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Abstract

Adverse wall shear stress (WSS) patterns are known to play a key role in the

localisation, formation, and progression of intracranial aneurysms (IAs). Com-

plex region-specific and time-varying aneurysmal WSS patterns depend both

on vascular morphology as well as on variable systemic flow conditions. Com-

putational fluid dynamics (CFD) has been proposed for characterising WSS

patterns in IAs; however, CFD simulations often rely on deterministic bound-

ary conditions that are not representative of the actual variations in blood flow.

We develop a data-driven statistical model of internal carotid artery (ICA) flow,

which is used to generate a virtual population of waveforms used as inlet bound-

ary conditions in CFD simulations. This allows the statistics of the resulting

aneurysmal WSS distributions to be computed. It is observed that ICA wave-

form variations have limited influence on the time-averaged WSS (TAWSS) on

the IA surface. In contrast, in regions where the flow is locally highly multidi-

rectional, WSS directionality and harmonic content are strongly affected by the

ICA flow waveform. As a consequence, we argue that the effect of blood flow

variability should be explicitly considered in CFD-based IA rupture assessment
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to prevent confounding the conclusions.

Keywords: intracranial aneurysms, multidirectional flow, wall shear stress,

computational fluid dynamics, uncertainty quantification

Introduction1

Pro-inflammatory responses in the vascular endothelium play a key role in2

intracranial aneurysm (IA) growth and rupture (Meng et al., 2014). The driv-3

ing factor behind this response is hypothesised to be wall shear stress (WSS),4

defined as the frictional force of blood on the vessel wall. Localised adverse5

WSS patterns, i.e., spatiotemporal distribution of hemodynamic WSS on the6

aneurysm sac, have been shown by Feaver et al. (2013) to correlate with the ex-7

pression of transcription factors related to inflammation (such as NF-κB), and8

have been shown by Davies (2009), Chiu and Chien (2011) and, Mohamied et al.9

(2015) to correlate with locations of atherosclerotic lesions on the vessel wall.10

Several attempts have been made to further characterise the atherogenic WSS11

patterns by looking into, e.g., WSS magnitude oscillations (Lee et al., 2009; Ku12

et al., 1985), temporal and spatial gradients (DePaola et al., 1992; Dolan et al.,13

2013), and the harmonic content of the WSS waveforms (Feaver et al., 2013;14

Himburg and Friedman, 2006).15

Evaluation of WSS from phase contrast magnetic resonance imaging is not16

reliable enough to provide quantitative measures (Boussel et al., 2009). There-17

fore, computational fluid dynamics (CFD) has been proposed as a tool for char-18

acterising WSS patterns. WSS multidirectionality has been recently used to19

characterise atherogenic flows in CFD simulation studies by Mohamied et al.20

(2015), and Peiffer et al. (2013a). However, CFD-based studies are contro-21

versial among interventional neuroradiologists and have not become widely ac-22

cepted in clinical decision making. Such controversies can be found in e.g.23

Kallmes (2012),Cebral and Meng (2012), Valen-Sendstad and Steinman (2014),24

and Xiang et al. (2014b), where the clinicians and CFD modellers discussed25

the confounding nature and unreliability of various CFD-based haemodynamic26
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variables and the importance of assumptions and uncertainties associated to27

CFD models. Failure to address underlying variations in systemic blood flow28

due to the state of the patient (e.g., level of stress, physical activity, sleep, etc.)29

and its effect on WSS patterns may be one of the reasons behind this perceived30

unreliability.31

Our primary aim is to quantify the effect of flow waveform variability on the32

hemodynamic WSS over the intracranial aneurysm surface. Boundary condi-33

tions in CFD models are typically either drawn from literature data or obtained34

by patient-specific flow imaging over a few heartbeats. Neither approach re-35

produces the intra-subject variability of systemic blood flow arising due to the36

presence of dynamic regulatory systems. The sensitivity of the intra-aneurysmal37

haemodynamics to the systemic flow conditions has been explored in various38

studies. For example, Geers et al. (2014) found a 20% increase in flow rate to39

correspond to a 27% increase in aneurysmal WSS; Xiang et al. (2014a) found40

different flow rate waveforms with the same time-averaged inflow rate to produce41

almost identical WSS distributions and WSS magnitudes, similar OSI distribu-42

tions, but drastically different OSI values; and Morales and Bonnefous (2015)43

observed that the spatiotemporal-averaged aneurysmal WSS varies quadrati-44

cally with the inflow rate. However, CFD models of vascular blood flow still45

mostly report deterministic flow results.46

To address this problem, we construct a Gaussian process model (GPM) for47

generating internal carotid artery (ICA) waveforms. The GPM is calibrated48

against the data from Ford et al. (2005) on ICA flow measurements across a49

cohort of 17 young adults. The variability due to flow uncertainty is measured50

in three quantities of interest: time averaged WSS (TAWSS), oscillatory shear51

index (OSI), and transverse WSS (TransWSS), and means and confidence in-52

tervals are computed for each. In this way, we achieve a novel combination of53

CFD simulations and statistical models that: 1) incorporates physiological flow54

measurements, 2) is more systematic than previous approaches for quantifying55

flow uncertainty, and 3) can be fitted to the characteristics of particular cohorts.56

Classifying IAs by their rupture likelihood is currently performed by look-57
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ing at morphological features and patient-specific risk factors (Bederson et al.,58

2000). Machine learning has been proposed to aid in this task. Xiang et al.59

(2011) used morphological and hemodynamic features assessed on a cohort of60

119 patients to train a logistic regression model for IA classification. Bisbal et al.61

(2011) performed an exhaustive evaluation of seven different classifiers trained62

on 60 different features identified as being significant. Using the bounds on63

WSS uncertainty computed in this study, we explore what happens when flow64

uncertainties are incorporated into a classifier similar to that of Xiang et al.65

(2011). The results demonstrate that the effect of flow variability on IA classi-66

fiers should be explicitly considered to avoid biasing effects that may confound67

the conclusions of CFD studies used to predict IA rupture likelihood.68

Materials and Methods69

Image-based patient-specific intracranial aneurysm models70

Patient-specific surface models for two saccular IAs from the @neurIST co-71

hort were previously reconstructed from three-dimensional rotational angiogra-72

phy as described in by Villa-Uriol et al. (2011) using the geodesic active regions73

approach of Bogunović et al. (2011). Both IAs were located on the ophthalmic74

segment of the left internal carotid artery. During the follow-up period, the75

aneurysm in patient 1 ruptured, whereas the one in patient 2 did not rupture.76

Vascular models were discretised using unstructured volumetric meshes in AN-77

SYS ICEM v16.2 (Ansys Inc., Canonsburg, PA, USA). Tetrahedral elements78

with maximum edge size of 0.2 mm were used and three layers of prismatic79

elements with an edge size of 0.1 mm were used to create boundary layers. The80

total number of elements were 2.2 and 6.6 million and mesh densities were 302581

and 3315 elements per mm3 for patients I and II, respectively.82

Computational fluid dynamics simulations83

Blood flow in the IA was modelled using the incompressible unsteady Navier-84

Stokes equations. Blood was assumed to be a Newtonian fluid of density 106685
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kg/m3 and viscosity of 0.0035 Pa·s. Peak systolic Reynolds numbers at the86

inlet ranges from 338 to 532, and no turbulence modelling was performed. To87

ensure fully-developed flow, the computational domain was extended at the inlet88

boundary by an entrance length proportional to the inlet boundary maximum89

Reynolds number. The Navier-Stokes equations were solved in ANSYS CFX90

v16.2 (Ansys Inc., Canonsburg, PA, USA) using a finite-volume method. The91

cardiac cycle was discretised in time into 200 equal steps. Element and time-92

step sizes were set according to the @neurIST processing toolchain where mesh93

and time-step size independency tests were performed on WSS, pressure, and94

flow velocity at several points in the computational domain as described by95

Villa-Uriol et al. (2011). Arterial distensibility was not considered in this study96

(rigid-wall assumption).97

Inlet boundary conditions and generation of ICA waveforms98

A Gaussian process model (GPM) (see e.g. Williams and Rasmussen (2006)99

for details) was used to generate multiple inflow waveforms that mimicked the100

inter-subject flow variability at the ICA. The GPM was trained on subject-101

specific data from the study of Ford et al. (2005) describing ICA flow measure-102

ments in 17 young adults. In that work, descriptive statistics of the reference103

flow rate waveform were reported in terms of mean values and variances of both104

time and flow rate at 14 fiducial landmarks. Flow rate mean values and vari-105

ances were used to generate the GPM in this study. Any GPM is defined by its106

mean waveform plus a covariance function. Since the ICA flow waveform was107

smooth, continuous, and differentiable, the covariance function was chosen to be108

a squared exponential, σ2(tj , tk) = σ2
0 exp

(

−||tj − tk||
2
T /2L

2
)

, with parameters109

σ0 and L (Williams and Rasmussen, 2006). The distance metric was chosen110

as ||tj − tk||T := min {|tj − tk|, |tj − tk + Tperiod|, |tj − tk − Tperiod|} to get pe-111

riodic waveforms, where Tperiod was the normalised cardiac cycle length and112

tj , tk ∈ [0, T ]. As a stationary Gaussian process could not fully fit the observed113

data (variance at systolic peak was greater than during diastole), a symmetric114

bell-shaped function, f , was used to introduce non-stationarity in the process.115
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f(tj , tk) = sd +
1

1
sps

+ |
max(tj ,tk)−xps

2 |4
(1)

In equation (1), sd ∈ [0, 1] and sps ∈ [0, 1] are parameters controlling the116

variance during diastole and at peak systole, respectively; and, xps is the peak117

systolic landmark number. As reported by Ford et al. (2005), the ICA waveform118

systolic variance is approximately four times greater than diastolic variance and119

the systolic peak is the third landmark on the ICA waveform. Thus, in equation120

(1) the parameter sps was replaced by 4sd and xps was set to 3.121

Finally, the GPM mean waveform was set to the mean ICA waveform taken122

from Ford et al. (2005); and the GPM covariance function σ2(tj , tk) was con-123

structed as124

σ2(tj , tk) = f(tj , tk) · σ
2
0 ·

exp
(

−min {|tj − tk|, |tj − tk + Tperiod|, |tj − tk − Tperiod|} /2L
2
)

. (2)

Random realisations of the GPM was then used GPM-generated ICA wave-125

forms. To fit the process covariance σ2
0 and correlation length L to that observed126

in the measurements, for each sd ∈ [0, 1], a two-dimensional numerical optimi-127

sation problem was solved based on the cost function, g, that penalised values128

exactly equal to the mean waveform or greater than twice the standard deviation129

for each landmark.130

g(yj) =























Po(yj − (ȳj + 2SDj) ȳj + 2SDj ≤ yj

−Pm

2SDj
|yj − ȳj |+ Pm ȳj − 2SDj ≤ yj ≤ ȳj + 2SDj

Po(yj − (ȳj − 2SDj) yj ≤ ȳj − 2SDj

(3)

For each landmark j, yj is the value of ICA flow generated by the GPM;131

and, ȳj and SDj are the mean and standard deviation reported by Ford et al.132

(2005). Penalty parameters Pm and Po penalise yi values that are exactly equal133

to the mean or are deviated more than twice the standard deviation from the134

mean.135

6



A virtual population of 50 internal carotid flow waveforms was then gener-136

ated and used as inlet boundary conditions to the CFD models. To maintain137

a physiological arterial WSS of 1.5 Pa and to enable population-wide compar-138

isons, Poiseuille’s law was used to scale the GPM-generated waveforms such139

that the time-averaged WSS was 1.5 Pa at the inlet. Fig. 1(a) shows the 95%140

confidence bounds of flow at the fiducial landmarks (black bars), and a virtual141

population of internal carotid artery flow waveforms generated from the Gaus-142

sian process model (red curves). More details about GP modelling of the ICA143

flow waveforms are presented in the Supplementary Material.144

Outlet boundary conditions145

A two-element windkessel (RC) boundary condition model was assigned at146

the outlet boundaries. The RC windkessel model acts as a low-pass filter with147

a RC time constant τ = R × C. To guarantee that the terminal RC circuit148

converges to the ultimate pulsatile pressure and the solution is independent149

from the initial transient numerical effects, each simulation was run for certain150

number of cycles, defined as nCycle =
⌈

τ
Tperiod

⌉

+ 1, where ⌈x⌉ symbolized the151

ceil function. Results from the last cardiac cycle were then used to calculate152

the hemodynamic parameters of interest. The resistance and capacitance values153

of the windkessel model were chosen to maintain a physiological range of ICA154

pressure and pulsatility for each particular patient. To enable rapid parameter155

tuning, a surrogate model was built using polynomial response surfaces to ap-156

proximate the mean arterial pressure (MAP) and pressure wave pulsatility index157

(PPI) of the flow for each (R,C) pair. A Chebyshev grid of 81 (9×9) points was158

created on a 2D physiological range of variability for R and C (reported in e.g.159

Brown et al. (2012); Reymond et al. (2011, 2009); Stergiopulos et al. (1992);160

Vignon-Clementel et al. (2010)) in such a way that each point on the grid was161

associated with a pair of R and C values. A total of 81 CFD simulations were162

performed while recording the observed values of steady-state mean arterial163

pressure (MAP) and pressure wave pulsatility index (PPI) in the ICA for each164

simulation after nCycle heartbeat cycles. To develop a surrogate model of ICA165
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MAP and PPI vs terminal resistance and capacitance, MAP and PPI surfaces166

were linearly interpolated over a uniform grid of 100×100. The surrogate model167

was used to select values R and C values in such a way that when the reference168

inflow waveform were applied at the inlet boundary, the model provides ICA169

pressures with MAP and PPI matching clinically measured values of 90 mmHg170

and 0.5 from the normal individual, respectively. Fig. 1(b) and Fig. 1(c). show171

the response surfaces of MAP and PPI against terminal resistance and capac-172

itance for patient 1. Fig. 1(d), values of R and C at the point, where MAP173

= 90 mmHg and PPI = 0.5 intersects, were selected as optimized windkessel174

parameters for patient 1. As mentioned above, a derivation of the Poiseuille’s175

law that relates the inflow rate to the WSS and vessel’s inlet cross-sectional176

area was used to scale the time-averaged flow rate in the parent vessel for each177

patient. Since the time-averaged flow rates are different in patient 2, the re-178

sistance and capacitance values from the first patient’s surrogate model need179

to be scaled using factor α defined as α = inflowtav,1/inflowtav,2, where where180

inflowtav,1 and inflowtav,2 are time-averaged inflow rates for patients 1 and 2.181

The terminal resistance and capacitance were then scaled as R2 = (1/α) × R1182

and C2 = α× C1, respectively.183

Fig. 1(e) shows reference inflow waves for patients 1 and 2. Fig. 1(f) shows184

that, applying the windkessel outlet boundary condition with tuned R and C185

values, the same desired ICA pressure has been obtained for patients 1 and 2186

with different inflow waveforms. Since the time-averaged inflow rate was kept187

constant and only waveform shapes varied across the virtual population, the188

same R and C values as those tuned with the reference inflow waveforms were189

used for all 50 CFD simulations on each patient.190

Data analysis191

Wall shear stress (WSS), τw(x, t), is a time-varying vector field that repre-192

sents the tangential component of the traction vector on the wall. We assessed193

the magnitude, pulsatility, directionality and the harmonic content of the WSS194

waveforms on the aneurysm wall using several derived quantities of interest.195
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Figure 1: a) Response surface of the surrogate model of the internal carotid (ICA) mean

arterial pressure (MAP). ICA MAP is 90 mmHg on the red solid line. b) Response surface

surrogate model of the internal carotid (ICA) pressure pulsatility index (PPI). ICA PPI is

0.5 on the red solid line. c) Intersection of the MAP and the PPI isolines gives the right

terminal resistance (R) and capacitance (C) values for the desired MAP and PPI at the ICA.

d) Reference flow rate waveforms for patients 1 and 2 that are scaled such that the time-

averaged wall shear stress (WSS) at the inlet was 1.5 Pa for each patient. e) CFD-predicted

pressure waveforms at the ICA after choosing the right R and C values.
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WSS magnitude196

Time-averaged WSS (TAWSS) was calculated by averaging the magnitude197

of WSS vector at each surface node over the cardiac cycle.198

TAWSS(x) =
1

Tperiod

∫ T0+Tperiod

T0

|τw(x, t)| dt (4)

The variables T0 and T0 +Tperiod are the starting point (3rd heartbeat) and199

the length of the cardiac cycle over which the WSS was integrated, respectively.200

WSS directionality201

As suggested by Mohamied et al. (2015) and Peiffer et al. (2013a,b), to assess202

the directionality of WSS we used both OSI and TransWSS. The oscillatory203

shear index was calculated as204

OSI =
1

2

(

1−
|
∫ T0+Tperiod

T0
τw(x, t) dt|

∫ Tperiod

0
|τw(x, t)| dt

)

(5)

and transverse WSS was calculated as defined by Peiffer et al. (2013a)205

transWSS =
1

Tperiod

∫ T0+Tperiod

T0

|τw(x, t) · q̂| dt, (6)

where q̂ = p̂× n̂ and the unit vector p̂ is the direction of the time-averaged206

WSS vector, n̂ is the surface normal, and consequently the unit vector q̂ is207

located in the same plane as p̂ an its direction is perpendicular to the time-208

averaged WSS vector. The unit vector p̂ was calculated as209

p̂ =

∫ T0+Tperiod

T0
τw(x, t) dt

|
∫ T0+Tperiod

T0
τw(x, t) dt|

(7)

As long as a preferred time-averaged direction of flow exists, TransWSS210

ranges from 0 to TAWSS. As the TAWSS takes substantially different values211

at aneurysmal regions with disturbed or regular flow, we defined the relative212

transWSS (rTransWSS) as the TransWSS normalised TransWSS by the TAWSS213

at each surface point.214
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WSS harmonics215

As indicated by Lee et al. (2009), despite the multidirectional nature of216

blood flow in patient-specific vascular models, most experimental studies are217

performed under uniaxial flow due to constraints in experimental flow setups.218

Recently, WSS projections onto a reference axial direction were performed to219

rectify multidirectional flows and make them comparable to the flows used for in220

vitro experiments of Arzani and Shadden (2016) and Morbiducci et al. (2015).221

However, since rectifying the WSS signal combines the magnitude and direction-222

ality aspects of the WSS vector and influences its harmonic content, we chose to223

perform a harmonic analysis on both the original and the rectified WSS signals.224

It has been observed that most physiological waveforms can be accurately re-225

constructed by the first ten or fewer harmonics (Nichols et al., 2011). Studying226

the first eight harmonics of the WSS signals at the ICA, Feaver et al. (2013)227

showed that the endothelial inflammatory responses are mainly regulated by228

the first harmonic of the WSS signal. Thus, in this study, we based our har-229

monic analyses on the first eight harmonics of the WSS signals. We calculated230

the axial WSS as the component of time-varying WSS vector projected onto231

the unit vector p̂. The fast Fourier transform was used to describe the time-232

varying aneurysmal WSS and axial WSS waveforms in the frequency domain233

and extract the amplitudes of the harmonics zeroth to eighth. It has been hy-234

pothesised that dominance of frequencies higher than the heart rate in the WSS235

magnitude signal triggers inflammatory responses in the vascular endothelium236

(Himburg et al., 2007; Feaver et al., 2013). The dominant harmonic (DH) is237

another quantity of interest defined as the harmonic with the greatest ampli-238

tude by Himburg and Friedman (2006). As shown by Lee et al. (2009), DH is239

independent from other WSS-related variables. In this study we also used DH240

to investigate how waveform variability in the parent vessel affect the dominant241

frequency of the time-varying WSS magnitude over the aneurysm sac.242
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Intracranial aneurysm rupture prediction243

To evalute the effect of WSS uncertainty in IA rupture prediction, a differ-244

ent subset of 38 IAs all located at the sylvian bifurcation of the middle cerebral245

artery (MbifA-type) were selected from the @neurIST cohort and processed246

through the CFD pipeline as described in the Methods section. For this co-247

hort, outlet branches were automatically clipped 20 mm after their proximal248

bifurcation. Branches shorter than 20 mm were extruded before truncation.249

Zero-pressure boundary conditions were then imposed at all outlets. As a full250

CFD simulation of all 50× 38 cases would have been prohibitively costly, three251

representative waveforms were instead used for each of the 38 cases: mean flow,252

minimum flow and maximum flow predicted by the GPM model. TAWSS, OSI,253

and TransWSS were post-processed for each of these simulations and spatially254

averaged over the aneurysm sac to arrive at the feature values used for classifi-255

cation. These three different flow waveforms were then used to train a logistic256

regression model classifier similar to that of Xiang et al. (2011):257

logit(Pr) = β0 + β1OSI + β2TAWSS,

where Pr is the model-predicted probability that the aneurysm was of the258

ruptured type, and the logit function is defined as logit(p) = log
(

p
1−p

)

. The259

regression coefficients β0, β1, β2 were obtained through standard generalised260

regression techniques, and were used to define the corresponding odds ratios261

(OROSI = exp(β1) etc.), signifying how the odds of rupture increase by each262

unit increase in OSI.263

Results264

Fig. 2 shows the mean values and the coefficients of variation (CoV) for265

TAWSS, OSI, and rTransWSS on the aneurysm sac simulated by CFD over the266

population of 50 difference ICA waveforms. In both cases, the ICA waveform267

variability had limited effects (CoV < 0.05) on the TAWSS. However, the ef-268

fects were remarkable on WSS directional variability. CoVs for aneurysmal OSI269
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Figure 2: The mean values and the coefficients of variation (CoV) of the time-averaged WSS

magnitude (TAWSS), the oscillatory shear index (OSI), and the relative transverse WSS

(rTransWSS) across the virtual population over the aneurysm walls for patients 1 and 2.

and rTransWSS were both greater than 0.4 at regions where the WSS vectors270

had low magnitude but were directionally varying in time (disturbed flow re-271

gions). Waveform variability in the parent vessel had less significant effects on272

the WSS directionality at regions where shear stresses are higher and remain273
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Figure 3: The mean values and the coefficients of variation (CoV) of the dominant harmonic

(DH) and axial DH across the virtual population over the aneurysm walls for patients 1 and

2.

mostly unidirectional throughout the cardiac cycle (stable flow regions).274

Fig. 3 shows mean values and CoVs for the dominant harmonic (DH) over275

the aneurysm sac. On both aneurysms, there are regions where the dominant276

frequencies are up to 5 times greater than the fundamental frequency (the heart277

rate). Results show that ICA waveform variability highly influences the time-278

varying WSS signal at regions where the higher harmonics dominate (CoV >279

2). Similar to the directionality, less significant effects were observed at regions280

with regular pulsatile flow dominated by the heart rate frequency (regions where281

14



DH is unity).282

However, DH was originally defined for a unidirectional axial flow and may283

not lead to clinically interpretable results in multidirectional nonaxial flows (Lee284

et al. (2009); Morbiducci et al. (2015)). To alleviate this issue in the complex285

aneurysmal flows, we followed the method presented by Lee et al. (2009) and286

rectified WSS vectors by projecting them on the time-averaged WSS direction as287

a reference axial direction. Fig. 3 also shows the effect of parent vessel waveform288

variability on the harmonic content of the axial WSS magnitude signal. Results289

show that rectification of the WSS signal increased the DH at regions where flow290

is multidirectional. This can be attributed to the previously mentioned effects291

of ICA waveform variations on the WSS directionality, which implicitly affected292

the WSS magnitude signal during the rectification process. It can be seen that293

ICA waveform variability significantly influences the harmonic content of the294

axial WSS at disturbed flow regions (CoV > 2). To provide more intuition295

into the effects of parent vessel flow waveform variability, we illustrated the296

results for five manually selected representative points on the aneurysm sacs297

(see Supplementary Material).298

Effect of flow uncertainty on rupture pattern299

The three WSS-derived quantities were evaluated through CFD simulations300

in N = 38 cases taken from the @neurIST database. Summary statistics of301

the WSS values evaluated are shown in Table 1 for the case of mean flow. An302

unpaired two-sided two-sample t-test was used to select theWSS-related features303

that were significantly different in the ruptured vs. unruptured populations.304

Spatially averaged OSI was significant or almost significant for all three flow305

cases (p ∈ [0.032, 0.058]), whereas TAWSS and TransWSS were not significant306

for any of the three flow cases considered (p = 0.7 for TAWSS and p ∈ [0.12, 0.15]307

for TransWSS). This was in agreement with the analysis of Bisbal et al. (2011)308

(who used a superset of our data), but contradicted the observations of Xiang309

et al. (2014a) who obtained significance also for TAWSS. We therefore opted to310

train the classifier only on one feature, the OSI, leading to the regression model311
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Ruptured (N = 14) Unruptured (N = 24) p-value

TAWSS [Pa] 3.32 (3.36) 3.76 (3.25) 0.7

OSI 12.4×10−3 (7.25×10−3) 7.79×10−3 (6.05×10−3) 0.032∗

rTransWSS 0.104 (0.037) 0.088 (0.029) 0.12

Table 1: WSS quantities derived from CFD-simulations in the ruptured vs. unruptured groups

of the @neurIST cohort. Values are group-wise means and standard deviations of the mean

flow case. Statistical significance in univariate analysis computed using a two-sided t-test.

logit(Pr) = β0+β1OSI for the rupture classification variable Pr. Before training312

the classifier, the OSI values were scaled so that the maximum value across the313

38 cases was equal to 10. The data were divided into 19 training cases, which314

were used to estimate the regression coefficients, and 19 test cases, which were315

used for cross-validation.316

The logistic regression based classifier achieved an area under the ROC curve317

that ranged in AUC ∈ [0.8947, 0.9044]. For the cutoff value Pr = 0.9, the318

resulting classifier achieved a sensitivity ranging in SENS ∈ [79.0%, 84.2%], and319

a specificity ranging in SPEC ∈ [79.0%, 89.5%] in the cross-validation exercise.320

The regression coefficients identified in each three flow cases were in the range321

β0 ∈ [−3.59,−2.93] and β1 ∈ [0.804, 0.883]. The corresponding odds ratio for322

OSI was in the range OROSI ∈ [2.23, 2.42], reproducing the known correlation323

between elevated OSI and rupture status. While the accuracy of the classifier324

was only moderately affected by the flow case considered, the final rupture/no-325

rupture prediction changed as a function of flow for 4 cases out of 19.326

Discussion327

Recent evidence links the region-specific inflammatory phenotype of the en-328

dothelial cells to both directionality and harmonic content of the time-varying329

WSS vector field (Wang et al., 2013; Peiffer et al., 2013a; Mohamied et al.,330

2015; Himburg et al., 2007; Feaver et al., 2013). Spatiotemporal variations of331

vascular WSS are driven by variabilities in the blood flow waveform and the vas-332

cular morphology. Although attempts at measuring the effect of parent vessel333
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flow waveforms on WSS-related quantities of interest measuring directionality334

and harmonic content have been made by Peiffer et al. (2013a); Himburg et al.335

(2007); Feaver et al. (2013); Lee et al. (2009) and others, there are few studies336

that have systematically evaluated the sensitivity of WSS to flow variability.337

Time-averaged inflow rates have been shown to affect the magnitude of338

aneurysmal WSS (Geers et al., 2014). Using one-shot measurements of patient-339

specific inflow boundary conditions has been shown to highly influence the mag-340

nitude of aneurysmal WSS when compared to results obtained from simulations341

with typical inflow boundary conditions derived from literature (Karmonik et al.,342

2010; Marzo et al., 2011; McGah et al., 2014). However, in vivo flow measure-343

ments typically record systemic flow only for a few cardiac cycles, and therefore344

do not represent the full range of flow variability. In the recent study of Xiang345

et al. (2014a), the effect of four different inlet waveforms on the space-averaged346

OSI was tested using CFD. Different waveforms produced drastically different347

absolute values of OSI, but similar OSI distributions over the aneurysm sac. A348

linear relationship was also observed between the spatially averaged OSI values349

calculated using different inflow waveforms, which suggests that changing the350

waveform did not consistently change the rupture risk ranking of aneurysms.351

Absolute values of OSI might, however, not be a robust criteria for clinical deci-352

sion making unless the flow-related uncertainty is explicitly taken into account.353

We evaluted flow-induced WSS variability by performing simulations us-354

ing boundary conditions sampled from a statistical description of inter-subject355

flow variability. When keeping the time-averaged flow rate fixed, variations in356

ICA flow waveforms had limited effects on the TAWSS over the aneurysm sac.357

However, it was found that WSS directionality measures (OSI and rTransWSS)358

in the disturbed flow regions (atheroprone regions) were very sensitive to flow359

waveform variability, although the effects were limited in regular flow regions360

where a preferred direction of flow exists (atheroprotective regions). To shed361

more light on regional effects of flow waveforms on the aneurysmal WSS, we362

defined atheroprone regions as regions where WSS is low (TAWSS < 1 Pa)363

and multidirectional (rTransWSS > 0.3) and atheroprotective regions as re-364
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Figure 4: Regional variations of the time-averaged WSS magnitude and the relative transverse

WSS. Histograms shows the distribution of the coefficient of variations on each of the athero-

prone and atheroprotective regions. A boxplot complementary illustration is also presented

under each histogram.

gions where TAWSS > 3 Pa and almost unidirectional (rTransWSS < 0.1).365

These thresholds were conservatively chosen according to studies where WSS366

magnitude and directionality were correlated with pro-inflammatory endothe-367
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lial phenotypes (Wang et al., 2013; Peiffer et al., 2013a; Mohamied et al., 2015;368

Feaver et al., 2013). As shown in Fig. 4 for the two IAs considered, varying369

inflow waveform had limited effects on the TAWSS in both disturbed flow and370

regular flow regions (CoV < 0.1). However, WSS directionality in disturbed371

flow regions is strongly affected by the inflow waveform (CoV up to 2 with a372

median at 0.25), when compared to the protective regions. This implies the im-373

portance of flow waveform uncertainty in aneurysmal regions which are prone374

to inflammatory phenotypes and potential rupture. Mohamied et al. (2015)375

observed that despite OSI, TransWSS correlated significantly with atheroscle-376

rotic lesions in rabits’ aorta. Comparing OSI and rTransWSS as measures of377

WSS directionality, we observed that these two variables are in stronger cor-378

relation at regular flow (atheroprotective) regions (Pearson r = 0.94 and 0.96379

for aneurysms 1 and 2, respectively; p < 10−5) when compared to disturbed380

flow (atheroprone) regions where flow is highly multidirectional (Pearson r =381

0.75 and 0.66 for aneurysms 1 and 2, respectively; p < 10−5). A point-wise382

comparison of OSI and rTransWSS is presented in the Supplementary Material.383

We have studied variability of the DH of the local WSS signal and observed384

that, due to nonlinear effects due of the vascular morphology, there are regions385

where the dominant harmonic of the time-varying WSS signal is not the systemic386

fundamental frequency (heart rate). We observed that, when considering the DH387

of the axial WSS signals, regions with higher DH than the heart rate co-localise388

with the regions where flow is multidirectional. This co-localisation could be389

explained by the fact that axial WSS is the projection of the instantaneous390

WSS vector in the time-averaged WSS vector direction. Xiang et al. (2014a)391

observed a strong correlation between the space-averaged aneurysmal OSI and392

the inflow waveform pulsatility index (PI), and suggested that OSI might be393

mainly determined by the PI of the inlet waveform. As a subsidiary study, we394

investigated any possible correlation between the inflow PI and the local OSI at395

five points on the aneurysm sacs. At each point on the aneurysm sac, PI was396

calculated as the difference between maximum and minimum flow rate divided397

by the time-averaged flow rate during each cardiac cycle. No clear correlation398
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was observed between inflow PI and OSI at points where the dominant frequency399

was higher than the heart rate (see Table 1 in the Supplementary Material).400

This implies that parent vessel PI (easy to measure) is not a good surrogate for401

evaluating aneurysmal OSI (difficult to measure).402

We have also explored the effects that WSS uncertainty may have on IA rup-403

ture likelihood by using a logistic regression. In our dataset the TAWSS did not404

reach statistical significance in separating ruptured cases from non-ruptured405

cases, so that a classifier was built solely based on OSI values. Our classi-406

fier reached similar accuracy to that previously reported (sensitivity ranging in407

SENS ∈ [79.0%, 84.2%] and specificity ranging in SPEC ∈ [79.0%, 89.5%]), but408

provided a range of values depending on the choice of input flow waveform used.409

While the accuracy of the classifier was similar across waveforms, the classifi-410

cation between likely to rupture/likely to not rupture changed in 4 out of the411

19 cases when the flow solution was varied. It is our view that, due to such ef-412

fects, flow-related uncertainty should be explicitly accounted for in WSS-based413

rupture predictions to improve their credibility.414

The limitations of our study were that the blood flow was assumed to be415

Newtonian and arterial distensibility was not taken into account, which overes-416

timates WSS by up to 15% Section (Steinman, 2012). Transition from laminar417

to turbulent flow occurs at Re = 300-500 in intracranial aneurysms (Yagi et al.,418

2013), and using laminar flow models may not capture all intra-aneurysmal flow419

characteristics accurately. Parabolic velocity profiles were imposed at the in-420

let boundaries which may lead to different flow characteristics compared to the421

Womersley profiles. Intra-aneurysmal hemodynamics has been shown to be sen-422

sitive to the choice of inlet location for truncating the ICA from the surrounding423

vascular bed (Pereira et al., 2013). To reduce such errors and allow realistic flow424

inside the aneurysms, all the inlets were truncated at consistent locations below425

the cavernous segment to include the largest possible arterial segment upstream426

the aneurysm (Valen-Sendstad et al., 2015). Vascular models were extruded427

at inlet boundaries by an entry length proportional to the specific Re to allow428

for fully developed flow. The flow variability model considered also modelled429
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inter-subject variability only (rather than intra-subject), and was based on data430

from young adults only.431
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