides a good test system for comparing reactive events observed from 

MD simulations with and without the BXDE method. In section 4 we build on previous work23 and 

describe methodology for simultaneously implementing both BXD and BXDE constraints. To 

demonstrate this approach, we consider the aforementioned isoprene peroxy species and demonstrate 

how addition of an additional BXD constraint limits the dominance of entropically favoured reaction 

pathways, and thereby encouraging the system to sample a wider range of reaction channels. In 

Section 5, we present conclusions. 

 

2. The BXDE Method 

2a. Boxed Molecular Dynamics (BXD) 

The BXD method22, 44 has been refined over the last several years and applied45 to a wide 

range of systems. In essence, this method works by introducing one or more reflective barriers in the 

phase space of some MD trajectory, along a particular coordinate or collective variable ߩሺݎሻ which 

is typically a function of the atomic positions ݎ (although it is also possible to formulate  so that it 

is a function of any phase space descriptor, including momenta). These boundaries are used to confine 

the trajectory to particular regions of phase space, and ultimately to nudge the dynamics along the 

generalised coordinate into regions of the potential which would be rarely sampled in an unbiased 

trajectory. Typically, the BXD reflective barriers are placed so as to direct the trajectory along some 



collective variable, which enables sampling of reactant, product, and transition regions of the 

configuration space. This BXD procedure has recently been generalised to enable adaptive sampling 

of combinations of collective variables of arbitrary dimensionality;23 however (for the sake of 

simplicity) the discussion and figures herein assume that ߩ is one dimensional. A schematic of the 

BXD procedure in 1D is shown in Figure 1. The BXD methodology provides ‘box-to-box’ rate 

coefficients. By converging these rate coefficients, the free energy profile along ߩሺݎሻ  may be 

obtained. Thus BXD not only accelerates rare events; it also provides a route to recovering both 

thermodynamic and kinetic information for a particular process. 

 

 

Figure 1: Schematic of the BXD process showing a fictitious trajectory (white indicates short times, orange 

intermediate times, and red long times) subject to multiple BXD constraints (vertical lines). The constraints are 

effectively reflective barriers which operate to nudge the trajectory along some generalised co-ordinate ߩሺݎሻ. After a 

specified number of hits at a trajectory surface, the constraint/ boundary on the right allows the trajectory to progress 

and gradually be guided along ߩሺݎሻ   
 

2b. BXD in potential energy space  

In this article, we are not concerned with using BXD to obtain ensemble averaged 

thermodynamics and kinetics, but rather to accelerate the rate at which we observe chemical reactions. 

Conceptually, it is easy to understand how BXD accelerates rare events. By not allowing a trajectory 

to sample some specified “box”, we effectively place constraints on the phase space volume which it 

is allowed to sample – i.e., with certain regions of phase space ‘off-limits’, the trajectory can be forced 

to sample regions of phase-space which it would otherwise only rarely sample. Work by some of the 

present authors23 recently demonstrated that this procedure could be (i) generalised to 

multidimensional collective variables, and (ii) executed adaptively, in order to make ‘on-the-fly’ 

decisions as to where BXD constraints should be located. Here we briefly summarise the foundations 

of the BXD method, as generalised previously,23 for the reader’s convenience and in order to 

introduce notation. From an implementation point of view there are two main aspects to the above 

procedure: (1) How is the trajectory confined within a box? (2) Where should the reflective barriers 

be placed?  



Trajectories are confined within a given box using a velocity inversion procedure when one 

of the reflective barriers is “hit”. We introduce the co-ordinate ߶ሬԦሺݎሻ ൌ ሻݎሺߩ  ڄ ఫ݊ෝ   where ො݊ܦ   is a 

unit norm to boundary Bj and Dj is the distance of Bj from the origin. Thus, ߶ሬԦሺݎሻ gives a measure of 

the distance of the trajectory, at any given timestep, from BXD boundary Bj. A boundary hit is then 

defined as a change in sign of ߶ሬԦሺݎሻ between ݎԦሺݐሻand ݎԦሺݐ  ȟݐሻ and the BXD constraint can be 

expressed as:  

 ߶ሬԦሺݎሻ  Ͳ      Eq (1) 

 

The velocity inversion procedure works as follows. If at time ݐ  ȟݐ the system evolves such that the 

coordinates pass some reflective BXD boundary B, then the system is reset to their values at time ݐ 

and the velocities are modified to give: 

 

ሻݐԦᇱሺݒ            ൌ ሻݐԦሺݒ   ሬԦ்             Eq(2)߶ଵିܯߣ

 

where 

ߣ  ൌ ିଶథሬሬሬԦڄ௩ሬԦሺ௧ሻథሬሬሬԦெషభథሬሬሬԦ               Eq(3) 

 

where ݒᇱሺݐሻ are the modified velocities which will satisfy Eq. 1 and ܯ is 3N by 3N matrix of 

atomic masses with N being the number of atoms in the system. These equations (Eq2,3) simply 

revert the component of the velocity in the direction of reaction coordinate. 

      

To accelerate general reactive events, there are two criteria which much must be satisfied: (1) 

the molecule must be in the correct configuration (i.e., the entropic penalty to reaction must be 

overcome); and (2) the potential energy of the species (located in the correct subset of modes) must 

exceed the energy barrier to reaction (i.e., the enthalpic penalty to reaction must be overcome). To 

date, BXD applications have mostly taken a sort of ‘entropic’ approach to accelerating rare events: it 

constrains a molecular system in a region of configuration space which is close to some transition 

region until spontaneous energy fluctuations enable the system to cross over into the next ‘box’. An 

alternative – and the one which we develop herein – is effectively an enthalpic approach: by confining 

a molecular system to regions of high potential energy, we increase the probability of observing 

spontaneous energy fluctuations which enable a molecule to reach the correct configuration which 



promotes reaction. To this end we have introduced a BXD bias along the potential energy (E) of the 

system, which we hereafter refer to as ‘BXDE’. By ‘scanning’ through potential energy ‘boxes’, we 

can identify the energetic ‘windows’ at which different chemical reactions channels switch on or off.  

For BXDE, the velocity inversion is trivial, owing to the fact that ߶ is simply given by the 

forces used for propagating the MD. Figure 2 (and its corresponding supplementary video) shows the 

BXDE procedure in the case of a simulation of a point particle on the so-called ‘Müller-Brown 

potential’.46 The different coloured zones are simultaneously energy contours and BXD boundaries. 

Purple corresponds to low energies, and red to high energies. Starting from panel A, at the beginning 

of the simulation the system is in one potential energy well. It explores that region until it has hit the 

boundary a user-specified number of times. At that point, the system is allowed to proceed to the next 

region as shown panel B. ‘Off-limit’ regions which have already been explored are coloured in grey. 

This procedure continues in panels C and D.  

 

 
Figure 2: Schematic of the BXDE process from trajectories of a fictitious point particle on the Mueller Brown potential 

energy surface utilising an NVE approach. Purple means low energy and red high energy. The particle starts in one 

potential energy well and explores one region at a time. The different coloured regions are separated by BXD 

boundaries. The areas that can no longer be explored are coloured in grey. The trajectory time series progresses from A 

to D.  



 

2c. BXDE implementation issues 

Fig 2 illustrates BXDE run in an NVE ensemble; however it is also possible to run in an NVT 

ensemble. In general, we have found the NVT ensemble of BXDE to be more robust for two reasons. 

First, in NVE simulations the system can sometimes get trapped in the vicinity of a BXDE constraint. 

Such a scenario is shown in Fig 3, where the system (shown as a black dot) has a velocity vector 

(black line) which would take it beyond a BXDE constraint, and therefore requires velocity inversion 

(grey line); however, the velocity inversion procedure also causes the system to cross a BXDE 

constraint. This leads to an infinite loop of inversions (back and forth), trapping system near the 

boundary. Systems with few degrees of freedom (such as a particle on a 2d Mueller-Brown potential) 

are particularly susceptible to this problem. Second, running BXDE in the NVE ensemble leads to a 

scenario where – as the system progresses through regions with higher potential energy – the kinetic 

energy necessarily decreases (because the total energy must be conserved), and the system explores 

higher energy regions significantly more slowly.  

 

 

Figure 3 - Diagram showing a model 2D system where a particle approaches a boundary (velocity vector 1 black line) and after 

the inversion procedure it takes another step outside the boundary (velocity vector 2 grey line). This results in an infinite loop 

of inversions.  

 

In the NVT ensemble (using e.g., a Langevin thermostat), these problems do not arise. Figure 

4 (and its corresponding supplementary video) illustrates the impact of adding a Langevin thermostat 

to the simulation of the model system in a Müller-Brown potential. In the Langevin thermostat, 



temperature is conserved through attempting to mimic dynamical effects of a heat bath – i.e., viscous 

drag and random collisions with bath particles. The corresponding equation of motion is as follows: 

                                       ݉ Ԧܽሺݐሻ ൌ ሻݐԦሺܨ  െ ሻݐԦሺݒ ߛ ݉    Ԧ߯ሺݐሻ               Eq. 4  

 

where ݉ is the mass of a particle, ܽሺݐሻ is the acceleration, ܨሺݐሻ is the force acting on the particle, ߛ 

is a friction coefficient, ݒሺݐሻ is the velocity of the particle and ߯ሺݐሻ is a random force.47 The random 

forces included within the Langevin bath significantly reduce the likelihood of the system being 

trapped near a boundary, with random collisions ensuring that the system is ‘kicked’ out of any traps. 

Video files showing the simulations from which the NVE and NVT snapshots were taken may be 

found in the online supporting information. 

 

 

Figure 4:  Simulation of a particle in a Müller-Brown potential. In this case the trajectories are run in the NVT ensemble with a 

Langevin thermostat.  

  

2d. Adaptive Placement of BXDE Boundaries  



One of the most important considerations when implementing any BXD procedure concerns 

where to place the boundaries. When studying a system for the first time, it often requires some 

exploratory ‘trial-and-error’ runs in order to determine the optimal placement of BXD boundaries. 

To eliminate this initial ‘trial-and-error’ aspect of BXD, O’Connor et al.23 recently described an ‘on-

the-fly’ adaptive scheme for boundary placement along specified configuration space collective 

variables. In BXDE, the adaptive boundary placement scheme is illustrated in Figure 5. The 

molecular dynamics simulation is allowed to run freely, keeping track of V(t) at each timestep. When 

V(t) > V(t – dt), the maximum value of the potential energy (Vmax) is updated – i.e., Vmax  V(t). After 

a user defined number of steps isamp have elapsed, a BXDE boundary is set at the current value of Vmax 

– i.e., VBXDE  Vmax. During the adaptive procedure, VBXDE bounds from below only, such that the 

trajectory is allowed to cross the boundary at the next timestep where V(t) > VBXDE. At subsequent 

timesteps, the system is confined to potential energies V(t) greater than VBXDE by invoking the BXDE 

velocity inversion procedure described above. This procedure enables the system potential energy to 

steadily increase.  

 

Figure 5: Flowchart describing the adaptive placement of constraints in the BXDE procedure.   

 

While not considered in the current work, the BXDE methodology can also be used to place 

reflective boundaries that bound from above – i.e., to reflect the trajectory towards regions of lower 

potential energy. This could be used in the above adaptive scheme to define some Vupper, which is 

never exceeded. This type of approach combined with an NVE ensemble could be used to study 

chemical reaction in a well-defined window of energies. Conceptually, such an approach would map 

well onto micro-canonical transition state theory calculations in particular the aforementioned BXK 

methodology40. 

In this work BXDE is simply used as an acceleration methodology and no attempt has been 

made to unbias the computational results. In the BXK method it was demonstrated that biased rate 

coefficients arising from a given energy window may be “corrected” through knowledge of the 

equilibrium constant between energy boxes, and in the principle the BXDE simulations may be 



“corrected” in a similar manner through converging the box to box transitions as one would in a 

normal BXD procedure. This is similar to the unbiasing strategy employed in “Hyperdynamics” 

simulations35 and will be explored in future publications. 

 

3. Reactivity in an Isoprene Peroxy System 

3a. Simulation Details  

To test the BXDE approach, we have implemented it within a locally modified version of 

the DFTB+ code48, enabling us to investigate reactive MD trajectories of the isoprene peroxy 

radical (OHCH2C(CH3)=CHCH2OO) whose structure is shown in scheme 1. A repository 

containing the modified DFTB+ code may be found at 

https://github.com/RobinShannon/BXDE_DFTB. This species is a key intermediate in the isoprene 

atmospheric oxidation sequence, and therefore plays an important role in atmospheric chemistry, 

owing to the fact that isoprene is amongst the most abundant volatile organic hydrocarbons (VOCs) 

in the troposphere 49. As a test for BXDE, isoprene peroxy offers an interesting system, owing to 

the fact that it is known to have a number of reactive isomerisation and dissociation pathways42. To 

initialize our BXDE runs, the geometry of the isoprene-peroxy radical was optimised using DFTB 

with an SCC correction and the mio-1-1 parameter files.50 MD trajectories were then performed 

with a 0.1 fs timestep using an NVT ensemble and a Langevin thermostat with a friction coefficient 

of 0.05 ps-1. 

 

 

 

Scheme 1: Structure of the isoprene peroxy radical.   

 

 

An adaptive approach was used for the placement BXDE boundaries as detailed in Figure 5. 

Simulations were performed with isamp values of both 100 and 1000, in order to evaluate the extent to 

which this parameter impacted the observed product channels. Simulations were performed until a 

reaction was observed as defined in section 3b, at which point the BXDE boundaries were removed 

to allow the dynamics to evolve naturally in the product region. A further 1000 MD steps were then 

performed in order to confirm the product species identity. This product geometry was then optimised 

at the dftb-scc level of theory and the canonical SMILES string for this geometry was recorded for 

bookkeeping purposes (computed by the openBabel 51 software). 



 

3b. Reaction Criteria 

To keep track of when a chemical reaction occurred, we identified bond making and breaking 

events using the approach recently described by Martinez Nunez.28 In this procedure two matrices 

are defined, ݀ and ݀ோாி. The first matrix has elements ݀  equal to the distance between atoms i and 

j in the system; the second matrix has elements ݀ோாி, consisting of pre-defined ideal bond distances 

between atoms i and j. In this work the ideal bond distances were defined according the atoms 

involved and were set to the following values in Table 1. These distances are loosely based upon 

those used by Martinez Nunez28  and tests showed that the computational results were insensitive to 

variations in these values. 

 

ij ݀ோாி/ Angstrom 

CC 1.6 

CH 1.2 

CO 1.6 

OO 1.6 

OH 1.2 

HH 0.8 

Table 1: Ideal bond distances which make up the elements of the ݀ோாிmatrix   

 

Using these two matrices, we form a connectivity matrix with elements ܥ , where: 

 

 ൌܥ   ൜ͳ ݂݅ ݀ ൏ ݀ோாிͲ ݁ݏ݅ݓݎ݄݁ݐ              Eq. 5 

 

For the starting structure, this matrix identifies whether two atoms are bonded (ܥ ൌ ͳሻ or non-

bonded (ܥ ൌ Ͳሻ. At each time step, the current bonding structure (given by d and dREF) of the system 

is compared with the reactant bonding structure (given by C) to monitor for reaction. Specifically, a 

reaction is then considered to occur if for an atom i: 

 

 maxሺߜሻ   min ሺߜ) ; ߜ ൌ ௗೕௗೕೃಶಷ           Eq. 6 

 

Here index n runs over atoms bonded to i (Cij matrix elements equal to one) and index k runs over 

atoms which do not have a bond to i (Cij matrix elements equal to zero). In this work we introduce 



the additional constraint that the criteria above be met consistently for 50 MD timesteps, to filter out 

extremely short-lived transient reaction events, and ensure that a bond breaking / bond forming 

process had indeed occurred. There is no need to recalculate the elements of C at the product 

geometry, since in the current work simulations are stopped once a reaction product has been 

identified.  

 

3c. Results 

Simulations were performed with and without the BXDE procedure at a number of 

temperatures between 500 K and 4500 K. Figure 6, which indicates the temperature variation in the 

500K BXDE simulations, shows that the system is close to the target temperature of 500K. Figure S1 

in the supporting information compares temperature profiles from biased and un-biased simulations 

and similar fluctuations in T are observed suggesting that these fluctuations are due to the thermostat 

rather than the BXDE procedure itself.

 

 

Figure 6: Temperature as a function MD simulation time in fs, for BXDE simulations at 500K. Here an NVT ensemble 

has been used with a temperature of 500 K and a friction coefficient of 0.05 ps–1. Shaded confidence interval comprises 

the 2ı errors. 

 



Figure 7 shows the average time elapsed, prior to observation of a reactive event (as defined 

by the criterion in Eq. 4 and Eq. 5), obtained (apart from in the non-BXDE, 500 K case) from 50 

different reactive trajectories at temperatures of 500 K, 1500 K, 2500 K, 3500 K and 4500 K. Figure 

7 shows the degree of acceleration in reactive events which can be achieved by utilising BXDE. As 

would be expected, reactive events are observed more rapidly with an isamp value of 100 though this 

difference is only significant at the lowest temperature. Since we were unable to observe any reactions 

at 500 K without BXDE, we estimated the non-BXDE 500K value from microcanonical transition 

state theory calculations using the master equation code MESMER.52  The input file for these 

calculations is given in the supplementary information, and these calculations yield a rate coefficient 

of 1.29×105 s–1 – i.e., the MD simulations would need to run for an average of 7.75×109 fs in order 

to observe reaction. Error bars were calculated using Poisson statistics, with the sample standard 

deviation calculated as ߪ ൌ  ௦ξ where s is the variance in the sample data and n is the sample size. 

Errors bands shown are 2ı. 

 

 

Figure 7: Average time in fs before reaction is observed at different temperatures. Shaded error bands comprise the 2ı 

errors 

 

Before examining how the application of BXDE affects the observed reactant products it is 

worth comparing product formation as a function of temperature. We choose the BXDE results for 

this comparison and will subsequently (Section 3d) demonstrate that these BXDE results are 

representative of the non-BXDE results under the same conditions. Broadly speaking, Fig 7 lends 

credibility to a relatively common approach for accelerating chemical reactions – i.e., simply running 

dynamics at extremely high temperatures or energies.28-29 However there are two interrelated 

problems associated with using high energy trajectories: (1) Because the object of a chemical 



dynamics study is usually to understand reactivity at a particular energy or temperature range, 

extremely high temperature dynamics – which leads to an explosion in the number of possible 

reactive pathways – are unlikely to be representative of those pathways which are accessible under 

typical experimental conditions; and (2) Extremely high temperatures and energies tend to favour 

pathways with significant entropic benefits over those with low enthalpic barriers – i.e., loose 

transition states corresponding to dissociation pathways are observed far more frequently than lower 

energy isomerisation pathways with tighter transition states.  

Figures 8 compares the different product channels observed from BXDE simulations at 500K 

and 4500K, illustrating the point discussed above. The minor channels, not shown in figure 8 are 

listed in the online supporting information. The chart in the panel A shows the observed 500K 

products. At 500 K, the loss of O2 is the dominant channel. There is also a small HO2 loss channel 

though this process involves isomerisation prior to dissociation (hence the I/D label); all the other 

channels observed correspond to unimolecular reactions involving the transfer of a hydrogen or 

oxygen atom from one part of the peroxy to another. Previous high level studies of this isoprene 

peroxy system have shown that hydrogen transfer from C to O  (giving I1) has the lowest barrier to 

reaction.42 It occurs as the second most frequent product channel in the 500 K BXDE simulations. 

For the 4500 K case (shown in panel B) a total of 18 product channels were observed and only three 

of these overlap with the products observed from simulations at 500K. The corresponding chart splits 

these channels according to the number of molecular fragments formed. Unimolecular reactions 

typically have the lowest energy barriers but they are entropically unfavourable owing to the fact that 

they are relatively ‘tighter’, and therefore are not observed during the 4500 K BXDE runs. All of the 

observed product channels instead involve dissociation of the isoprene peroxy into multiple 

(anywhere from 2 – 4) fragments. The hydrogen transfer channel in Figure 8a (I1), which is known 

to be the lowest energy channel, is in fact not observed at 4500K.  

  

 

 

 



 

 

 

 



 

 

 

Figure 8: Breakdown of product channels from (A) 500K and (B) 4500K BXDE simulations (both isamp =100 and isamp 

=1000). In the 500K case, each bar shows a separate product channel, whereas in the 4500K case, the bar chart instead 

distinguishes the product channels by the number of fragments formed with each bar broken down into individual 

products. Product structures are shown for all channels with more than one occurrence and those channels found in (B) 

which are also found in (A) are labelled. Minor product channels from the 4500 K simulations can be found in the 

online supporting information 

 

The two major reaction products shown in Fig 8A (H transfer I1 and O2 loss D1) are shown 

in Figure 9 alongside two other low energy channels: loss of OH to (D2) and H transfer from O to O 

to form (I2). To visualise what is happening in the BXDE trajectories, Figure 9 shows the potential 

energies sampled during a 2500 K BXDE run, along with adaptively placed BXDE boundaries. Also 

shown are the reaction thresholds for the 4 reactions mentioned above. It should be noted that 

optimisation of the saddle points corresponding to the H transfer processes on the left hand side was 

not possible using the DFTB method as implemented in the G09 suite of ab initio programs,53 perhaps 

due in part to the lack of analytical second derivatives for the DFTB method. As such the barrier 

heights are estimated from single point DFTB calculations at the optimised geometry of higher level 

M06-2x /6-311+G(3d,2p) transition states.  



 

Figure 9: Data schematic from a 2500K BXDE simulation. Also shown are estimated barrier heights for the four lowest 

energy product channels as calculated at the DFTB level of theory.  The channels to the left correspond to hydrogen 

transfer unimolecular channels and the channels on the right are dissociations lacking defined saddle points. 

 

3d. Sampling enthalpic vs entropic channels   

In what follows, we show that a simple statistical rate theory analysis is able to explain the 

dominance of entropic channels observed in BXDE runs at high energies. Using the estimated barrier 

heights shown in Fig 9, we performed microcanonical statistical rate theory calculations using the 

master equation solver MESMER,52 a more detailed description of which can be found elsewhere.54-

55 In our master equation calculations we compare the hydrogen transfer channels on the left of Figure 

9 and the dissociation channels on the right side of Figure 9. The MESMER input used to carry out 

these calculations is given in the supplementary information. 

Figure 10 shows the energy resolved rate coefficients (k(E)s) for the product channels in Fig 

9 calculated using MESMER. The plot clearly shows that the lowest hydrogen transfer isomerization 

channel dominates at low energies, but that both dissociation channels dominate at higher energies 

(by 3 orders of magnitude in the case of D1).  This plot also demonstrates why the BXDE trajectories 

need to be so far in excess of the lower energy thresholds before observation of reactive events: in 

order for a reaction to be observed on the order of 1000 fs, a rate coefficient on the order of 1012 s–1 

is required. This region is only reached at energies more than 1000 kJ mol–1 above the O2 dissociation 

energy.  



 

Figure 10: Calculated k(E)’s from master equation simulations of the lowest energy reaction paths in the isoprene 

peroxy system. The labelling follows that shown in Figure 9. 

 

To explore the extent to which BXDE simulations are representative of unbiased simulations 

at the same temperature, we have analysed the product yields of the dominant H transfer and O2 loss 

channels observed in the MD simulations. These calculations were performed at 500 K, 1500 K, 2500 

K, 3500 K and 4500 K. Figure 11 shows the product yields for I1 and D1 as a function of temperature 

for the unbiased MD simulations and the BXDE simulations with isamp values of 1000 and 100. The 

error bands on these product yields are taken from a multinomial distribution (as often used when 

analysing product channels from stochastic trajectories56), given by the following expression:  ߪ ൌ  ටଵே ݂ሺͳ െ ݂ሻ       (Eq.8) 

where N is the sample size (50) and f is the fractional yield. The errors bars shown in Fig 11 are 2ı. 

These calculations demonstrate that product yields are statistically identical between the MD 

simulation types, and it can be observed that all simulations follow the same temperature dependence. 

While the error bands are large due to the relatively small sample size, the results suggest that product 

yields obtained using low temperature BXDE simulations do provide a qualitatively meaningful 

picture of low temperature reactivity.  



 

Figure 11: Branching ratios of two important channels (O2 dissociation and H transfer) for the 

OHCH2C(CH3)=CHCH2OO system. These are shown as a function of temperature and compare non-BXDE simulations 

with BXDE simulations using isamp values of 1000 and 100. Shaded error bands comprise the 2ı errors 

 

In order to support the observations in Figure 11, Figure 12 shows a detailed comparison of the 

product pathways observed in BXDE and non-BXDE simulations at 1500K. As seen in Figure 11, 

the dominant pathways in all cases are D1 followed by I1, and some of the lower energy 

isomerisations from the 500 K BXDE simulations are no longer observed. There is good agreement 

in general between the different types of simulations though it is noted that the minor channels 

occur with insufficient frequency to make any statistically meaningful statements.  



  

Figure 12: Product yield comparison for the different types of simulations at 1500 K. Orange and cyan correspond to 

BXDE simulations with isamp = 100 and 1000 respectively whilst purple corresponds to the unbiased simulations.  

 

4. Multiple BXD constraints 

4a. Motivation and Implementation 

The analysis above shows that entropic channels dominate at high energies and temperatures. 

To avoid this dominance of entropic channels, this section outlines our method for adding additional 

constraints. Since BXD treats each collective variable individually, additional constraints mean that 

multiple BXD boundaries need to be enforced (as shown in Figure 13). Enforcing multiple constraints 

in both energy and collective variable space is distinct from the multidimensional collective variable 

approach presented in our previous work. In that work, any given hyperplane was defined as a linear 

combination of collective variables. This ensured that hyperplanes did not intersect within the 

dynamically sampled space, and hence only one boundary could be crossed at a time. In the present 

application, it is possible that the boundaries intersect in collective variable space and so a trajectory 

may cross multiple boundaries in several collective variables in a given time step.  



 

Figure 13: Schematic illustrating the placement of two intersecting BXD boundaries, ܤଵ and ܤଶ. ܤଵ restricts the 

trajectory to particular values of ߩ in collective variable space, while ܤଶrestricts the trajectory to a particular energy 

range. At the points of intersection of the two boundaries, BXD constraints for both must be enforced simultaneously.  

 

For a system of ܭ  nonholonomic constraints, we define a quantity associated with each 

collective variable, as described in section 2a. With these K constraints ߘ߶ሬԦ is generalised to a K by 

3N matrix સࣘ and  ߣ is a replaced with a vector of size K, denoted ߣԦ.  The modified velocities must 

now satisfy the following system of linear equations, which we here express in matrix form: 

 સࣘ Ԧ߭ᇱሺݐሻ  સࣘ Ԧ߭ሺݐሻ ൌ Ͳ            Eq. 9 

 

Substitution of Eq.1 into Eq, 9 gives the matrix equation:  

 

 સࣘሺ Ԧ߭ሺݐሻ  ሻࢀસࣘିۻԦߣ  સࣘ Ԧ߭ሺݐሻ ൌ 0       Eq. 10 

 

This defines a system of linear equations, which can be solved to give ߣԦ. A worked analytical 

solution to the current case where K = 2 is given in Appendix 1.  

 

4b. Isoprene Peroxy Simulations With Multiple BXD Constraints  

Simulations were once again performed for the isoprene peroxy species described in Section 

3. These simulations were performed at 500 K with an isamp value of 100 and were carried out in an 

almost identical manner to those described in Section 3, with the only difference being the addition 

of a second BXD constraint, constraining the C-OO bond of the isoprene peroxy molecule. 

Specifically, for this second BXD constraint the collective variable is the C-OO bond distance and 



we place a permanent BXD boundary at 1.6 Angstrom to prevent cleavage of this bond and to avoid 

the dominance of entropically favoured channels. Figure 14 shows a chart of the product channels, 

which can be compared directly to Figure 8A. One observes that neither the O2 nor HO2 loss channels 

are present due to the additional BXD constraint. Instead, the two dominant channels are the two H 

transfer processes, which respectively yield I1 and I2  (the two lowest energy channels on the left 

side of Figure 9). The more minor unimolecular channels from Figure 8a are no longer observed, 

although due to the relatively small sample size it is difficult to draw firm conclusions regarding this. 

We also observe some new channels: namely OH (D2) and O atom loss. These results provide a clear 

demonstration that the second BXD constraint reduces the number of product channels, avoids the 

dominance of entropically favoured channels, and thereby enhances the sampling of the lowest energy 

unimolecular channels.  

 

Figure 14: Product channels from 500K BXDE simulations with an additional BXD constraint stopping O2 dissociation. 

The products formed are labelled with the corresponding structure. 

 

5. Conclusions 

In this paper we presented a new methodology based upon the BXD procedure, which can 

accelerate the observation of chemical reactivity in MD simulations by more than 6 orders of 



magnitude compared to unbiased trajectories. This method allows chemical reactions to be sampled 

efficiently whilst giving reaction product yields which are consistent with the temperature at which 

the MD simulations are run. This method allows for rapid sampling of reaction mechanisms via MD 

and is particularly easy to implement compared to related methodologies.34-36 This method strongly 

overlaps with the recently developed boxed molecular kinetics (BXK) 40 approach. Together these 

methods are ideal for automatically mapping and quantifying the kinetics of complex reactive or 

conformational networks of the types found in combustion modelling,3 protein folding1 and countless 

other fields.   

We have also demonstrated how the BXDE approach can be combined with additional 

collective variable constraints, in order to avoid the scenario where entropically favoured channels 

dominate compared to important low energy channels. This multi-constraint approach allows 

traditional BXD constraints to be coupled with BXDE in order to gain greater control of which 

reactive events are observed. As demonstrated here, this can be used to remove a particularly 

dominant reaction path to allow a more detailed investigation of other channels. This approach could 

also be used for examining the reactivity of weakly bound complexes via MD since a BXD constraint 

can prevent dissociation of the complex while the BXDE constraint accelerates the observation of 

chemically reactive processes, which the complex may undergo.  In the future the use of multiple 

constraints could be implemented in an automated manner as different reaction pathways are found. 

For example, it should be possible to add BXD constraints ‘on-the-fly’ as reactions are discovered, 

and thereby encourage the system to sample increasingly minor reaction channels.  

In summary the two tools presented here are ideally suited to the rapid exploration of reaction 

or conformation space within MD whilst maintaining temperature or energy resolution in the 

observed pathways. The BXDE method is simple and computationally cheap to implement and we 

demonstrate that it can lead dramatic increases in the rate at which rare events are observed. Work is 

in preparation to form a new dynamics-based reaction discovery framework utilising the new 

methodologies described here and there are also plans to apply the BXDE method to conformational 

/ rare event sampling in protein simulations.   

 

Supporting Information 

MESMER input file used in the current work and break down of all minor channels observed from 

4500 K BXDE simulations (PDF). Videos of BXDE trajectories on a 2-D Müller-Brown potential’ 

with an NVE ensemble (BXD_NVE.mpg) and an NVT ensemble (BXD_NVT.mpg). 

This information is available free of charge via the Internet at http://pubs.acs.org 
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Appendix 1 

 

In the two-dimensional case the matrix equation represented by Eq. 10 can readily be solved as the 

system of linear equations: 

ሬԦଵ߶ߘିۻଵߣሬԦଵ߶ߘ   ሬԦଶ߶ߘିۻଶߣሬԦଵ߶ߘ ൌ െʹߘ߶ሬԦଵ ή Ԧ߭ሺݐሻ 

ሬԦଵ߶ߘିۻଵߣሬԦଶ߶ߘ         ሬԦଶ߶ߘିۻଶߣሬԦଶ߶ߘ ൌ െʹߘ߶ሬԦଶ ή Ԧ߭ሺݐሻ            Eq. A1 

 

Here ߘ߶ሬԦଵ is a vector of elements of the first row of ࣘࢺ (the BXDE constraint vector) and ߘ߶ሬԦଶis a 

vector of elements of the second row of ࣘࢺ (the derivative of the centre of mass separation between 

the isoprene fragment and the O2 group.  

Since the coefficients of ߣଵand ߣଶare scalars we can simplifiy Eq.11 to: 

ଵߣܽ   ଶߣܾ ൌ െʹܿ ݀ߣଵ  ଶߣ݁ ൌ െʹ݂                   Eq. A2 

 

Then, multiplying the top by ݀ and the bottom by ܽ and then subtracting the bottom from the top 

we get: ߣଶ ൌ ିଶௗାଶሺௗିሻ           Eq. A3 

 

Finally ߣଶ can be substituted back into Eq.12 to obtain ߣଵǤ ߣଵ ൌ ଶିଶሺௗିሻ           Eq. A4 
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