This is a repository copy of Virtual endovascular treatment of intracranial aneurysms: models and uncertainty.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/134503/

Version: Accepted Version

Article:
Sarrami-Foroushani, A, Lassila, T orcid.org/0000-0001-8947-1447 and Frangi, AF orcid.org/0000-0002-2675-528X (2017) Virtual endovascular treatment of intracranial aneurysms: models and uncertainty. WIREs: Systems Biology and Medicine, 9 (4). e1385. ISSN 1939-5094

https://doi.org/10.1002/wsbm.1385

© 2017 Wiley Periodicals, Inc. This is an author produced version of a paper subsequently published in Wiley Interdisciplinary Reviews: Systems Biology and Medicine. Uploaded in accordance with the publisher's self-archiving policy.

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.
Virtual endovascular treatment of intracranial aneurysms: models and uncertainty

<table>
<thead>
<tr>
<th>Journal:</th>
<th>WIRES Systems Biology and Medicine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>SYSBIO-348.R1</td>
</tr>
<tr>
<td>Wiley - Manuscript type:</td>
<td>Advanced Review</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>09-Jan-2017</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Sarrami-Foroushahi, Ali; University of Sheffield</td>
</tr>
<tr>
<td></td>
<td>Lassila, Toni; University of Sheffield</td>
</tr>
<tr>
<td></td>
<td>Frangi, Alejandro; University of Sheffield,</td>
</tr>
<tr>
<td>Choose 1-3 topics to categorize your article:</td>
<td>Computational Methods (2COM) &lt; Analytical and Computational Methods (ACM)</td>
</tr>
</tbody>
</table>
Article Title: Virtual endovascular treatment of intracranial aneurysms: models and uncertainty

Article Type:
- OPINION
- PRIMER
- OVERVIEW
- ADVANCED REVIEW
- FOCUS ARTICLE
- SOFTWARE FOCUS

Authors:
Full name and affiliation; email address if corresponding author; any conflicts of interest

<table>
<thead>
<tr>
<th>First author</th>
<th>Ali Sarrami-Foroushani</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), The University of Sheffield, UK.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Second author</th>
<th>Toni Lassila</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), The University of Sheffield, UK.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third author</th>
<th>Alejandro F. Frangi*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Center for Computational Imaging and Simulation Technologies in Biomedicine (CISTIB), The University of Sheffield, UK.</td>
</tr>
<tr>
<td></td>
<td><a href="mailto:a.frangi@sheffield.ac.uk">a.frangi@sheffield.ac.uk</a></td>
</tr>
</tbody>
</table>

Authors have no conflicts of interests to declare.
Abstract

Virtual endovascular treatment models (VETMs) have been developed with the view to aid interventional neuroradiologists and neurosurgeons to pre-operatively analyse the comparative efficacy and safety of endovascular treatments for intracranial aneurysms. Based on the current state of VETMs in aneurysm rupture risk stratification and in patient-specific prediction of treatment outcomes, we argue there is a need to go beyond personalised biomechanical flow modelling assuming deterministic parameters and error-free measurements. The mechanobiological effects associated with blood clot formation are important factors in therapeutic decision making and models of post-treatment intra-aneurysmal biology and biochemistry should be linked to the current purely haemodynamic models to improve the predictive power of current VETMs. The influence of model and parameter uncertainties associated to each component of a VETM are, where feasible, quantified via a random-effects meta-analysis of the literature. This allows estimating the pooled effect size of these uncertainties on aneurysmal wall shear stress. From such meta-analyses, two main sources of uncertainty emerge where research efforts have so far been limited: i) vascular wall distensibility, and ii) intra/inter-subject systemic flow variations. In the future, we suggest that current deterministic computational simulations need to be extended with strategies for uncertainty mitigation, uncertainty exploration, and sensitivity reduction techniques.

Graphical/Visual Abstract and Caption

An ideal virtual endovascular treatment model is comprised of sub-models in which the vascular surface, virtual treatment, and mechanobiology of clot formation are modelled, respectively. Uncertainty quantification techniques should be added to the deterministic models to propagate uncertainties through the models and produce confidence intervals associated with the model predictions.
Introduction

Intracranial aneurysms (IAs) are pathological dilatations of the intracranial arteries that commonly occur in various locations around the circle of Willis in approximately 5-8% of the general population. Aneurysm rupture causes subarachnoid haemorrhage, which is associated with high rates of morbidity, mortality, and long term disability. The clinical strategy for treating aneurysms is to isolate them from the circulation, which is commonly performed either by open surgery (clipping the aneurysm), or by endovascular treatment (catheter insertion of a flow diverter or a coil within the aneurysm). In each method, isolation is aimed at creating conditions of blood stasis leading to the generation of a stable clot in the aneurysm sac (embolisation). Once the aneurysm has occluded completely, a neo-intimal layer forms over the aneurysm neck and separates the aneurysm from the circulatory system (endothelialisation). Although it might be addressed as more advanced interventional techniques become available, currently, aneurysms treated with endovascular techniques are more likely to recur than those treated surgically. However, the non-invasiveness of the endovascular approaches has made them more favourable options for treatment of IAs.

Recent progress made in diagnostic techniques over the past few decades has increased the detection rate of unruptured IAs. This has consequently posed the dilemma of whether every unruptured aneurysm must be treated immediately upon discovery, and if so, which treatment option represents the least risk to the patient. The challenge is therefore to evaluate the safety and efficacy of different endovascular treatments in a patient-specific context. Post-treatment ruptures, aneurysm recurrence or incomplete occlusion, and thromboembolic complications after endovascular treatment further magnify the importance of choosing an appropriate endovascular treatment option. Clinicians’ attempts at answering such questions has revealed the need for tools that help them in reliable risk assessment and designing appropriate patient-specific treatment plans for each individual aneurysm.

The important role of haemodynamics in the initiation, progression, and rupture of aneurysms has drawn the research community’s attention to image-based computational fluid dynamics simulations. Such tools would allow researchers to study the haemodynamic variables in each specific aneurysm pre- and post-operation. Exploiting recent advancements in image segmentation and computational mechanics, virtual endovascular treatment models (VETMs) have been developed to create image-based patient-specific models of aneurysm geometries, to virtually deploy endovascular devices, and to simulate intra-aneurysmal blood flow. This has allowed investigating how safely and effectively each device deployment strategy alters the intra-aneurysmal haemodynamics, and to which extent the altered intra-aneurysmal flow is favourable to the formation of a stable clot, leading finally to complete aneurysm occlusion and elimination.

Moreover, such endovascular treatment models help clinicians to pre-operatively and assess the candidate treatment options and deployment strategies; especially in complex cases like anatomically complex and surgically inaccessible vertebrobasilar dolichoectasia with fusiform aneurysms, or aneurysms at/near bifurcations where the neighbouring branches/perforators are in the risk of being covered and occluded.

The identification of an appropriate metric to assess post-operative performance of the endovascular treatment is still an active area of research. Different flow and wall shear stress-related quantities have been proposed for this purpose. Localised low and oscillatory aneurysmal wall shear stress (WSS) can lead to pathological endothelial responses, thrombosis, wall degeneration, and eventual aneurysm rupture. On the other hand, endovascular devices are shown to trigger the aneurysm healing process by inducing flow stasis and thrombosis inside the aneurysm sac. However, it is not clear why low shear-induced thrombosis may lead to complete embolisation in some aneurysms, but incomplete embolisation and rupture in some others. Kulcsar et al.
hypothesized that the quality, quantity, and evolution of the thrombus and consequently the thrombus-induced autolytic activities in the wall, determine whether intra-aneurysmal thrombus generation leads to aneurysm healing or rupture. This implies that the endovascular device performance should be assessed in terms of the capability to induce a stable clot, which triggers the process of reverse remodelling and aneurysm healing, possibly accounting for the effect of coadjuvant blood-thinning pharmacological agents. Therefore, although post-operative aneurysmal haemodynamics play an important role in the outcome of the intervention, a VETM should incorporate information about device-induced biochemistry and mechanobiology for assessing its performance for making predictions about aneurysm occlusion and treatment outcomes. Such information can be provided either by phenomenological sub-models that use haemodynamics as a surrogate of intra-aneurysmal biochemistry and biology \(^{23-25}\), or by more complex mechanistic sub-models, which are coupled to the haemodynamic sub-models and describe the ongoing biological process \(^{23, 26, 27}\). Consequently, as shown in Figure 1, an ideal VETM is comprised of: 1) a computational blood flow simulation in an image-based vascular surface model coupled with proper boundary conditions, 2) an endovascular device deployment model, and 3) a blood coagulation model, which describes the intra-aneurysmal clot formation process in the presence of endovascular devices.

**Figure 1.** An ideal virtual endovascular treatment model is comprised of sub-models in which the vascular surface, virtual treatment, and biomechanics and biochemistry are modelled, respectively. Patient’s angiogram (a) is segmented and a vascular surface model (b) is reconstructed and used for virtual treatment with coils or flow diverting stents (c). CFD simulations then are performed to calculate blood velocity field (d) in the presence of device-induced intra-aneurysmal clot, from which the shear stresses on the vessel wall (e) can be computed.
In 2012, Kallmes \textsuperscript{28} raised concerns about the clinical relevance of computational models by arguing that they are prone to several sources of \textit{uncertainty and error} that influence the model predictions. Despite many advancements bridging some of the gaps between model predictions and actual physiological phenomena, the characterisation of the uncertainties and errors associated with the model inputs, and the sensitivity of personalised haemodynamic predictions require more detailed investigation. Uncertainties arise from lack of personalised information about some model inputs, imprecise model structures, e.g. mathematical descriptions of the biological phenomena, and inherent inter- and intra-subject variabilities of physiological variables. As depicted in Figure 2, uncertainty quantification can be performed to identify and quantify uncertainties in the model inputs. Similarly, error analyses can be performed to identify and quantify errors in the deterministic inputs that are not uncertain but can produce errors if not selected properly, e.g. computational meshes. In order to reliably represent the patient-specific physiological processes and achieve truly clinically relevant predictions, it is important that these uncertainties and errors be propagated into the model predictions through sensitivity analyses, and be eliminated when possible.

\textbf{Figure 2.} The left panel shows overall structure of a typical mathematical model with $x^d$ and $x^u$ as vectors of deterministic and uncertain model inputs, respectively; $f$ describing the model structure; and $y$ as vector of model outputs. The right panel shows error analysis and uncertainty quantification as processes to identify and quantify errors and uncertainties, respectively; and sensitivity analysis as a process to propagate the quantified errors and uncertainties to the model outputs.

We address the state of different sub-models of a typical VETM based on a comprehensive literature review of the articles focused on computational models of intracranial aneurysms and published online before June 2016. For each sub-model, we discuss the possible sources of \textit{uncertainty and error}, and, where they exist, review the sensitivity analyses that have been done to show how model predictions are affected by either the uncertain inputs or errors in the deterministic inputs. For simplicity, from now on, we denote both uncertain inputs and errors in deterministic inputs as \textit{uncertainty} throughout the paper. In order to summarise the effect of uncertain inputs, meta-analyses are conducted where the following criteria are met: 1) the study was numerical, performed on the intracranial aneurysms, and published between January 2006 to June 2016, 2) at least 3 cases were studied, and 3) the effect of uncertain model inputs on the aneurysmal WSS was investigated and quantitative values of WSS were reported. For those sources of uncertainties where a sufficient number of studies provided evidence, effect sizes are calculated as standardised mean differences (Hedges’ $g$) between the two non-independent groups in each study and then are pooled across studies using random-effects meta-analysis \textsuperscript{29}. Finally, we summarise the most important uncertainties that should be addressed in order to present patient-specific predictions to enable such simulations to be reliably used in clinical practice.

\textbf{Vascular surface and blood flow modelling}
Creating vascular surface models from medical images is the first and most important step in developing a patient-specific model for endovascular treatment of aneurysms, on which all the other steps depend. Vascular angiograms are usually acquired using computed tomography angiography (CTA), magnetic resonance angiography (MRA), or three-dimensional rotational angiography (3DRA). The spatial resolution of 3DRA (128x128 matrix with voxel size of 0.42-1 mm) is usually higher than CTA (512x512 matrix with pixel size of 0.23-0.45 mm and slice thickness of 0.5-1.3 mm) and MRA (256x256 matrix with pixel size of 0.78-1.25 mm and slice thickness of 0.7-1.6 mm). Piontin et al. assessed the accuracy of 3DRA, CTA, and MRA techniques for measuring the volume of an in vitro model of an anterior communicating artery aneurysm. They showed that CTA is more accurate than MRA (p-value = 0.0019), and 3DRA is more accurate than CTA, (p-value = 0.1605; not statistically significant). They observed that aneurysm volume was overestimated by 7% and 11.3% in 3DRA and CTA, respectively, and underestimated by 15% in MRA images. Ramachandran et al. reported that errors in measuring aneurysm characteristic lengths (e.g., height and maximum diameter) by any of the 3DRA, CTA, and MRA were 0.8-4%, with no significant differences between the modalities. In clinical practice, due to the less invasive nature of CTA and MRA, these imaging techniques are favoured for the diagnosis and monitoring of intracranial aneurysms; however, 3DRA provides the highest spatial resolution and is consequently favoured for surgical or endovascular treatment planning. On the other hand, high spatial and contrast resolution and no interference of bony structures and surrounding tissues in 3DRA images, and consequently their ease of reconstruction, make them more appropriate for construction of 3D aneurysm surface models that can subsequently be used in CFD analyses and virtual treatment models.

Starting from volumetric medical images, different techniques have been proposed for segmentation and creation of vascular surface models, which can then be used for generating a computational volumetric mesh and solving blood flow equations. In this paper, we only review methods which have been tested and evaluated on intracranial aneurysms. The need for contrast injection into the feeding artery of the aneurysm exposes the 3DRA modality to limitations when aneurysms with multiple feeding arteries are being scanned. Castro et al. proposed a segmentation methodology, which combined image co-registration and surface merging techniques to overcome this limitation, and provided surface models for aneurysms with multiple inlet branches such as those located on the anterior communicating arteries. They evaluated their method on a virtual 3D rotational angiogram of a digital phantom of an anterior communicating artery aneurysm. The maximum distance between the segmented and phantom model (0.2 mm) was reported as a measure of accuracy. Chang et al. proposed another segmentation methodology called charged fluid-based aneurysm segmentation (CFAS), which combined a region-growing method with the 3D extension of a deformable contour based on a charged fluid model. Their method was particularly designed for segmentation of aneurysms with different geometrical complexity levels and was evaluated on 3DRA images of 15 aneurysms. Comparing segmented surfaces with the manually delineated contours, a conformity score of 68.36% was reported. A knowledge-based segmentation algorithm based on the geodesic active regions (GAR) was presented by Hernandez and Frangi and evaluated by segmentation of intracranial aneurysms from CTA (10 aneurysms) and 3DRA (5 aneurysms) images. They reported average Dice Similarity Coefficients (DSC) of 91.13% and 73.31% as measures of accuracy for 3DRA and CTA images, respectively. Bogunovic et al. proposed another methodology for segmenting 3DRA images based on an image intensity standardisation (IIS) method, which improved the automation of knowledge-based vascular segmentation algorithms by standardisation of image intensity ranges of tissue classes in routine medical images. They evaluated the method on 10 patients that underwent both 3DRA and TOF-MRA. DSC scores of 92% and 91% was achieved for segmentations from 3DRA and MRA images, respectively. Firouzian et al. proposed another
segmentation technique for segmenting aneurysms from CTA modality, which worked based on
geodesic active contours (GAC) and did not require image intensity training unlike when working
with knowledge-based methods. They evaluated the method on 11 aneurysms and reported a DSC
score of 82.1% as a measure of accuracy. A detailed review of the above mentioned methods can be
found in 13-15, 41 with more details. Comparisons of different segmentation techniques for intracranial
aneurysms can also be found in 40, 42.

Uncertainty in vascular surface modelling

Uncertainties in the vascular geometric models can originate from images used to reconstruct the
vascular surfaces. Such uncertainties include the inherent noise in the acquired images, registration
artefacts, and motion of arteries during the cardiac cycle. Depending on the operator’s experience
and skill, manual operations during image acquisition may also lead to errors in the acquired images.

Another more important source of uncertainty in vascular surface modelling are segmentation
errors. Despite automation of the segmentation process in most state-of-the-art segmentation
methods, manual editing operations are still required in the final stages, especially where complex
structures like small or kissing branches are present in the region of interest.

Cebral et al. 13 performed a sensitivity analysis on different uncertain aspects of an image-based
model. They qualitatively showed that the geometric uncertainties arising from segmentation of
aneurysm surfaces by different operators has the greatest effect on the intra-aneurysmal flow when
compared to uncertainties in other variables. Castro et al. 43 investigated the effect of parent vessel
reconstruction on the flow in the aneurysm sac. For each aneurysm they constructed two different
models; one with the original parent vessel and the other with a truncated parent vessel, which was
replaced with a straight tube. They observed an underestimation of aneurysmal WSS in geometric
models with a truncated parent vessel and showed that segmentation of the parent vessel can highly
affect the characteristic flow patterns inside aneurysm. As a future work, they suggested a sensitivity
analysis for typical aneurysms of different locations, which gives an estimation of the length of the
upstream parent vessel needed for an appropriate simulation of flow inside the aneurysm.

Gambaruto et al. 44 compared the effect of the smoothing level, as part of the segmentation
procedure, with the effect of the blood rheological model on the intra-aneurysmal flow and
aneurysmal WSS. They showed that geometric uncertainties due to the use of different smoothing
levels resulted in greater errors (of order of 15%), although this was comparable with errors arising
from using different blood rheological models (of order of 5%). Geers et al. 39, 45, performed CFD
simulations in aneurysm models reconstructed from CTA and 3DRA images. They showed that the
main flow characteristics remains the same in aneurysms obtained from both modalities but a
difference of up to 44.2% was observed in the absolute value of mean WSS on the aneurysm sac.

Blood flow modelling

In order to simulate blood flow in the reconstructed vascular volume, equations of motion for blood
flow need to be discretised and solved. This requires a volumetric mesh over the domain confined by
the vascular surface mesh. Vascular surface meshes are usually extruded at the truncated
boundaries to minimise the effects of boundary conditions on the domain of interest (i.e., the
aneurysm) Tetrahedral or polyhedral elements are commonly used to discretise the volume 46. To
accurately address high velocity radial gradients in vicinity of the wall, and thus to accurately
estimate the WSS, three to five layers of prismatic boundary layer elements are required in near-wall
regions 13, 47, 48. Unstructured meshes in the context of aneurysm flow modelling are commonly
comprised of elements of 0.1-0.2 mm and three boundary layer prism layers with a total height of
0.05-0.15 mm. Careful mesh-dependency tests are necessary to achieve mesh-independent
solutions. The presence of vascular devices with very fine struts that are placed in vessels several orders of magnitude larger in diameter pose a challenge to meshing algorithms. Computational meshes need to be computationally cost effective to solve for the flow in the aneurysm and parent arteries while, at the same time, be accurate enough to resolve the flow around the very thin wires of stents or coils and the near-wire grid elements must be fine enough to resolve the wires and accurately reconstruct flow through the implanted device. Stuhne and Steinman suggested that the mesh resolution in the vicinity of the stent wires needs to be about one-third of the wires radius to achieve an accurate flow solution in the near-strut regions. Other studies have also reported on the properties of convergence of haemodynamics solutions in stented aneurysms with near-strut element sizes similar to what was reported by Stuhne and Steinman. The widely-used body-fitted grid generation can be complex and time-consuming for meshing aneurysms with implanted endovascular devices. Cebral et al. proposed a hybrid method which uses the body-fitted approach to discretise the interior of the vessel walls but the adaptive embedded approach for meshing the endovascular devices. Appanaboyina et al. compared solutions produced by the hybrid approach and the pure body-fitted grids and showed their agreement (1-3% difference in predicting the maximum post-treatment velocity reduction over three predefined lines passing through the sac) after three levels of adaptive refinement of the near-strut elements in the hybrid approach.

Solving equations of motion requires setting the constitutive parameters (i.e., density and viscosity) as well as prescribing boundary conditions to the fluid. Blood flow in medium-sized arteries can be assumed to be incompressible with constant density. The rheology of blood can either be described by using a Newtonian model with a constant viscosity, which simplifies the equations of motion to the Navier-Stokes equations, or by using non-Newtonian models that consider the shear-thinning behaviour of blood.

As common practice in CFD modelling of blood flow in vascular domains, a velocity-related (usually flow rate) boundary condition is assigned at the inlet boundaries. This can be a constant flow rate (steady simulation) or a time-varying flow waveform (unsteady simulation). Such inflow boundary conditions are often derived from literature, where blood flow measurements are acquired in a particular artery for a specific cohort of people and reported in terms of descriptive statistics (mean values from standard deviations, see e.g. the works). In some cases, patient-specific flow measurements are available from phase-contrast magnetic resonance imaging (PC-MRI) or Transcranial Doppler Ultrasound (TCD), patient-specific inflow boundary conditions are used for CFD simulations.

To prescribe outlet boundary conditions, zero-pressure boundary conditions are adequate for vascular domains with only one outlet. In contrast, in vascular domains with more than one outlet, flow distribution among outlet branches depends on the resistance and compliance of the distal vascular bed, which requires more advanced techniques to estimate the flow distribution ratio. However, many studies neglect the distal resistances and use zero-pressure outlet boundary conditions for multiple outlet vascular domains, which allows the flow to distribute among daughter branches according to their diameter and pressure drop. To consider the effect of distal resistance and compliance, the three-dimensional computational vascular domain of interest can be coupled to lower-dimensional reduced-order models. However, although such boundary conditions give a more accurate representation of distal resistances, they increase the amount of parameters to be set in the model. Zero-dimensional (lumped parameter) models usually require setting the values of the terminal resistance and capacitance at each outlet branch. In one-dimensional models, the branching topology, length, diameter, and material properties of vessel segments need to be assigned. Although some studies (e.g.) used fluid-structure-interaction techniques to account for

John Wiley & Sons
the arterial wall compliance in the models, wall distensibility is neglected in almost all CFD simulations of blood flow in aneurysms and a no-slip boundary condition is assigned on the walls.

Despite the use of various commercial or in-house solvers with different numerical solution strategies by CFD modellers for simulating aneurysmal flow, recent CFD challenges showed a global agreement between the haemodynamic quantifications produced by various CFD solvers in the participating groups. However, as noted, simulation of vascular blood flow requires proper setting of constitutive parameters and prescribing boundary conditions. Both constitutive parameters and boundary conditions are subject to intra-subject and inter-subject variabilities which introduce uncertainties into the computational models of blood flow. Intra-subject variabilities have roots in the state of the person (e.g., level of stress, physical activity, sleep pattern, etc.). For example, plasma volumes losses during maximal exercise will result in increases in haematocrit, haemoglobin concentration, and concentration of plasma proteins, which consequently increase the blood viscosity. Inter-subject variabilities have roots in demographic characteristics (e.g., age, gender, weight, etc.) or the person’s lifestyle (smoking, drinking, physical activity, etc.). For example, both aging and smoking will affect the arterial wall properties and consequently alter the arterial flow waveforms. On the other hand, uncertainties in computational blood flow simulations can also arise from assumptions associated to the underlying models (e.g., wall motion or blood rheological models). The influence of such uncertainties on the aneurysmal haemodynamics is discussed in the next section.

Uncertainty in blood flow modelling

Blood rheology is often assumed to be Newtonian, which while an acceptable approximation in medium-sized arteries, is strictly speaking not consistent with the shear-thinning nature of blood. An overestimation of aneurysmal WSS magnitude with almost no effect on the WSS distribution on the aneurysm sac has been reported in several studies comparing aneurysmal WSS values obtained from Newtonian and non-Newtonian simulations. Xiang et al. compared Newtonian CFD simulations with those performed with the Casson and Herschel-Bulkley models and observed almost similar WSS distributions and magnitude in two of the three examined aneurysms; in the other complex-shaped aneurysm, the Newtonian model overestimated WSS on the aneurysm bleb with a low WSS magnitude. Since low WSS regions are thought to be the regions where aneurysms may rupture, Xiang et al. suggested that using a Newtonian model might underestimate the aneurysm rupture risk in aneurysms with pronounced low shear regions, e.g., complex aneurysm shapes with daughter aneurysms; they also noted the importance of blood rheology in simulating post-treatment flows where intra-aneurysmal stasis is induced in the presence of endovascular devices to trigger thrombosis and the aneurysm healing process. Castro et al. compared CFD simulations performed with Newtonian and Casson models in ten multi-bleb aneurysms. They observed that the Casson model produced higher WSS values on some aneurysmal regions at some instances during the cardiac cycle. However, since the differences were not statistically significant, they concluded that there was no evidence that any of the models overestimate aneurysmal WSS values.

Gambaruto et al. compared the effect of blood viscosity model and geometric uncertainties and showed that segmentation errors had greater effects on the model outcomes (errors in mean aneurysmal WSS were of order of 15% for geometric uncertainties and 5% for uncertainties in the rheological model). Fisher and Rossmann compared aneurysmal WSS numerically predicted using four different rheological models in idealised aneurysm geometries; they showed that, compared to the parent vessel, the non-Newtonian effects were measurable inside the aneurysm sac (especially during the diastole); they observed the Carreau model to be the most conservative, producing
lower WSS magnitudes with larger regions of low WSS. However, Fisher and Rossmann emphasized that although the choice of the blood rheology model seems to have an effect on the numerical predictions WSS, the differences raised from uncertainties in the aneurysm morphology are still greater.

Other studies investigated the effect of blood rheological model in the presence of endovascular devices. Rayz et al. investigated intra-aneurysmal haemodynamics in three fusiform aneurysms that were thrombus-free pre-treatment, but developed thrombus during follow-up studies. They showed a better agreement, although not statistically significant, between the low-flow regions and regions thrombus deposition when a non-Newtonian rheology was used. Morales et al. studied the effect of blood rheology on steady flow simulations in three aneurysms before and after coiling; in untreated aneurysms, the Newtonian model overestimated intra-saccular velocities up to 16% in space-averaged velocities with a maximum of 45% in pointwise comparisons; these increased up to 55% in space-averaged velocities with a maximum of 700% in pointwise comparisons in coiled aneurysms; space-averaged WSS differed up to 2% and 12% between the two rheological models in the untreated and coiled aneurysms, respectively, while the Newtonian model overestimated the WSS in some cases and underestimated the WSS in others. These results demonstrate again the magnification of non-Newtonian effects in slow flow regions. However, Morales et al. reported similar global flow patterns and post-treatment aneurysmal flow reductions in both Newtonian and non-Newtonian models. Admitting the observed magnitude differences in coiled aneurysms with thrombogenic slow flows, Morales et al. concluded that a Newtonian rheology model could be adequate for blood flow simulations in coiled aneurysms, if the global haemodynamic alterations are used for device performance assessment. Huang et al. studied the effect of blood rheology modelling choices in idealised stented aneurysms and observed that Newtonian models overestimated the intra-aneurysmal mean velocity magnitude by 6-26% in large-neck stented aneurysms and by 51-57% in small-neck stented aneurysms. Cavazzuti et al. investigated the effect of using a non-Newtonian rheology model in stented aneurysms and observed that average aneurysmal WSS values produced by the Newtonian rheology were around 15% greater in some regions and smaller in other regions; they concluded that the Newtonian to non-Newtonian effects are generally important but position dependent.

Among the above mentioned studies, Castro et al., Morales et al., and Fisher and Rossmann performed quantitative comparisons between time-and-space-averaged aneurysmal WSS values obtained from CFD simulations based on Newtonian and non-Newtonian (Casson) rheology and reported values of time-and-space-averaged WSS on the aneurysm sac for different cases. According to a random-effects meta-analysis, the standardised mean difference (Hedges’ g) was 0.02 with a 95% confidence interval of -0.04 to 0.07. This suggests limited effect of blood rheology model on WSS predictions by CFD. The meta-analysis based on these three studies failed to find a significant overall effect for the choice of rheological model (p-value = 0.292). None of the studies presented a pointwise comparison of aneurysmal WSS values provided by each rheology. Comparing time-and-space averaged WSS values, the study with the largest cohort performed by Castro et al., showed that WSS values produced by Newtonian model were twice as large as the values predicted by non-Newtonian models at some aneurysmal regions; however, at some other regions on the same aneurysm, the Newtonian model predicted WSS values half as large as those predicted by the non-Newtonian model. They found no significant correlation between low WSS regions and regions where any of the models produced higher or lower WSS than the other.
Figure 3. Forest plot showing the overestimation of space-and-time-averaged aneurysmal WSS produced by the non-Newtonian blood rheology. The plot illustrates effect sizes, Hedges’ g, (represented by a square) and the confidence intervals (the horizontal lines) for each study and the pooled effect (the centre of the diamond) and its confidence interval (the width of the diamond) across all studies. Vertical dotted lines for each study show the study mean and the green squares are sized according to the study weight.

The forest plot presented in Figure 3 illustrates the results provided by the meta-analysis. Standardised mean differences (SMDs), defined as the difference between the mean values of the two groups (i.e., Newtonian and non-Newtonian cases) divided by a representation of the standard deviation, are used to present effect sizes reported by each study and the pooled effect size. Cohen’s d and Hedges’ g are two different formulations for calculation of the SMDs, which differ in the type of the standard deviation used to standardise the mean differences. Since the Cohen’s d is known to overestimate the effect size in small samples, in this study we used Hedges’ g which is the unbiased estimation of the effect size. As suggested by Cohen, effects of size 0.2, 0.5, and 0.8 can be interpreted as small, medium, and large, respectively. Based on the reviewed works and our meta-analysis, it can be concluded that differences between the aneurysmal WSS values produced by any of the investigated rheological models have not been shown to be significant. Although all the reviewed studies reported differences in magnitude of the WSS values, it is not still clear whether any of the investigated rheological models produce systematically larger or smaller WSS values. Flow stasis and low recirculating flow are known to play an important role in aneurysmal inflammatory phenotype and thrombosis, and consequently in rupture or device-induced aneurysm healing. Thus, the observed discrepancies in WSS values suggest consideration of non-Newtonian behaviour of blood where the aneurysmal flow is very slow and disturbed due to the irregular aneurysm shape or is reduced by endovascular devices. Such consideration is more important when local haemodynamic evaluations, rather than global time- or space-averaged haemodynamic quantities, are of interest. Moreover, although all the reviewed studies reported almost no influence of blood rheological model on the WSS distribution and characterisation of regions where shear stress is relatively low or high, it is not still clear whether the reported discrepancies in magnitude and direction of CFD-predicted shear stresses result in false predictions about the aneurysm or the endovascular treatment fate.
Inlet boundary conditions to the vascular model of interest are another ingredient of the flow simulation that contains uncertainty. Inflow boundary conditions are often taken from literature, where typical flow waveforms in a particular artery are reported for a specific cohort of people who usually have demographic differences with the specific patient whose aneurysm is being simulated. Some studies used patient-specific inflow boundary conditions obtained from patient-specific measurements. Such patient-specific boundary conditions are superior to the typical literature-based boundary conditions, since they are acquired from the same patient. However, even the patient-specific boundary conditions cannot fully represent systemic blood flow, since systemic flow is highly dependent of the state of the person (e.g., level of stress, physical activity, sleep pattern, etc.) and measurements are only acquired at a particular point in time and under very specific scanning conditions. Nevertheless, although not representative of the effect of intra-subject variability, using one-shot measurements of patient-specific inflow boundary conditions has been shown to have limited effects on the distribution of WSS and OSI on the aneurysmal sac. However, comparing results obtained from simulations with typical literature-based and directly measured inflow boundary conditions has revealed remarkable differences in the magnitude of aneurysmal WSS and OSI. Consequently, exactly how intra-/inter-subject variations of systemic flow conditions may affect intra-aneurysmal haemodynamics and the rupture risk has become a relevant question within the research community.

Bowker et al. investigated the effect of moderate aerobic exercise on three middle cerebral artery aneurysms and observed an average of 20% increase in time-averaged WSS on the aneurysm sac; this result has been obtained by keeping the inlet waveform fixed and increasing the time-averaged inflow and heart rate by 7.8% and 73.4%, respectively. Geers et al. systematically investigated the effect of time-averaged inflow rate, heart rate, and inflow wave pulsatility index and showed that, under a fixed time-averaged flow rate, increasing heart rate and inflow pulsatility index had no effect on the aneurysmal time-averaged WSS magnitude. Xiang et al. studied the effect of inflow waveforms on intra-aneurysmal haemodynamics of four aneurysms. They performed CFD simulations with four different waveforms that had the same time-averaged flow rate and showed that different waveforms produced the same spatial distributions on WSS and oscillatory shear index (OSI) on the aneurysm wall. They also observed the same values of time-averaged WSS magnitudes, but drastically different values of OSI in the four CFD simulations performed for each aneurysm. They finally concluded that inflow boundary conditions have only limited effects on the aneurysmal WSS and OSI for the purpose of aneurysm rupture stratification. Keeping the time-averaged flow rate fixed, Sarrami-Foroushani et al. performed CFD simulations using inflow waveforms obtained from a data-driven model of internal carotid artery flow and observed that variations in ICA flow waveform had no effect on the time-averaged WSS but altered the local directionality of WSS; they also showed that the inflow waveform variations changed the rupture outcome prediction in 4 out of 19 cases when simple logistic regression model was used to predict the rupture outcome. For each aneurysm in a fifteen-aneurysm cohort, Morales et al. performed eleven CFD simulations with different inflow rates (but using the same waveform) and showed that spatiotemporally averaged aneurysmal WSS varied as a quadratic function of time-averaged inlet flow rate. They showed that values of aneurysmal OSI did not change by changing the time-averaged flow rate while keeping the waveform constant.

Since patient-specific flow measurements are rarely available as a clinical routine for aneurysm patients, CFD modellers often scale the typical literature-driven flow waveforms to approximately impose patient-specific boundary conditions to their models. For each aneurysm model, scaling is performed in order to maintain a fixed spatiotemporally averaged velocity or WSS at the inlet boundary. The literature-based flow rate is scaled according to the inlet diameter squared, if the scaling is based on time-and-space-averaged velocity, and cubed, if the scaling is based on time-and-
space averaged WSS. The choice of inlet location (and consequently inlet diameter) and scaling model (cubed or squared) is, however, a source of uncertainty in inlet boundary conditions. Valen-Sendstad et al. 94 investigated the effect of the choice of inlet location and the scaling model on the resulting inflow rates. They showed that scaling according to the squared diameter produced flow rates more consistent with the physiological flow rates. They also quantified the uncertainties arising from truncating the ICA at different locations and showed that all truncation locations below the cavernous segment produced the same uncertainties as physiological uncertainties of ICA flow rate and thus lead to reliable CFD simulations. Visually comparing CFD-predicted and DSA-imaged intraaneurysmal flow patterns, Pereira et al. 95 showed that reliable CFD outcomes were obtained using vascular models with inlet vessels truncated as far upstream as obtainable from the medical images, and coupled to Womersley inlet velocity profiles. Hodis et al. 96 also studied the effect of inlet artery length on 10 ICA ophthalmic aneurysm models and showed that removing two bends from the parent artery resulted in approximately 15% error in peak systolic space-averaged WSS over the aneurysm sac.

![Figure 4](image_url)

**Figure 4.** Forest plot showing the overestimation of space-and-time-averaged aneurysmal WSS produced by the generalised inflow boundary conditions. The plot illustrates effect sizes, Hedges' g (represented by a square) and the confidence intervals (the horizontal lines) for each study and the pooled effect (the centre of the diamond) and its confidence interval (the width of the diamond) across all studies. Vertical dotted lines for each study show the study mean and the green squares are sized according to the study weight.

Jansen et al. 86, McGah et al. 88, and Karmonik et al. 89, performed quantitative comparisons between time-and-space-averaged aneurysmal WSS values obtained from CFD simulations based on measured patient-specific and generalised inflow boundary conditions and reported values of time-and-space-averaged WSS on the aneurysm sac for different cases. In these studies, the inlet boundaries of the vascular domains located on the internal carotid artery (ICA) and generalised ICA flow waveforms were obtained from studies by Ford et al. 56 and van Ooij et al. 97, in which the ICA flow was measured over cohorts of 17 young and healthy volunteers and 8 patients with intracranial aneurysms, respectively. For each aneurysm case, McGah et al. 88 scaled the generalised waveform to maintain a physiological mean WSS of 1.5 Pa at the inlet boundary. However, Karmonik et al. 89 directly used the generalised flow waveforms obtained from the study by Ford et al. 56 without scaling; while Jansen et al. 86 have not reported the scaling process clearly. According to a random-effects meta-analysis, the standardised mean difference (Hedges' g) was 0.30 with a 95% confidence
interval of 0.08 to 0.52 (p-value = 0.003). This suggests a moderate effect of inflow waveform on the prediction of WSS magnitude by CFD. Figure 4 illustrates the results provided by the meta-analysis of the effect of using generalised boundary conditions on the aneurysmal WSS magnitude. It is worth noting that in this meta-analysis study, we used aneurysmal WSS values provided by patient-specific boundary conditions as the baseline values. WSS values generated by the generalised boundary conditions can be arbitrarily higher or lower than the baseline values. However, we calculated the effect sizes in a consistent way keeping the WSS values generated by patient-specific boundary conditions as baseline for all studies. Thus, bearing in mind that the “sign” has no physical meaning in this meta-analysis, the term “overestimation” was used in consistency with other meta-analyses presented in this work.

A rigid-wall assumption is often made in cerebrovascular blood flow simulations. Estimating regional aneurysmal wall motion from dynamic X-ray images, Dempre-Marco et al. compared CFD simulations of blood flow in aneurysms with rigid and non-rigid wall assumptions and observed that, although the distribution of WSS on the sac and elevated WSS areas remained almost identical, rigid wall simulations tended to overestimate the pointwise aneurysmal WSS magnitude by around 50%. On the other hand, fluid-structure-interaction (FSI) techniques have been used to simulate aneurysmal flow in non-rigid aneurysmal models. Torii et al. performed non-rigid fluid-structure-interaction simulations on aneurysms and reported up to 20% differences among WSS magnitudes obtained from rigid and non-rigid simulations. Takizawa et al., Bazilevs et al., and Torii et al., performed quantitative comparisons between maximum peak systolic aneurysmal WSS values obtained from rigid and flexible wall (fluid structure interaction) CFD simulations and reported values of time-and-space-averaged WSS on the aneurysm sac for different cases. According to a random-effects meta-analysis, the standardised mean difference (Hedges’ g) was 0.34 with a 95% confidence interval of 0.22 to 0.45 (p-value < 0.001). Figure 5 illustrates the results provided by the meta-analysis.
Our meta-analysis suggests an effect of wall distensibility on the prediction of WSS magnitude by CFD. However, visual inspections and quantitative comparisons based on global space-averaged measures showed an agreement between the rigid-wall and non-rigid-wall simulations as long as the distribution of WSS on the aneurysm wall, or the main characteristics of flow in the aneurysm (e.g., the complexity of flow pattern, or presence of an impinging flow jet, etc.) are of interest. The main challenge to the current structural models of aneurysm wall is the present limitations in measurement techniques leading to uncertainties in identification of wall mechanical properties like thickness or modulus of elasticity. Aneurysms often have pathological walls with material properties varying spatially over sac. Despite some attempts to create ad hoc models of such variations, e.g. a thinner wall on the sac, the structural models are still far from the physiological reality. Thus, notwithstanding the important effects induced by rigid wall assumption, such issues with realistic quantification of aneurysm wall mechanics have resulted in rigid-wall CFD simulations remaining predominant in the context of intracranial aneurysm modelling. To the best of our knowledge, the effect of using rigid-wall assumption on rupture risk stratifications and predictions of endovascular treatments’ outcome has not been studied yet. However, the observed effects on WSS magnitudes, and presumably direction, magnifies the importance of future studies on non-rigid aneurysm wall models, especially when quantification of WSS and its mechanic relation to the aneurysm wall biology and intra-aneurysmal thrombogenesis is of interest, e.g., in VETMs.

All in all, our meta-analyses found that wall distensibility and inlet flow waveform uncertainties have effects on the magnitude of aneurysmal wall shear stress predictions by CFD. Since only the maximum WSS values, representing a state of maximum stress and wall deformation were reported in some of the studies, our meta-analysis on the effect of wall distensibility is based on maximum WSS. This limits the comparability of wall compliance meta-analysis with the other two meta-analyses that are based on the averaged WSS, i.e., the meta-analyses on the effect of inflow waveform and blood rheology. In future, in order to perform compliant wall simulations, improvements on the structural models of arteries and current techniques for measuring mechanical properties of the aneurysm wall are necessary. To the best of our knowledge, the effect of rigid wall assumption on the endovascular treatment predictions, and stratification and rupture risk assessment of intracranial aneurysms has not been explored yet. In addition, inter-subject variability of arterial flow rates as well as intra-subject variations of the systemic flow conditions in response to the regulatory systems lead to an uncertainty in the parent arteries’ flow rate waveforms. Despite the recent studies on quantification of the uncertainties raised from inter-subject variability of inflow waveforms, the effect of intra-subject variability of systemic flow on aneurysmal WSS is still not attempted by the research community. Recent studies have revealed some new aspects of the effect of flow multi-directionality on the biological responses of the endothelium, which may play an important role in aneurysmal wall inflammation and degradation and aneurysm thrombosis by activating platelet activators. However, the sensitivity of WSS directionality to the above-mentioned sources of uncertainty has not been well investigated in the literature. These, on the other hand, accentuate the importance of addressing geometric and flow uncertainties in the endovascular treatment models.

Uncertainties in aneurysmal blood flow modelling may also arise in outlet boundary conditions. Ramalho et al. investigated the sensitivity of intra-aneurysmal haemodynamics to the outlet boundary conditions assigned using four different methods: traction-free, zero-pressure, coupling to a zero-dimensional model, and coupling to a one-dimensional model. They observed that coupling the outlet boundary to a zero-dimensional or a one-dimensional model resulted in more appropriate flow distribution between the side branches. However, using the reduced-order models as boundary conditions requires proper choice of model parameters, like resistance and capacitance in zero-dimensional models, and vascular structural and mechanical properties in one-dimensional models.
Uncertainty in such model parameters should be addressed to produce reliable patient-specific results, e.g.\textsuperscript{111,112}. In addition to the uncertainties in quantifying physiological model parameters (i.e., blood density and viscosity) and boundary conditions, variabilities in discretisation strategies may influence the model outcomes. Providing a fixed set of boundary conditions and flow model parameters, the two recent CFD challenges on aneurysmal flow modelling invited CFD modellers to simulate blood flow in selected aneurysms and investigated how variations in solution strategies influence aneurysmal blood velocity and pressure quantifications. In the Aneurysm CFD Challenge 2013\textsuperscript{113}, despite using different solution strategies and resolutions (mesh sizes of 86k-31200k using first or second order elements and time step sizes of 0.01-10 ms), approximately 80% of the 26 participating groups reported similar results with standard deviations of below 9% for cycle-averaged and peak systolic velocity, and pressure on the parent artery centreline in the two aneurysm cases studied; flow inside both studied aneurysms was stable and comparison among participating groups resulted in standard deviations below 20% for the velocity cut-planes through the aneurysm sacs. However, the aneurysmal flow inside the aneurysm involved in the Aneurysm CFD Challenge 2012\textsuperscript{71} was not stable and thus despite the overall agreement among the 27 submitted solutions, solutions with higher temporal resolutions (time step sizes below 0.2 ms) were able to capture flow instabilities; detection of flow instabilities by some groups resulted in greater inter-study variabilities particularly in peak systolic velocity patterns. According to the above challenges, CFD simulations with high temporal resolutions of at least 0.2 ms are required to capture aneurysmal flow instabilities. On the other hand, despite a strong correlation ($R^2 > 0.9$) between time-averaged WSS magnitudes, Valen-Sendstad et al.\textsuperscript{114} observed a weak correlation ($R^2 = 0.23$) between OSI values predicted by normal (with spatial resolutions of 0.1-0.2 mm and temporal resolutions of about 1 ms) and high resolution (with spatial resolutions of about 0.06 mm and temporal resolutions of about 0.05 ms) simulations. Comparing normal and high resolution CFD simulations, they observed an average of 30% and 60% differences in pointwise values of time-averaged and maximum WSS on the aneurysm sac, respectively. They suggested that particularly for bifurcation unstable aneurysms, normal resolution CFD simulations cannot accurately capture oscillations both in magnitude and direction of WSS vectors. Due to the observed differences between OSI values and pointwise WSS magnitudes predicted by normal and high resolution schemes, Valen-Sendstad et al.\textsuperscript{114} argued that although normal resolution CFD simulations may be adequate for aneurysm rupture risk assessment based on spatiotemporally averaged flow indices, they cannot be relied on to fully characterise WSS as a complex biomechanical stimuli on the aneurysm wall.

Mesh resolution near the wires also influences the flow quantification in the presence of endovascular devices. Comparing the solutions provided by 6 participating groups for three particular stented aneurysms, the Virtual Intracranial Stenting Challenge (VISC) in 2007\textsuperscript{70} showed that an accurate reconstruction of blood flow around the stent wires requires an adequately fine mesh resolution near the struts. Janiga et al.\textsuperscript{48} observed more than 15% relative difference between intra-aneurysmal maximum flow velocities obtained based on first- and second-order numerical discretisation. They recommended second-order solvers for flow simulation in stented aneurysms.

To sum up, mesh-dependency tests are necessary when building VETMs, in particular, to ensure the convergence on the aneurysmal wall and near the device wires. Although assessments of device performance based on the highly reduced indices (e.g., flow reduction or increase in the aneurysm sac turnover time) can be done using coarser discretisations, higher resolution CFD simulations are required for an accurate resolution of velocity and WSS fields, especially when the interaction between localised haemodynamics and biology is of interest, e.g., platelet activation in the high shear flows between the struts\textsuperscript{22}, and inflammatory or thrombogenic biochemical surface reactions.
In VETMs, CFD solutions require temporal resolutions higher than 0.2 ms to capture flow instabilities of interest, and spatial resolutions in the order of 0.1-0.2 mm within the vasculature and of about one-third of the wire radius near the wires. In addition, volumetric meshes require at least a few layers of prismatic boundary layer elements near the wall.

Modelling of endovascular devices and their deployment

Mathematical models developed for device deployment can be either mechanistic (physics-based) or phenomenological. Mechanistic models of device deployment dynamics account for the design and mechanical properties of the particular device and its mechanical interactions (contact) with the flow, the arterial wall, and the device itself. This makes mechanistic models potentially more accurate. However, such models have a large number of model parameters and, consequently, are more prone to uncertainty in the identification of model parameters. In contrast, while they may ignore some of the underlying biomechanical mechanisms, phenomenological models make certain geometrical or physical assumptions to describe the observable process of device deployment. These models are computationally faster and their parameters are more easily obtainable from the device manufacturer. Therefore, phenomenological models are more commonly used for simulating virtual treatment procedures for the embolisation of aneurysms.

Mechanistic virtual coil models have been employed to describe the dynamics of coil deformation after insertion into the aneurysm sac. Such models may have many ingredients to adjust in order to optimise the deployment strategy, such as the diameter, length, and mechanical properties of the coils as well as a proper set of boundary conditions describing interactions of the coil with the micro-catheter, aneurysm wall, and the coil itself. Equations of blood flow are then solved within the coiled aneurysm. Phenomenological models of endovascular coil deployment can be categorised into: (i) models that only modify the governing equations of blood flow to account for the impedance of fluid flow in the porous region of a thrombosed coil, and (ii) models that use mathematical descriptions to explicitly model the coil deployment inside a specific aneurysm and then solve blood flow equations in the aneurysm sac with a deployed coil inside. The dynamics of stent deployment have been mechanistically modelled using finite element models. Such models, however, are very computationally expensive since they consider the structural properties of the stent as well as its interactions with the micro-catheter and the vascular wall. Phenomenological models describe the endovascular stent by representing it as a porous medium, by mapping of the stent design on a previously expanded cylinder inside the vessel, or by deforming a mesh until it reaches the vessel wall, or by weaving stent wires around a circular cone deformed to fit against the vessel wall. Compared aneurysmal flow after placement of an endovascular stent with a mechanistic FE model with that predicted after deploying the stent using a phenomenological fast virtual deployment model and observed a good quantitative agreement accompanied by a reduction in the computational time.

Virtual treatment models have been used to pre-operatively study the effect of coil shape, orientation, and packing density in patient-specific aneurysm models. Schirmer et al. investigated the effect of orientation of helical coils on the aneurysmal flow and showed that the coil orientation with respect to the aneurysmal flow has a considerable influence of the effectiveness of helical coils. They showed that helical coils that are located parallel to the flow jet entering the aneurysm are more effective in preventing flow from entering the aneurysm and reducing the level of aneurysmal WSS. They observed the least flow reduction in aneurysms with coils placed orthogonal to the entering jet. Similarly, Jeong et al. investigated the effect of coil shape and orientation on the aneurysmal haemodynamics and showed that cage-shaped coils deployed orthogonally to the
entering flow jet provided the least flow reduction in aneurysms. Aguilar et al. 137 studied the effect of coil surface area (diameter) and packing density on the intra-aneurysmal flow. They observed that coiled aneurysms with the same coil surface area but different packing densities produced similar intra-aneurysmal haemodynamics. They also observed that the coiled aneurysm with the largest coil surface area had the most effect on flow reduction and concluded that the coil surface area influenced on its performance. Morales et al. 138 studied the effect of coil packing density and configuration on the intra-aneurysmal flow and showed that at low packing densities (< 12%), the aneurysmal flow was highly dependent on the coil configuration and this dependency decreased as packing density grew. They observed an insignificant influence of coil configuration at high packing densities.

Aneurysmal haemodynamics following the placement of a flow diverter stent are known to be dependent on the aneurysm size and shape 139-142, location 139, 141, stent design and configuration 129, 135, 143-146, and its orientation and position in the parent vessel 147-150. The stent porosity has also been shown to highly influence the effectiveness of the deployed stent 151, 152. Virtual treatment models provide the opportunity to investigate the effect of the aforementioned variables using image-based patient specific models before the actual placement of flow diverters 15. In clinical practice, flow diverters are usually selected to be oversized, i.e., to have slightly greater diameter than the vascular calibre. This results in an adequate appositioning against the vascular wall on the one hand and a stretch of stent cells along the vascular axis on the other. Mut et al. 153 studied the effect of stent oversizing on the post-treatment aneurysmal haemodynamics and showed that oversizing will result in larger stent cells and will decrease the haemodynamic effectiveness of the flow diverter stent. While deploying flow diverters, clinicians can maximise the strut local compaction, and consequently the flow diversion, across the aneurysm neck. The dynamic push-pull flow diverter deployment technique has been used to increase and decrease the local density of the flow diverter at the aneurysm neck and perforator-rich regions of the parent vessel, respectively, to allow maximum flow diversion at the neck while maintaining the perforators and branch vessels 154. Janiga et al. 155 simulated flow through similar flow diverters that are differently deployed to have eight different local compactions at the neck; and, observed that different local compactions lead to different post-deployment intra-aneurysmal flow reductions ranging from 24.4% to 33.4%. They remarked that flow diverter local compaction across the aneurysm neck can be virtually and pre-operatively optimised to reach maximum flow reduction. However, Xiang et al. 22 simulated this deployment technique and showed that although resulting in an increased flow diversion, it pushes the flow diverter to bulge out inside the aneurysm, and produces a weaker inflow compared to the standard deployment technique that results in lower shear rates near the stent struts. Since high shear-induced activation of platelets plays a role generation of a stable white thrombus (versus instable stasis-induced red thrombus) inside the aneurysms, Xiang et al. 22 suggested that this deployment technique may result in lowering the platelet activation and, consequently, white thrombus formation potential.

Performance of endovascular devices in treatment of aneurysms is assessed by their ability to induce a flow stasis and consequently an occluding stable blood clot in the aneurysm sac 2. Virtual endovascular treatment models can be used to pre-operatively predict the likelihood of recanalisation in candidate aneurysms for coil embolisation. Presence of high WSS ( > 35 Pa as reported by 156, 157) at the neck of the coiled aneurysms was shown to have a correlation with post-treatment recanalisation and regions of high WSS coincided with regions where recanalisation happened 156-159.

Delayed or incomplete occlusion and post-treatment rupture are the challenging complications associated with flow diverter treatments. Currently, there is no reliable measure to predict the
performance of implanted flow diverters in terms of inducing a durable clot that occludes the sac completely and triggers the process of healing. Several attempts have been made to computationally quantify the stent-induced post-treatment haemodynamic alterations and use them to predict the treatment outcomes. Chung et al. \cite{160} evaluated the treatment outcome in 36 rabbits with elastase-induced aneurysms treated with flow diverters; nine aneurysms were occluded completely or near completely within 4 weeks (categorised as fast group) and six aneurysms incompletely occluded at 8 weeks (categorised as slow group); differences were observed between the morphological indices of the two groups; e.g., neck area was 0.365±0.082 cm² in the slow and 0.144 ±0.078 cm² in the fast occlusion group, p-value = 0.015. However, from haemodynamic measures (measured immediately after stent deployment), the aneurysm inflow rate and mean intra-aneurysmal velocity were lower in the fast occlusion group (inflow rate was 0.155±0.095 mL/s in the slow and 0.047±0.053 mL/s in the fast occlusion group, p-value = 0.024 and intra-aneurysmal velocity was 0.506±0.298 cm/s in the slow and 0.221±0.224 cm/s in the fast occlusion group, p-value = 0.058); no differences were observed between WSS-based measures (e.g., space-averaged WSS, minimum WSS, or low WSS areas). Mut et al. \cite{161} examined post-stent aneurysm flow in 23 aneurysms (15 aneurysms considered as fast with occlusion times less than 3 months, and the other 8 considered as slow with incomplete occlusion or patency at 6 months); they found differences in post-treatment mean velocity (1.89±1.88 mL/s in the slow and 0.47±0.52 mL/s in the fast group, p-value = 0.021), inflow rate (3.11±2.04 cm/s in the slow and 1.13±0.92 cm/s in the fast group, p-value = 0.004), and shear rate (32.37±20.93 /s in the slow and 20.52±16.18 /s in the fast group, p-value = 0.021) values between the fast and slow groups; they suggested a threshold of 1.3 cm/s on post-stent mean velocity could predict occlusion time (slow or fast) with an accuracy of 84%. Kulcsar et al. \cite{162} examined pre- and post-treatment haemodynamics in eight para-ophthalmic aneurysms treated with flow diverters; one was occluded but ruptured 5 day after treatment, one remained patent after one year, and others were occluded during the one year follow-up. In aneurysms with complete occlusion, they observed reductions of 10%-80% in the mean velocity, 12%-58% in the maximum velocity, 44%-81% in the mean WSS, and 32%-82% in the maximum WSS after flow diverter placement; however, mean and maximum velocities, and mean and maximum WSS were reduced by 60% and 47%, and 68% and 60% in the aneurysm that remained patent, respectively. In the aneurysm with post-treatment rupture, Kulcsar et al. \cite{162} also observed 20% and 0% reductions in the mean and maximum velocities, respectively, while the mean WSS was reduced by 60% and a reduction of 20% was observed in the maximum WSS after stenting. They pointed out that lower reduction rate in the maximum velocity of the ruptured aneurysm suggest a persisting jet that prevent the successful occlusion of this aneurysm. However, based on the observations reported by Kulcsar et al. \cite{162}, the averaged haemodynamic measures in the case with persisting patency are not significantly different from those aneurysms with successful occlusion. Focusing on the relative changes (post- to pre-treatment ratio) induced by flow diverters, Ouared et al. \cite{163} attempted to find patient-unspecific haemodynamic ratio thresholds that significantly determine the condition required for a durable aneurysm occlusion; they examined pre- and post-stent space-and-time-averaged velocity and WSS in 12 aneurysms (nine were occluded at 12 months’ follow-up while the remaining three were still patent) but found no significant absolute occlusion threshold based on post-stent velocity and WSS absolute values; however, they found an area under curve (AUC) with a p-value of only 0.052 for pre- to post-stent mean velocity ratio with a minimum of one-third velocity reduction necessary to generate a long-term occlusion (with a sensitivity and specificity of about 99% and 67%, respectively), independent of the aneurysm geometry; despite post-treatment WSS reductions in all aneurysms, they could not find any significant occlusion threshold based on post- to pre-stent WSS ratios.

The above-mentioned studies identified reductions in aneurysmal flow and WSS following the treatment with endovascular devices; however, most of them found no significant haemodynamic...
differences between cases with successful occlusions or persisting patency. Although the observed post-treatment haemodynamic changes suggest the capability of pure haemodynamic models in predicting the treatment outcomes, the limited sample sizes in each individual study prevents any general conclusion; for example, all aneurysms included in the study by Kulcsar et al.\textsuperscript{162} have post-treatment mean velocities greater than what is suggested by Mut et al.\textsuperscript{161} as a fast occlusion threshold; or the so called patient-unspecific velocity reduction occlusion threshold proposed by Ouared et al.\textsuperscript{163} results in a sensitivity and specificity of about 67\% and 50\% in the cohort studied by Kulcsar et al.\textsuperscript{162}. Despite the important role of WSS on aneurysm wall biology and initiation of thrombosis, none of the reviewed studies identified a significant difference between the fast and slow occlusion outcomes based on averaged WSS-based measures; this could be attributed to the highly localised patterns of aneurysmal WSS and the consequent biological aneurysm wall phenotypes that are captured by the averaged quantities studied in the mentioned works. Moreover, inducing a selective aneurysmal clotting that triggers the healing process is crucial\textsuperscript{164}. Unlike the stasis-induced red thrombus, which is less organised and contains a high content of leukocytes and proteolytic enzymes, white thrombus is more stable and contains a low content of leukocytes and proteolytic enzymes\textsuperscript{22}. Unstable red thrombus forms under low shear flow; conversely, white thrombus forms through activation of platelets in high shear rate regions (e.g., near the stent struts)\textsuperscript{22}. Recent findings on post-procedural ruptures of aneurysms treated with flow diverters suggest that the presence of fresh and non-organised red thrombus may result in a pathophysiological cascade leading to aneurysm wall degradation and rupture\textsuperscript{21}. This revealed that device-induced intra-aneurysmal flow stasis may result in formation of unorganised red thrombus and lead to aneurysm rupture after treatment. Xiang et al.\textsuperscript{22} hypothesised that white thrombus should desirably be induced in the aneurysm to promote stabilisation red thrombus and generate a stable clot that assist in the formation of a neointimal layer over the aneurysm neck. The hypothesis that the stable intra-aneurysmal clot is a combination of red (forms via stent-induced stasis) and white (forms via stent-induced platelet activation) thrombi needs further investigation and validation\textsuperscript{22}. This hypothesis also magnifies the importance of appropriate anticoagulant/antiplatelet therapies in such complex problems\textsuperscript{22, 164}. Summing up, the favourable treatment outcome, i.e., formation of a complete stable clot at a rate faster than thrombus-induced wall degradation, however, is highly affected by the mechanical and biochemical interactions between clot and intra-aneurysmal flow, in the presence of the anticoagulant/antiplatelet therapies. The above discussion implies that whether or not an implanted endovascular device leads to a complete aneurysm occlusion may not be assessed only based on post-treatment highly averaged haemodynamic quantities. Information from the intra-aneurysmal biochemistry and biology is required to reliably predict device performance. This could be achieved by coupling mechanistic blood coagulation sub-models to the VETMs or devising more advanced phenomenological haemodynamic surrogates that capture the ongoing biological processes more effectively. Creating device performance indicators that compare the device-induced formation rates of instable red versus stable white thrombi in the presence of anticoagulant/antiplatelet therapies may help predict the efficacy of an endovascular device for a specific patient.

Uncertainty in modelling of the endovascular devices

Uncertainty in modelling of the endovascular devices can arise either from uncertain model parameters or the way each model represents deployment of the device and its interaction with blood flow (model uncertainty). Phenomenological models of coil and stent deployment often rely on parameters such as device design, diameter, and length, which are often obtainable from the manufacturer. However, mechanistic models include mechanical properties of the devices and boundary conditions, which cannot be easily measured, and thus, introduce uncertainty into the model. The effect of device configuration, orientation, and position of the devices has been
investigated in the literature, but to the best of our knowledge, the quantification of the uncertainty
in the model parameters has not been attempted so far.

Modelling endovascular devices as porous media, although is not strictly a source of uncertainty,
introduces errors in quantification of aneurysmal flow; especially local values of haemodynamic
variables. Morales et al. 12 compared post-treatment aneurysmal flow fields obtained from
modelling the deployed coil as a porous medium with that obtained from modelling the coils
explicitly. They observed considerable differences in intra-aneurysmal velocity and local
concentration of contrast agent predicted by each of the two techniques. However, due to the lack
of quantitative comparisons between post-treatment aneurysmal flow fields obtained from models
and in vivo measurements, it is not yet certain, which of the proposed models better represents the
device performance under specific conditions. Levitt et al. 165 compared post-treatment
haemodynamics in two coiled aneurysm phantoms numerically simulated using the porous medium
technique and explicit model of coils obtained from high-resolution high-energy synchrotron X-ray
micro-tomography; substantial differences up to 50% and 130% respectively in time-averaged WSS
and OSI values averaged over the aneurysm sacs suggest inaccurate haemodynamic quantifications
using homogeneous porous medium coil models. Although synchrotron tomography is not currently
available in the routine clinical practice, this modality can be used to evaluate the accuracy of other
more complex coil modelling techniques. In two of the three stented aneurysms, Raschi et al. 166
reported a qualitative and quantitative agreement (with up to 10% difference in post-treatment
reductions in aneurysm-averaged WSS) between aneurysmal post-treatment haemodynamics
predicted by explicit and porous medium models of the deployed stents; in the third aneurysm,
post-treatment reduction in aneurysm averaged WSS differed up to 25% between the porous
medium and explicit models of the flow diverters. In a similar study with two stented aneurysms,
identical WSS distributions with relative root mean square errors of 21%-24% in mean WSS
magnitude averaged over the entire sac and 45%-81% in mean WSS magnitude averaged over the
aneurysm dome are reported for simulations with flow diverters modelled either as porous medium
or explicitly 132. Capturing the local variations of porosity is a challenge in porous medium models of
both coils and flow diverters. For example, complex geometry of the host artery, or particular
deployment techniques (e.g., the push-pull technique) result in local variation of stent porosity at
the aneurysm neck which cannot be easily mimicked by the porous medium models; especially if
pre-operative evaluations of the devices are of interest so that the post-deployment porosities
cannot be estimated by micro-tomography techniques. Thus, although refinements may improve on
the predictions by encouragingly cost-effective porous medium models, the geometrical complexity
of endovascular devices and the consequent effects on the flow seem to be a serious challenge to
these models.

Intra-procedural changes in the host vessel geometry (shape and size) introduce further
uncertainties in VETMs that has yet to be studied in more detail and quantified. The parent vessel
can undergo dilation as a consequence of stent expansion during deployment, vasodilator drug
administration, and the intentional post-release manipulations to correct stent apposition all leading
to reported differences of about 5% and 10%, respectively, between virtual and real stent final
radius and length 167. Delayed geometrical and angular alterations of the host arteries within a year
after deployment are also reported in stented aneurysms 168. Straightening of the parent artery after
deployment of stents was reported by King et al. 169. In sidewall vertebral artery aneurysms, this
resulted in alterations in the flow direction and rate (by 10%) of the aneurysm inflow jet 170.
However, none of the current deployment techniques accounted for such device-induced
geometrical alterations 48. Formation of a rapid and stable clot, which completely occludes the
aneurysm sac, is the desired goal of a successful endovascular aneurysm treatment 171; and, uncertain intra-procedural alterations in the physiological flow can affect the treatment outcome.

John Wiley & Sons
Mut et al.\textsuperscript{172} investigated intra-aneurysmal haemodynamics in aneurysms treated with three different stents under five different time-averaged flow rates in the parent vessel and observed that a change of 30-50\% in the parent vessel flow rate during the stenting procedure resulted in a 30-80\% change in the aneurysmal haemodynamic variables. This observation highlights the importance of inlet flow variability as a source of uncertainty (see the uncertainty in blood flow modelling section) in vascular treatment models.

### Modelling blood clotting

#### Clotting in aneurysms

In ruptured intracranial aneurysms, clot formation is the response of the haemostatic system and prevents blood loss at the site of injury, where the aneurysm has burst. Chronic spontaneous thrombosis can also occur in unruptured aneurysms, resulting in further wall damage and later aneurysm rupture or a natural healing process through complete occlusion of the aneurysm sac\textsuperscript{173}. On the other hand, as mentioned before, intrasaccular thrombosis can also be induced by endovascular devices, like coils and stents, to occlude aneurysm sac from the vascular bed and reduce the rupture risk.

The desired process of healing in endovascular treatment is to generate a stable clot throughout the aneurysm sac. The aneurysm will then be excluded from the parent vessel by formation of a neointimal layer over the aneurysm neck\textsuperscript{174-176}. Endovascular treatments are associated with complications such as incomplete occlusion, recanalisation or recurrence\textsuperscript{177, 178}, and thromboembolisation\textsuperscript{179}, which expose the patient to the risk of a later haemorrhage or an ischemic stroke. Anticoagulant drugs are usually prescribed after endovascular treatments\textsuperscript{180}, and prevent uncontrolled acute device-induced thrombus formation and reduce the risk of thromboembolisation on one hand and prolong the endosaccular clot formation on the other. Due to the prolonged treatment procedure, further wall inflammation and damage may occur due to the presence of an incomplete clot partially covering the aneurysm wall, increasing the risk of post-treatment rupture\textsuperscript{21, 181}. Moreover, the increased time of clotting due to the prescription of antiplatelets and anticoagulants can further increase the risk of bleeding in patients with endovascular treatments\textsuperscript{180}.

#### Mechanisms of intra-aneurysmal thrombosis

It has been shown that adverse haemodynamic stresses on the aneurysm wall can result in wall inflammation and damage to the intact arterial endothelium\textsuperscript{20}. The cell-based model of coagulation\textsuperscript{182} provides an explanation for spontaneous thrombosis resulting from the endothelial damage and exposure of vascular tissue factor (TF) to the circulating blood in the aneurysm sac. WSS at regions where flow is low and multidirectional or at regions where flow variations are dominated by frequencies higher than the systemic flow frequency (the heart rate) have been shown to correlate with the pro-inflammatory response of the endothelial cells\textsuperscript{115, 183}. Inflamed endothelium expresses the NF-κB transcription factor (a nuclear transcription factor that can be activated by environmental signals, like WSS, and mediate wall inflammation and weakening), leading to upregulation of blood borne TF, which can subsequently trigger spontaneous thrombosis in such regions\textsuperscript{184, 185}. Platelet activation and aggregation within the recirculation regions followed by deposition in regions of low flow has also been used to explain spontaneous coagulation in aneurysms\textsuperscript{186, 187}.

As far as device-induced coagulation in aneurysms is considered, pro-coagulant alterations in aneurysm haemodynamics, platelet activation as a result of blood contact with the deployed devices, and shear-induced platelet activation are key factors in initiating endosaccular thrombosis.
Intra-aneurysmal flow reduction using endovascular devices is thought to create dead zones where the flow stasis favours platelet adhesion and activation, a key step in the thrombosis process \(^{22, 23}\). Such flow stasis can also damage the endothelium and expose sub-endothelial TF \(^{188}\). Blood contact with the artificial material (the deployed devices) is hypothesised to also be responsible for the initiation of blood coagulation inside the aneurysm sac \(^{189, 190}\). Xiang et al. \(^{22}\) showed that platelets can become activated in high-shear regions near the flow diverter stent struts and can be transferred to and deposited in low-flow regions in the sac. They further distinguished between white and red thrombi, where the former favours aneurysm healing and the latter leads to further wall weakening and the ultimate aneurysm rupture after flow diverter placement.

**Computational models for spontaneous thrombosis in aneurysms**

The most challenging part of a mechanistic model of thrombus formation in aneurysms is the mechanism used to describe thrombosis initiation. It has been observed that blood clots form or at least deposit in the regions where blood flow is extremely low and multidirectional \(^{25, 191-193}\). However, it is not yet well understood whether clotting starts extrinsically due to the endothelial damage and TF exposure in disturbed flow regions, i.e., aneurysmal wall regions where haemodynamic stresses are extremely low and multidirectional; or, intrinsically due to platelet activation and aggregation and exposure of blood borne TF under certain haemodynamic conditions \(^{194}\). Coagulation models in aneurysms can be classified into two main groups. The former only characterise blood flow in aneurysms and do not include any biochemical reactions. The latter, however, couple both flow and reaction to model coagulation in aneurysms. Some models include additional parts that consider the mechanical interactions between the clot and the blood flow field.

Rayz et al. \(^{25, 195}\) and Ouared et al. \(^{24, 196}\) correlated flow velocity, flow residence time (RT) and WSS with clot formation and simulated clotting in aneurysms without considering the biochemical reactions. For three patients with magnetic resonance imaging (MRI) scans before and after thrombus formation, Rayz et al. \(^{195}\) showed that blood clots developed in regions with low WSS and high RT. They revealed a correlation between the location of intraluminal blood clots and regions of high RT and low WSS. Zimny et al. \(^{197}\) classified thrombosis initiation mechanisms in aneurysms into intrinsic and extrinsic mechanisms. In their multiscale model, intrinsic mechanisms initiated clotting through platelet activation by the inflamed wall or by the contact of blood with external devices (e.g., coils and stents) and extrinsic mechanisms initiate clotting through exposure of TF due to damage to the aneurysm wall. Such damage was considered to be a result of post-treatment flow alterations in the sac or any cuts that occurred during the deployment procedure. They finally extended the mesoscale model presented by Ouared et al. \(^{24, 196}\) to a three-dimensional aneurysm model and simulated flow-mediated thrombus generation based on a threshold on aneurysmal WSS under which thrombosis initiates. De Sousa et al. \(^{23}\) simulated flow in ten patient-specific aneurysms and showed that spontaneous thrombosis was present in aneurysms with low shear rate and suppressed pulsatility. They also showed for three aneurysms treated with flow diverters that after flow diverter deployment, the aneurysmal shear rate fell below a certain threshold that has been correlated with the onset of thrombosis generation.

Although such models can provide some information about the possibility of presence of endosaccular thrombosis under certain aneurysmal morphology or haemodynamic environment, they will not provide enough information about the morphology of the aneurysmal blood clot and its interaction with the aneurysmal blood flow. Since these models do not include the underlying biochemical reactions, they cannot be used to predict effects of the chemical composition of blood or use of anticoagulants on spontaneous clotting or the final outcome of endovascular treatment. Coupling blood flow with a network of biochemical reactions, Bedekar et al. \(^{26}\) and Biasetti et al. \(^{198}\)

---

Page 23 of 48
simulated clot formation in intracranial and abdominal aortic aneurysms, respectively. They both used TF exposure on the aneurysm wall as the initiator of the clotting process and assigned a prescribed concentration of TF on the aneurysm wall as boundary condition. This approach benefited from a biochemical web of surface reactions to model clot formation on the aneurysm wall; however, it assumed that TF was uniformly exposed on the aneurysm wall and initiated the coagulation cascade. On the contrary, it has been observed that inflammatory lesions and endothelial damage, which are thought to be responsible for TF exposure, are localised phenomena resulted from region-specific adverse haemodynamic conditions. Malaspinas et al. set up a series of in vitro experiments and obtained WSS thresholds below which coagulation starts in idealised aneurysm geometries. Then, they used those thresholds to simulate clotting in two real aneurysms and successfully validated their results against patient-specific medical images. Although Malaspinas et al. took a threshold-based approach to study spontaneous clotting in aneurysms, they simulated the underlying biochemical reactions; that is, the threshold has been used as the initiator of a web of chemical reactions. This makes their model capable of investigating the effect of patient-specific deficiencies in certain coagulation factors and/or the effect of anticoagulants on the clotting time and the final percentage of aneurysm occlusion.

**Computational models for device-induced thrombosis in aneurysms**

Xiang et al. presented a model of blood flow in stented aneurysms, and demonstrated that blood flow near stent struts can provide shear rates high enough to activate platelets and trigger blood coagulation in the aneurysm sac where the flow is low enough for platelets to aggregate. Ngoepe et al. coupled flow and biochemistry to simulate both spontaneous and stent-induced thrombosis in patient-specific aneurysm geometries. They used a level-set method to track the clot surface at each instance of the time and consider the effect of clot on the flow domain. They considered vascular TF as the sole initiator of the clotting process; however, instead of a uniform exposure of TF on the aneurysm wall, they used a shear rate threshold below which TF can be expressed on the wall and initiate the clotting process. This allowed coagulation to start only on the portions of the endothelium that are expected to be damaged, which is more physiologically relevant than exposing TF uniformly on the aneurysm lumen.

Recently, observing the fact blood clotting in aneurysms is not necessarily triggered by the exposure of extravascular TF due to the wall damage, Ou et al. presented a model with more emphasis on the blood-borne TF as the initiator of stasis-induced thrombosis in aneurysms. To concentrate on the role played by the blood-borne TF, they ignored exposure of TF on the sub-endothelium and thrombogenicity of the flow-diverter. They hypothesised that accumulation of blood-borne TF in aneurysmal dead zones, where flow is low enough, is responsible for the initiation of thrombosis in those regions. The validity of their proposed model was supported by in vivo observations of surgically induced stasis in ligated right common carotid arteries of rats.
Uncertainty in computational models of blood coagulation

Blood coagulation, either as part of haemostatic system or under pathological conditions, is a very complex system with several sources of uncertainty. One may consider the lack of in vivo experimental data and the limited knowledge on the underlying pro- and anticoagulant mechanisms as the main sources of uncertainty in such a complex process. It has been implied that neither cascade nor cell-based models of coagulation can satisfactorily explain in vivo coagulation in pathologies like intracranial aneurysms. The role of the vessel wall in chemical initiation and hosting the coagulation process and interactive effects of the clot and blood flow field are still uncertain.

According to Virchow’s triad, thrombosis can be initiated as a result of damage to the endothelium, damage to the blood itself, or under certain blood flow conditions. Particularly, as depicted in Figure 6, coagulation in aneurysms can be initiated due to 1) platelet activation as a result of endothelial damage and contact of blood with the vascular TF, 2) platelet activation as a response to upregulation of the blood-borne TF due to pro-inflammatory response of the endothelium, 3) platelet activation as a result of blood contact with thrombogenic surface of endovascular implants, and 4) platelet activation as a response to high blood shear force at high shear regions like near the flow-diverter struts. Blood stasis (dead zones) in complex aneurysmal geometries is always a favourable region for activated platelets to deposit and trigger blood coagulation. When considering blood coagulation in a given aneurysm, it is unclear beforehand if any or all of the above mentioned mechanisms are responsible for initiation or amplification of the thrombosis. Moreover, none of the current models developed to simulate blood coagulation in aneurysms include all of the above mechanisms or measure the relative importance of them for a particular aneurysm.

Insufficient experimental data and uncertain role of the coagulation factors can even increase the level of uncertainty of the current models. For example, activation of the coagulation factor XII (a coagulation plasma protein that can be activated on artificial surfaces) in the presence of endovascular implants, which plays an important role in amplification of the coagulation, is not included in the cell-based model of coagulation.

Intra-subject variability in blood composition and pathologic deficiencies of certain coagulation factors can also increase the amount of uncertainty in coagulation modelling. It has been shown that uncertainty in the concentration of certain coagulation factors can result in completely different thrombin generation curves in a single patient. This can even be generalised to inter-subject, age-, sex-, and lifestyle-related variabilities in concentration of coagulation factors. These variabilities can also affect kinetics of the underlying reactions in terms of their rate constants. Danforth et al. and Luan et al. investigated uncertainties in the reaction rate constants and showed that the
predictive capability of the entire model is highly sensitive to variabilities in some of the numerous rate constants involved in a biochemical model of coagulation.

Conclusions

Endovascular treatment of intracranial aneurysms requires evaluating the best treatment options in terms of efficacy and safety. Whether a certain endovascular treatment leads to formation of a stable clot in a specific aneurysm is a question that challenges neurointerventionalists. Endovascular planning systems that would allow pre-interventional assessment of aneurysmal haemodynamics before and after virtual treatment are potentially valuable clinical tools. Underpinning such systems, computational fluid dynamics (CFD) alongside other computational techniques for creating image-based vascular surface models and models of endovascular devices have already been extensively used to characterise intra-aneurysmal blood flow, and to understand the interplay between blood flow, aneurysm rupture risk, and endovascular treatment outcome. This paper overviewed the state-of-the-art in this area; and highlighted the importance of future efforts concentrating in device-induced thrombosis and uncertainty modelling in the context of VETMs.

We have presented a review of the current status of vascular anatomy and blood flow models, endovascular device deployment models, and blood coagulation models as the main ingredients that can be integrated into a VETM to help clinicians in the management of intracranial aneurysms. To provide a complete picture of treatment outcome, current systems for VETM need to be extended to incorporate post-treatment aneurysmal response and account, for instance, for the mechanisms of clot formation in the presence of endovascular devices. Although efforts exist to model intra-aneurysmal blood coagulation, none of the current models include all of the underlying mechanisms of intra-aneurysmal coagulation (see Figure 6) or measure the relative importance of them for a particular aneurysm. Most of the models have not been personalised or are difficult to personalise based on available patient-specific data. Stratification and success criteria for endovascular treatment need to be established that objectively define the ideal outcome in a way that could be used by the modelling community as part of a treatment optimisation framework. Therefore, future research will have to first bridge the gap between available empirical evidence from clinical studies as to what constitutes and leads to a successful treatment outcome and the technical ability to computationally model the complex interplay between factors due to the anatomy, haemodynamics, blood clot, and endovascular device. This underlying complexity, on the other hand, will have to be modelled in a judiciously simplified manner not only to make the problem computationally tractable while remaining faithful to key mechanisms but also to enable personalisation of model parameters to limited patient-specific data. At the same time, current attempts to create advanced haemodynamic surrogates for intra-aneurysmal biological phenotypes (e.g. thrombosis), should be further validated against in vivo observations and potentially used to develop more accurate predictors of intra-aneurysmal thrombosis that those attainable by simulating even simplified models the underlying complex biological mechanisms.

In an editorial, Kallmes expressed concerns regarding the status of computational studies on intracranial aneurysms and their clinical relevance. Two challenges were raised: 1) Can the virtual endovascular treatment model (VETM) be used to predict flow quantities that are useful in clinical diagnosis and prognosis? 2) Do the numerous modelling assumptions and related uncertainties make the results questionable? In another editorial, Cebral and Meng emphasised that certain approximations and simplifications are needed in CFD studies to make them more cost effective and feasible. They suggested that what is important is measuring the effect of those assumptions on model outcomes and their relative importance, which could be evaluated using sensitivity analysis techniques. In this work, we have reviewed the three main ingredients of an image-based patient-specific virtual endovascular treatment model for intracranial aneurysms. Each of these sub-models
is prone to uncertainties, which should be addressed in order to make the virtual endovascular treatment model reliable as well as patient-specific. For those uncertainties that we found enough quantitative analyses, we performed a meta-analysis to identify their pooled effect. As presented in Table 1, we categorised uncertainties into: 1) those for which a meta-analysis has been performed and thus their effects are supported by the highest level of evidence, 2) those which have been studied in the literature but for which we could not perform a meta-analyses due to effects not being reported quantitatively or having only been considered in a limited number of studies, and 3) those which have not been studied yet in the context of IAs and thus their effect on the model outcomes is not still clear.

Virtual endovascular treatment models are influenced by several sources of uncertainty that need to be accounted for when interpreting the results of their predictions. Uncertainty handling is relevant to most computational biomechanics problems but can become particularly severe in complex multi-scale models. Meta-analyses have been performed on three well-known sources of uncertainty, and the uncertainties arising from vascular wall distensibility and inflow waveform variabilities showed effect sizes (Hedge’s g) of 0.34, 95% CI [0.22, 0.45], p-value < 0.001, and 0.3, 95% CI [0.08,0.52], p-value = 0.003, respectively. Significance of non-rigid FSI models in future understanding of complex biomechanical processes at the aneurysm wall has also been pointed out by Chung and Cebral. Physiologically realistic FSI models of aneurysms require measuring local variations of wall mechanical properties over highly heterogeneous pathologic aneurysms’ wall which is not easily achievable in routine clinical practice. In future, such uncertainties should be addressed by 1) using more accurate techniques for measuring model input parameters (uncertainty mitigation), 2) consideration to the propagation of uncertainties from input parameters into the model outputs by reporting confidence intervals and sensitivities instead of deterministic results (uncertainty exploration), or 3) replacing model outputs with other alternative variables, which carry the same information but are less sensitive to the unknown model parameters (sensitivity reduction).

Specifically, more advanced imaging techniques can provide higher quality images of the vascular lumen along with fully automatic segmentation techniques that do not require a posteriori manual editing and can eliminate some of the geometric uncertainty. Conducting more experimental studies regarding the mechanisms underlying thrombosis, particularly in aneurysms, can reduce model uncertainties in aneurysmal clotting and thus produce more reliable virtual treatment outcome predictions. However, inherent uncertainties in the systemic flow (and several other model parameters) cannot be eliminated. In such cases, advanced uncertainty quantification techniques can be used to systematically explore the effects of these uncertainties. The concept of personalisation should not be limited to deterministic identification of model parameters at a particular moment in time. Instead, model parameters should be treated as uncertain and/or fluctuating quantities; and uncertainty quantification techniques should be employed to propagate those uncertainties through the virtual treatment models in order to produce confidence intervals and sensitivities associated with the model predictions.
Table 1. Major sources of uncertainty in different sub-models of a typical endovascular treatment model.

### a) Uncertainties for which a meta-analysis has been performed

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Reference(s)</th>
<th>Summary Effect (Hedges’ $g$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wall distensibility</td>
<td>Torii et al. (2009), Bazilevs et al. (2010a), Bazilevs et al. (2010b), Takizawa et al. (2012)</td>
<td>0.34 (0.22 – 0.45)</td>
</tr>
<tr>
<td>Inlet flow rate waveform (inter-subject variability)</td>
<td>Karmonik et al. (2010), McGah et al. (2013), Jansen et al. (2014)</td>
<td>0.30 (0.08 – 0.52)</td>
</tr>
<tr>
<td>Blood rheology</td>
<td>Fisher &amp; Rossmann (2009), Morales et al. (2013), Castro et al. (2014)</td>
<td>0.02 (-0.04 – 0.07)</td>
</tr>
</tbody>
</table>

### b) Uncertainties for which a meta-analysis has not been performed

<table>
<thead>
<tr>
<th>Source of Uncertainty</th>
<th>Reference(s)</th>
<th>Main Findings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segmentation and reconstruction accuracy</td>
<td>Cebral (2005), Castro (2006), Gambaruto (2011), Geers (2011), Mikhal (2013), Schneiders (2013)</td>
<td>Overestimation of neck size by CTA compared to 3DRA lead to a 44.2% difference in time-and-space-averaged WSS over the aneurysm sac. Overestimation of neck size by 3DRA compared to 2D DSA lead to differences up to 98% in maximal WSS over the aneurysm sac. Reconstruction smoothing level can affect aneurysmal WSS by 15%. Reconstruction of aneurysm and parent vessel surface models significantly affect aneurysmal haemodynamics. Special care should be taken about removing kissing vessels, overestimation of aneurysm neck size by CTA and 3DRA, smoothing levels, and parent vessel reconstruction.</td>
</tr>
<tr>
<td>Length of parent vessel proximal to the aneurysm</td>
<td>Pereira (2013), Hodis (2015), Valen-Sendstad (2015)</td>
<td>Length of proximal parent vessel have a large effect on the aneurysmal haemodynamics (approximately 20% on the aneurysmal WSS). Parent vessels should at least be truncated as far upstream as images allow, preferably below the cavernous segment on ICA.</td>
</tr>
<tr>
<td>Outlet boundary conditions</td>
<td>Ramalho (2012)</td>
<td>Outflow boundary conditions highly influence the aneurysmal haemodynamics (approximately 20% on the aneurysmal WSS) when multiple outlets are present. 0D and 1D outlet boundary conditions provide realistic flow split between branches when tuned carefully.</td>
</tr>
<tr>
<td>Moving parent arteries</td>
<td>Sforza (2010)</td>
<td>Pulsating intracranial vasculature motion has small effects on the aneurysmal haemodynamics (less than 5% on the aneurysmal WSS).</td>
</tr>
</tbody>
</table>
### Discretisation schemes

<table>
<thead>
<tr>
<th>Author</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valen-Sendstad (2014)</td>
<td>Strong correlation ($R^2 &gt; 0.9$) between time-averaged WSS magnitudes between values obtained from normal and high resolution simulations. Weak correlation ($R^2 = 0.23$) between OSI values predicted by normal and high resolution simulations.</td>
</tr>
</tbody>
</table>

### Endovascular device deployment model structure (imprecise governing equations)

<table>
<thead>
<tr>
<th>Author</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morales (2012)</td>
<td>Modelling aneurysmal coils explicitly or approximating them by a porous medium will highly affect the predictions of post-treatment haemodynamics (approximately 70% difference in the post-treatment intra-aneurysmal velocity).</td>
</tr>
<tr>
<td>Levitt (2016)</td>
<td>Differences up to 50% and 130%, respectively in post-treatment time-averaged WSS and OSI values averaged over the aneurysm sacs obtained from explicit and porous medium models of coiled</td>
</tr>
<tr>
<td>Raschi (2014)</td>
<td>Aneurysm-averaged WSS Differences of 10-25% between aneurysmal post-treatment haemodynamics predicted by explicit and porous medium models of the deployed stents.</td>
</tr>
<tr>
<td>Augsburger (2010)</td>
<td>Relative root mean square errors of 21%-24% in mean WSS magnitude averaged over the entire sac and 45%-81% in mean WSS magnitude averaged over the aneurysm dome between simulations with flow diverters modelled either as porous medium or explicitly.</td>
</tr>
</tbody>
</table>

### Intra-procedural systemic flow alterations

<table>
<thead>
<tr>
<th>Author</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mut (2014)</td>
<td>Intra-procedural parent vessel flow rate alterations greater than 30% can result in a 30-80% change in the aneurysmal haemodynamic variables.</td>
</tr>
</tbody>
</table>

#### c) Uncertainties that have so far not been studied in intracranial aneurysm simulations

### Source of Uncertainty

- Intra-procedural alterations in parent vessel geometry
- Blood coagulation model structure (missing reactions etc.)
- Parameters of mechanistic models of medical devices (coils and stents)
- Variabilities in blood composition and coagulation kinetic reaction rates in normal or pathological conditions
References


Figure 1. An ideal virtual endovascular treatment model is comprised of sub-models in which the vascular surface, virtual treatment, and biomechanics and biochemistry are modelled, respectively. Patient’s angiogram (a) is segmented and a vascular surface model (b) is reconstructed and used for virtual treatment with coils or flow diverting stents (c). CFD simulations then are performed to calculate blood velocity field (d) in the presence of device-induced intra-aneurysmal clot, from which the shear stresses on the vessel wall (e) can be computed.

Figure 1
111x194mm (600 x 600 DPI)
Figure 2. The left panel shows overall structure of a typical mathematical model with $x^d$ and $x^u$ as vectors of deterministic and uncertain model inputs, respectively; $f$ describing the model structure; and $y$ as vector of model outputs. The right panel shows error analysis and uncertainty quantification as processes to identify and quantify errors and uncertainties, respectively; and sensitivity analysis as a process to propagate the quantified errors and uncertainties to the model outputs.

Figure 2
52x17mm (300 x 300 DPI)
Figure 3. Forest plot showing the overestimation of space-and-time-averaged aneurysmal WSS produced by the non-Newtonian blood rheology. The plot illustrates effect sizes, Hedges’ g, (represented by a square) and the confidence intervals (the horizontal lines) for each study and the pooled effect (the centre of the diamond) and its confidence interval (the width of the diamond) across all studies. Vertical dotted lines for each study show the study mean and the green squares are sized according to the study weight.

70x66mm (300 x 300 DPI)
Figure 4. Forest plot showing the overestimation of space-and-time-averaged aneurysmal WSS produced by the generalised inflow boundary conditions. The plot illustrates effect sizes, Hedges’ g, (represented by a square) and the confidence intervals (the horizontal lines) for each study and the pooled effect (the centre of the diamond) and its confidence interval (the width of the diamond) across all studies. Vertical dotted lines for each study show the study mean and the green squares are sized according to the study weight.

70x65mm (300 x 300 DPI)
Figure 5. Forest plot showing the overestimation of maximum peak systolic aneurysmal WSS produced by the rigid arterial wall assumption. The plot illustrates effect sizes, Hedges’ g, (represented by a square) and the confidence intervals (the horizontal lines) for each study and the pooled effect (the centre of the diamond) and its confidence interval (the width of the diamond) across all studies. Vertical dotted lines for each study show the study mean and the green squares are sized according to the study weight.
Figure 6. Possible mechanisms of intra-aneurysmal thrombosis

Figure 6
48x19mm (600 x 600 DPI)