

This is a repository copy of A multi-component mass transfer rate based model for simulation of non-equilibrium growth of crystals.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/134553/

Version: Accepted Version

Article:

Shu, YD, Li, Y, Zhang, Y et al. (2 more authors) (2018) A multi-component mass transfer rate based model for simulation of non-equilibrium growth of crystals. CrystEngComm, 20 (35). pp. 5143-5153. ISSN 1466-8033

https://doi.org/10.1039/c8ce00639c

© 2018, The Royal Society of Chemistry. This is an author produced version of a paper published in CrystEngComm. Uploaded in accordance with the publisher's self-archiving policy.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Fig. 1 Schematic diagram of non-equilibrium stage model for solution crystallization. Here stage *j* stands for a discretized moment during simulation of the crystal growth

Fig.2 Schematic diagram of the interface model

Fig. 3 Equilibrium and experimental morphology of a NaNO₃ crystal

Fig. 4 Comparison of simulated and experimental normal distance evolution of pure NaNO3

crystal growth

Fig. 5 Evolution normal distance of face $\{104\}$ and crystal shape during $NaNO_3$ crystal

growth with different KNO₃/NaNO₃ molar ratio

Fig. 6 Crystal with different KNO₃/NaNO₃ molar ratio. The molar fraction is normalized throuth dividing it by the initial molar ratio of KNO3/NaNO3 (i.e. 103 or 105). (a)
Evolution of KNO₃ molar fraction in the whole crystal (b) KNO₃ molar fraction distribution in the normal direction of face {104}

