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Abstract 

Virtual endovascular treatment models (VETMs) have been developed with the view to aid 

interventional neuroradiologists and neurosurgeons to pre-operatively analyse the comparative 

efficacy and safety of endovascular treatments for intracranial aneurysms. Based on the current 

state of VETMs in aneurysm rupture risk stratification and in patient-specific prediction of treatment 

outcomes, we argue there is a need to go beyond personalised biomechanical flow modelling 

assuming deterministic parameters and error-free measurements. The mechanobiological effects 

associated with blood clot formation are important factors in therapeutic decision making and 

models of post-treatment intra-aneurysmal biology and biochemistry should be linked to the current 

purely haemodynamic models to improve the predictive power of current VETMs. The influence of 

model and parameter uncertainties associated to each component of a VETM are, where feasible, 

quantified via a random-effects meta-analysis of the literature. This allows estimating the pooled 

effect size of these uncertainties on aneurysmal wall shear stress. From such meta-analyses, two 

main sources of uncertainty emerge where research efforts have so far been limited: i) vascular wall 

distensibility, and ii) intra/inter-subject systemic flow variations. In the future, we suggest that 

current deterministic computational simulations need to be extended with strategies for uncertainty 

mitigation, uncertainty exploration, and sensitivity reduction techniques. 

 

Graphical/Visual Abstract and Caption 

 

An ideal virtual endovascular treatment model is comprised of sub-models in which the vascular 

surface, virtual treatment, and mechanobiology of clot formation are modelled, respectively. 

Uncertainty quantification techniques should be added to the deterministic models to propagate 

uncertainties through the models and produce confidence intervals associated with the model 

predictions.  
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Introduction 

Intracranial aneurysms (IAs) are pathological dilatations of the intracranial arteries that commonly 

occur in various locations around the circle of Willis in approximately 5-8% of the general population 
1
. Aneurysm rupture causes subarachnoid haemorrhage, which is associated with high rates of 

morbidity, mortality, and long term disability 
1
. The clinical strategy for treating aneurysms is to 

isolate them from the circulation, which is commonly performed either by open surgery (clipping the 

aneurysm), or by endovascular treatment (catheter insertion of a flow diverter or a coil within the 

aneurysm). In each method, isolation is aimed at creating conditions of blood stasis leading to the 

generation of a stable clot in the aneurysm sac (embolisation). Once the aneurysm has occluded 

completely, a neo-intimal layer forms over the aneurysm neck and separates the aneurysm from the 

circulatory system (endothelialisation). Although it might be addressed as more advanced 

interventional techniques become available, currently, aneurysms treated with endovascular 

techniques are more likely to recur than those treated surgically 
2
. However, the non-invasiveness of 

the endovascular approaches has made them more favourable options for treatment of IAs. 

 

Recent progress made in diagnostic techniques over the past few decades has increased the 

detection rate of unruptured IAs 
3
. This has consequently posed the dilemma of whether every 

unruptured aneurysm must be treated immediately upon discovery, and if so, which treatment 

option represents the least risk to the patient 
2, 4, 5

. The challenge is therefore to evaluate the safety 

and efficacy of different endovascular treatments in a patient-specific context. Post-treatment 

ruptures, aneurysm recurrence or incomplete occlusion, and thromboembolic complications after 

endovascular treatment further magnify the importance of choosing an appropriate endovascular 

treatment option. Clinicians’ attempts at answering such questions has revealed the need for tools 

that help them in reliable risk assessment and designing appropriate patient-specific treatment plans 

for each individual aneurysm.  

 

The important role of haemodynamics in the initiation, progression, and rupture of aneurysms has 

drawn the research community’s attention to image-based computational fluid dynamics 

simulations. Such tools would allow researchers to study the haemodynamic variables in each 

specific aneurysm pre- and post-operation. Exploiting recent advancements in image segmentation 

and computational mechanics, virtual endovascular treatment models (VETMs) have been 

developed to create image-based patient-specific models of aneurysm geometries 
6-8

, to virtually 

deploy endovascular devices 
9-12

, and to simulate intra-aneurysmal blood flow 
13-15

. This has allowed 

investigating how safely and effectively each device deployment strategy alters the intra-aneurysmal 

haemodynamics, and to which extent the altered intra-aneurysmal flow is favourable to the 

formation of a stable clot, leading finally to complete aneurysm occlusion and elimination 
15, 16

. 

Moreover, such endovascular treatment models help clinicians to pre-operatively and assess the 

candidate treatment options and deployment strategies; especially in complex cases like 

anatomically complex and surgically inaccessible vertebrobasilar dolichoectasia with fusiform 

aneurysms 
17, 18

, or aneurysms at/near bifurcations where the neighbouring branches/perforators 

are in the risk of being covered and occluded 
19

 .   

 

The identification of an appropriate metric to assess post-operative performance of the 

endovascular treatment is still an active area of research. Different flow and wall shear stress-related 

quantities have been proposed for this purpose. Localised low and oscillatory aneurysmal wall shear 

stress (WSS) can lead to pathological endothelial responses, thrombosis, wall degeneration, and 

eventual aneurysm rupture 
20

. On the other hand, endovascular devices are shown to trigger the 

aneurysm healing process by inducing flow stasis and thrombosis inside the aneurysm sac 
2
. 

However, it is not clear why low shear-induced thrombosis may lead to complete embolisation in 

some aneurysms, but incomplete embolisation and rupture in some others 
21, 22

. Kulcsar et al. 
21
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hypothesised that the quality, quantity, and evolution of the thrombus and consequently the 

thrombus-induced autolytic activities in the wall, determine whether intra-aneurysmal thrombus 

generation leads to aneurysm healing or rupture. This implies that the endovascular device 

performance should be assessed in terms of the capability to induce a stable clot, which triggers the 

process of reverse remodelling and aneurysm healing, possibly accounting for the effect of 

coadjuvant blood-thinning pharmacological agents. Therefore, although post-operative aneurysmal 

haemodynamics play an important role in the outcome of the intervention, a VETM should 

incorporate information about device-induced biochemistry and mechanobiology for assessing its 

performance for making predictions about aneurysm occlusion and treatment outcomes. Such 

information can be provided either by phenomenological sub-models that use haemodynamics as a 

surrogate of intra-aneurysmal biochemistry and biology 
23-25

, or by more complex mechanistic sub-

models, which are coupled to the haemodynamic sub-models and describe the ongoing biological 

process
23, 26, 27

.  Consequently, as shown in Figure 1, an ideal VETM is comprised of: 1) a 

computational blood flow simulation in an image-based vascular surface model coupled with proper 

boundary conditions, 2) an endovascular device deployment model, and 3) a blood coagulation 

model, which describes the intra-aneurysmal clot formation process in the presence of endovascular 

devices.  

 

 

Figure 1. An ideal virtual endovascular treatment model is comprised of sub-models in which the vascular 

surface, virtual treatment, and biomechanics and biochemistry are modelled, respectively. Patient’s angiogram 

(a) is segmented and a vascular surface model (b) is reconstructed and used for virtual treatment with coils or 

flow diverting stents (c). CFD simulations then are performed to calculate blood velocity field (d) in the 

presence of device-induced intra-aneurysmal clot, from which the shear stresses on the vessel wall (e) can be 

computed.  
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In 2012, Kallmes 
28

 raised concerns about the clinical relevance of computational models by arguing 

that they are prone to several sources of uncertainty and error that influence the model predictions. 

Despite many advancements bridging some of the gaps between model predictions and actual 

physiological phenomena, the characterisation of the uncertainties and errors associated with the 

model inputs, and the sensitivity of personalised haemodynamic predictions require more detailed 

investigation. Uncertainties arise from lack of personalised information about some model inputs, 

imprecise model structures, e.g. mathematical descriptions of the biological phenomena, and 

inherent inter- and intra-subject variabilities of physiological variables. As depicted in Figure 2, 

uncertainty quantification can be performed to identify and quantify uncertainties in the model 

inputs. Similarly, error analyses can be performed to identify and quantify errors in the deterministic 

inputs that are not uncertain but can produce errors if not selected properly, e.g. computational 

meshes. In order to reliably represent the patient-specific physiological processes and achieve truly 

clinically relevant predictions, it is important that these uncertainties and errors be propagated into 

the model predictions through sensitivity analyses, and be eliminated when possible.  

 

 
Figure 2. The left panel shows overall structure of a typical mathematical model with �� and �� as vectors of 

deterministic and uncertain model inputs, respectively; � describing the model structure; and � as vector of 

model outputs. The right panel shows error analysis and uncertainty quantification as processes to identify and 

quantify errors and uncertainties, respectively; and sensitivity analysis as a process to propagate the quantified 

errors and uncertainties to the model outputs.  

 

We address the state of different sub-models of a typical VETM based on a comprehensive literature 

review of the articles focused on computational models of intracranial aneurysms and published 

online before June 2016. For each sub-model, we discuss the possible sources of uncertainty and 

error, and, where they exist, review the sensitivity analyses that have been done to show how model 

predictions are affected by either the uncertain inputs or errors in the deterministic inputs. For 

simplicity, from now on, we denote both uncertain inputs and errors in deterministic inputs as 

uncertainty throughout the paper.  In order to summarise the effect of uncertain inputs, meta-

analyses are conducted where the following criteria are met: 1) the study was numerical, performed 

on the intracranial aneurysms, and published between January 2006 to June 2016, 2) at least 3 cases 

were studied, and 3) the effect of uncertain model inputs on the aneurysmal WSS was investigated 

and quantitative values of WSS were reported. For those sources of uncertainties where a sufficient 

number of studies provided evidence, effect sizes are calculated as standardised mean differences 

(Hedges’ g) between the two non-independent groups in each study and then are pooled across 

studies using random-effects meta-analysis 
29

.  Finally, we summarise the most important 

uncertainties that should be addressed in order to present patient-specific predictions to enable 

such simulations to be reliably used in clinical practice.  

 

 Vascular surface and blood flow modelling 
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Image-based patient-specific vascular surface modelling 

 

Creating vascular surface models from medical images is the first and most important step in 

developing a patient-specific model for endovascular treatment of aneurysms 
13

, on which all the 

other steps depend. Vascular angiograms are usually acquired using computed tomography 

angiography (CTA) 
30

, magnetic resonance angiography (MRA) 
31

, or three-dimensional rotational 

angiography (3DRA) 
32

. The spatial resolution of 3DRA (128
2
-512

2
 matrix with voxel size of 0.42-1 

mm) is usually higher than CTA (512
2
 matrix with pixel size of 0.23-0.45 mm and slice thickness of 

0.5-1.3 mm) and MRA (256
2
 matrix with pixel size of  0.78-1.25 mm and slice thickness of 0.7-1.6 

mm) 
6
. Piontin et al. 

33
 assessed the accuracy of 3DRA, CTA, and MRA techniques for measuring the 

volume of an in vitro model of an anterior communicating artery aneurysm. They showed that CTA is 

more accurate than MRA (p-value = 0.0019), and 3DRA is more accurate than CTA, (p-value = 0.1605; 

not statistically significant). They observed that aneurysm volume was overestimated by 7% and 

11.3% in 3DRA and CTA, respectively, and underestimated by 15% in MRA images. Ramachandran et 

al. 
34

 reported that errors in measuring aneurysm characteristic lengths (e.g., height and maximum 

diameter) by any of the 3DRA, CTA, and MRA were 0.8-4%, with no significant differences between 

the modalities. In clinical practice, due to the less invasive nature of CTA and MRA, these imaging 

techniques are favoured for the diagnosis and monitoring of intracranial aneurysms; however, 3DRA 

provides the highest spatial resolution and is consequently favoured for surgical or endovascular 

treatment planning 
35-37

. On the other hand, high spatial and contrast resolution and no interference 

of bony structures and surrounding tissues in 3DRA images, and consequently their ease of 

reconstruction, make them more appropriate for construction of 3D aneurysm surface models that 

can subsequently be used in CFD analyses and virtual treatment models 
6, 33, 38, 39

.   

 

Starting from volumetric medical images, different techniques have been proposed for segmentation 

and creation of vascular surface models, which can then be used for generating a computational 

volumetric mesh and solving blood flow equations. In this paper, we only review methods which 

have been tested and evaluated on intracranial aneurysms. The need for contrast injection into the 

feeding artery of the aneurysm exposes the 3DRA modality to limitations when aneurysms with 

multiple feeding arteries are being scanned. Castro et al. 
38

 proposed a segmentation methodology, 

which combined image co-registration and surface merging techniques to overcome this limitation, 

and provided surface models for aneurysms with multiple inlet branches such as those located on 

the anterior communicating arteries. They evaluated their method on a virtual 3D rotational 

angiogram of a digital phantom of an anterior communicating artery aneurysm. The maximum 

distance between the segmented and phantom model (0.2 mm) was reported as a measure of 

accuracy. Chang et al. 
6
 proposed another segmentation methodology called charged fluid-based 

aneurysm segmentation (CFAS), which combined a region-growing method with the 3D extension of 

a deformable contour based on a charged fluid model. Their method was particularly designed for 

segmentation of aneurysms with different geometrical complexity levels and was evaluated on 3DRA 

images of 15 aneurysms. Comparing segmented surfaces with the manually delineated contours, a 

conformity score of 68.36% was reported. A knowledge-based segmentation algorithm based on the 

geodesic active regions (GAR) was presented by Hernandez and Frangi 
8
 and evaluated by 

segmentation of intracranial aneurysms from CTA (10 aneurysms) and 3DRA (5 aneurysms) images. 

They reported average Dice Similarity Coefficients (DSC) of 91.13% and 73.31% as measures of 

accuracy for 3DRA and CTA images, respectively.  Bogunovic et al. 
40

 proposed another methodology 

for segmenting 3DRA images based on an image intensity standardisation (IIS) –method, which 

improved the automation of knowledge-based vascular segmentation algorithms by standardisation 

of image intensity ranges of tissue classes in routine medical images. They evaluated the method on 

10 patients that underwent both 3DRA and TOF-MRA. DSC scores of 92% and 91% was achieved for 

segmentations from 3DRA and MRA images, respectively. Firouzian et al. 
7
 proposed another 

Page 6 of 48

John Wiley & Sons

Wiley Interdisciplinary Reviews: Systems Biology and Medicine

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

7 

 

segmentation technique for segmenting aneurysms from CTA modality, which worked based on 

geodesic active contours (GAC) and did not require image intensity training unlike when working 

with knowledge-based methods. They evaluated the method on 11 aneurysms and reported a DSC 

score of 82.1% as a measure of accuracy. A detailed review of the above mentioned methods can be 

found in 
13-15, 41

 with more details. Comparisons of different segmentation techniques for intracranial 

aneurysms can also be found in 
40, 42

.  

 

Uncertainty in vascular surface modelling  

 

Uncertainties in the vascular geometric models can originate from images used to reconstruct the 

vascular surfaces. Such uncertainties include the inherent noise in the acquired images, registration 

artefacts, and motion of arteries during the cardiac cycle. Depending on the operator’s experience 

and skill, manual operations during image acquisition may also lead to errors in the acquired images. 

Another more important source of uncertainty in vascular surface modelling are segmentation 

errors. Despite automation of the segmentation process in most state-of-the-art segmentation 

methods, manual editing operations are still required in the final stages, especially where complex 

structures like small or kissing branches are present in the region of interest.  

 

Cebral et al. 
13

 performed a sensitivity analysis on different uncertain aspects of an image-based 

model. They qualitatively showed that the geometric uncertainties arising from segmentation of 

aneurysm surfaces by different operators has the greatest effect on the intra-aneurysmal flow when 

compared to uncertainties in other variables. Castro et al. 
43

 investigated the effect of parent vessel 

reconstruction on the flow in the aneurysm sac. For each aneurysm they constructed two different 

models; one with the original parent vessel and the other with a truncated parent vessel, which was 

replaced with a straight tube. They observed an underestimation of aneurysmal WSS in geometric 

models with a truncated parent vessel and showed that segmentation of the parent vessel can highly 

affect the characteristic flow patterns inside aneurysm. As a future work, they suggested a sensitivity 

analysis for typical aneurysms of different locations, which gives an estimation of the length of the 

upstream parent vessel needed for an appropriate simulation of flow inside the aneurysm. 

Gambaruto et al. 
44

 compared the effect of the smoothing level, as part of the segmentation 

procedure, with the effect of the blood rheological model on the intra-aneurysmal flow and 

aneurysmal WSS. They showed that geometric uncertainties due to the use of different smoothing 

levels resulted in greater errors (of order of 15%), although this was comparable with errors arising 

from using different blood rheological models (of order of 5%). Geers et al. 
39, 45

, performed CFD 

simulations in aneurysm models reconstructed from CTA and 3DRA images. They showed that the 

main flow characteristics remains the same in aneurysms obtained from both modalities but a 

difference of up to 44.2% was observed in the absolute value of mean WSS on the aneurysm sac.  

 

Blood flow modelling 

 

In order to simulate blood flow in the reconstructed vascular volume, equations of motion for blood 

flow need to be discretised and solved. This requires a volumetric mesh over the domain confined by 

the vascular surface mesh. Vascular surface meshes are usually extruded at the truncated 

boundaries to minimise the effects of boundary conditions on the domain of interest (i.e., the 

aneurysm) Tetrahedral or polyhedral elements are commonly used to discretise the volume 
46

. To 

accurately address high velocity radial gradients in vicinity of the wall, and thus to accurately 

estimate the WSS, three to five layers of prismatic boundary layer elements are required in near-wall 

regions 
13, 47, 48

. Unstructured meshes in the context of aneurysm flow modelling are commonly 

comprised of elements of 0.1-0.2 mm and three boundary layer prism layers with a total height of 

0.05-0.15 mm. Careful mesh-dependency tests are necessary to achieve mesh-independent 
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solutions 
49

. The presence vascular devices with very fine struts that are placed in vessels several 

order of magnitude larger in diameter pose a challenge to meshing algorithms. Computational 

meshes need to be computationally cost effective to solve for the flow in the aneurysm and parent 

arteries while, at the same time, be accurate enough to resolve the flow around the very thin wires 

of stents or coils and the near-wire grid elements must be fine enough to resolve the wires and 

accurately reconstruct flow through the implanted device. Stuhne and Steinman 
50

 suggested that 

the mesh resolution in the vicinity of the stent wires needs to be about one-third of the wires radius 

to achieve an accurate flow solution in the near-strut regions. Other studies (e.g., 
51, 52

) have also 

reported on the properties of convergence of haemodynamics solutions in stented aneurysms with 

near-strut element sizes similar to what was reported by Stuhne and Steinman 
50

. The widely-used 

body-fitted 
53

 grid generation can be complex and time-consuming for meshing aneurysms with 

implanted endovascular devices. Cebral et al. 
54

 proposed a hybrid method which uses the body-

fitted approach to discretise the interior of the vessel walls but the adaptive embedded 
53

 approach 

for meshing the endovascular devices. Appanaboyina et al. 
55

 compared solutions produced by the 

hybrid approach and the pure body-fitted grids and showed their agreement (1-3% difference in 

predicting the maximum post-treatment velocity reduction over three predefined lines passing 

through the sac) after three levels of adaptive refinement of the near-strut elements in the hybrid 

approach.  

 

Solving equations of motion requires setting the constitutive parameters (i.e., density and viscosity) 

as well as prescribing boundary conditions to the fluid. Blood flow in medium-sized arteries can be 

assumed to be incompressible with constant density. The rheology of blood can either be described 

by using a Newtonian model with a constant viscosity, which simplifies the equations of motion to 

the Navier-Stokes equations, or by using non-Newtonian models that consider the shear-thinning 

behaviour of blood.  

 

As common practice in CFD modelling of blood flow in vascular domains, a velocity-related (usually 

flow rate) boundary condition is assigned at the inlet boundaries. This can be a constant flow rate 

(steady simulation) or a time-varying flow waveform (unsteady simulation). Such inflow boundary 

conditions are often derived from literature, where blood flow measurements are acquired in a 

particular artery for a specific cohort of people and reported in terms of descriptive statistics (mean 

values from standard deviations, see e.g. the works 
56-58

). In some cases, patient-specific flow 

measurements are available from phase-contrast magnetic resonance imaging (PC-MRI) or 

Transcranial Doppler Ultrasound (TCD), patient-specific inflow boundary conditions are used for CFD 

simulations.  

 

To prescribe outlet boundary conditions, zero-pressure boundary conditions are adequate for 

vascular domains with only one outlet. In contrast, in vascular domains with more than one outlet, 

flow distribution among outlet branches depends on the resistance and compliance of the distal 

vascular bed, which requires more advanced techniques to estimate the flow distribution ratio. 

However, many studies neglect the distal resistances and use zero-pressure outlet boundary 

conditions for multiple outlet vascular domains, which allows the flow to distribute among daughter 

branches according to their diameter and pressure drop
59

. To consider the effect of distal resistance 

and compliance, the three-dimensional computational vascular domain of interest can be coupled to 

lower-dimensional reduced-order models
60, 61

. However, although such boundary conditions give a 

more accurate representation of distal resistances, they increase the amount of parameters to be 

set in the model. Zero-dimensional (lumped parameter) 
61, 62

 models usually require setting the 

values of the terminal resistance and capacitance at each outlet branch. In one-dimensional models 
63-66

 the branching topology, length, diameter, and material properties of vessel segments need to be 

assigned. Although some studies (e.g. 
67-69

) used fluid-structure-interaction techniques to account for 
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the arterial wall compliance in the models, wall distensibility is neglected in almost all CFD 

simulations of blood flow in aneurysms and a no-slip boundary condition is assigned on the walls.  

 

Despite the use of various commercial or in-house solvers with different numerical solution 

strategies by CFD modellers for simulating aneurysmal flow, recent CFD challenges 
70, 71

 showed a 

global agreement between the haemodynamic quantifications produced by various CFD solvers in 

the participating groups. However, as noted, simulation of vascular blood flow requires proper 

setting of constitutive parameters and prescribing boundary conditions. Both constitutive 

parameters and boundary conditions are subject to intra-subject and inter-subject variabilities which 

introduce uncertainties into the computational models of blood flow. Intra-subject variabilities have 

roots in the state of the person (e.g., level of stress, physical activity, sleep pattern, etc.). For 

example, plasma volumes losses during maximal exercise will result in increases in haematocrit, 

haemoglobin concentration, and concentration of plasma proteins, which consequently increase the 

blood viscosity 
72

. Inter-subject variabilities have roots in demographic characteristics (e.g., age, 

gender, weight, etc.) or the person’s lifestyle (smoking, drinking, physical activity, etc.). For example, 

both aging and smoking will affect the arterial wall properties and consequently alter the arterial 

flow waveforms 
58, 73

. On the other hand, uncertainties in computational blood flow simulations can 

also arise from assumptions associated to the underlying models (e.g., wall motion or blood 

rheological models). The influence of such uncertainties on the aneurysmal haemodynamics is 

discussed in the next section.  

 

Uncertainty in blood flow modelling 

 

Blood rheology is often assumed to be Newtonian, which while an acceptable approximation in 

medium-sized arteries, is strictly speaking not consistent with the shear-thinning nature of blood. An 

overestimation of aneurysmal WSS magnitude with almost no effect on the WSS distribution on the 

aneurysm sac has been reported in several studies comparing aneurysmal WSS values obtained from 

Newtonian and non-Newtonian simulations 
13, 74, 75

. Xiang et al. 
76

 compared Newtonian CFD 

simulations with those performed with the Casson 
77

 and Herschel-Bulkley 
77

 models and observed 

almost similar WSS distributions and magnitude in two of the three examined aneurysms; in the 

other complex-shaped aneurysm, the Newtonian model overestimated WSS on the aneurysm bleb 

with a low WSS magnitude. Since low WSS regions are thought to be the regions where aneurysms 

may rupture, Xiang et al. 
76

 suggested that using a Newtonian model might underestimates the 

aneurysm rupture risk in aneurysms with pronounced low shear regions, e.g., complex aneurysm 

shapes with daughter aneurysms; they also noted the importance of blood rheology in simulating 

post-treatment flows where intra-aneurysmal stasis is induced in the presence of endovascular 

devices to trigger thrombosis and the aneurysm healing process. Castro et al. 
78

 compared CFD 

simulations performed with Newtonian and Casson models in ten multi-bleb aneurysms. They 

observed that the Casson model produced higher WSS values on some aneurysmal regions at some 

instances during the cardiac cycle. However, since the differences were not statistically significant, 

they concluded that there was no evidence that any of the models overestimate aneurysmal WSS 

values. 

 

Gambaruto et al. 
44

 compared the effect of blood viscosity model and geometric uncertainties and 

showed that segmentation errors had greater effects on the model outcomes (errors in mean 

aneurysmal WSS were of order of 15% for geometric uncertainties and 5% for uncertainties in the 

rheological model). Fisher and Rossmann 
79

 compared aneurysmal WSS numerically predicted using 

four different rheological models in idealised aneurysm geometries; they showed that, compared to 

the parent vessel, the non-Newtonian effects were measurable inside the aneurysm sac (especially 

during the diastole); they observed the Carreau 
77

 model to be the most conservative, producing 
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lower WSS magnitudes with larger regions of low WSS. However, Fisher and Rossmann 
79

 

emphasised that although the choice of the blood rheology model seems to have an effect on the 

numerical predictions WSS, the differences raised from uncertainties in the aneurysm morphology 

are still greater.  

 

Other studies investigated the effect of blood rheological model in the presence of endovascular 

devices. Rayz et al. 
25

 investigated intra-aneurysmal haemodynamics in three fusiform aneurysms 

that were thrombus-free pre-treatment, but developed thrombus during follow-up studies. They 

showed a better agreement, although not statistically significant, between the low-flow regions and 

regions thrombus deposition when a non-Newtonian rheology was used. Morales et al. 
80

 studied 

the effect of blood rheology on steady flow simulations in three aneurysms before and after coiling; 

in untreated aneurysms, the Newtonian model overestimated intra-saccular velocities up to 16% in 

space-averaged velocities with a maximum of 45% in pointwise comparisons; these increased up to 

55% in space-averaged velocities with a maximum of 700% in pointwise comparisons in coiled 

aneurysms; space-averaged WSS differed up to 2% and 12% between the two rheological models in 

the untreated and coiled aneurysms, respectively, while the Newtonian model overestimated the 

WSS in some cases and underestimated the WSS in others. These results demonstrate again the 

magnification of non-Newtonian effects in slow flow regions. However, Morales et al. 
80

 reported 

similar global flow patterns and post-treatment aneurysmal flow reductions in both Newtonian and 

non-Newtonian models. Admitting the observed magnitude differences in coiled aneurysms with 

thrombogenic slow flows, Morales et al. 
80

 concluded that a Newtonian rheology model could be 

adequate for blood flow simulations in coiled aneurysms, if the global haemodynamic alterations are 

used for device performance assessment. Huang et al. 
81

 studied the effect of blood rheology 

modelling choices in idealised stented aneurysms and observed that Newtonian models 

overestimated the intra-aneurysmal mean velocity magnitude by 6-26% in large-neck stented 

aneurysms and by 51-57% in small-neck stented aneurysms. Cavazzuti et al. 
82, 83

 investigated the 

effect of using a non-Newtonian rheology model in stented aneurysms and observed that average 

aneurysmal WSS values produced by the Newtonian rheology were around 15% greater in some 

regions and smaller in other regions; they concluded that the Newtonian to non-Newtonian effects 

are generally important but position dependent.  

 

Among the above mentioned studies, Castro et al. 
78

, Morales et al. 
84

, and Fisher and Rossmann 
79

 

performed quantitative comparisons between time-and-space-averaged aneurysmal WSS values 

obtained from CFD simulations based on Newtonian and non-Newtonian (Casson) rheology and 

reported values of time-and-space-averaged WSS on the aneurysm sac for different cases. According 

to a random-effects meta-analysis, the standardised mean difference (Hedges’ g) was 0.02 with a 

95% confidence interval of -0.04 to 0.07. This suggests limited effect of blood rheology model on 

WSS predictions by CFD. The meta-analysis based on these three studies failed to find a significant 

overall effect for the choice of rheological model (p-value = 0.292).  None of the studies presented a 

pointwise comparison of aneurysmal WSS values provided by each rheology. Comparing time-and-

space averaged WSS values, the study with the largest cohort performed by Castro et al. 
78

, showed 

that WSS values produced by Newtonian model were twice as large as the values predicted by non-

Newtonian models at some aneurysmal regions; however, at some other regions on the same 

aneurysm, the Newtonian model predicted WSS values half as large as those predicted by the non-

Newtonian model. They found no significant correlation between low WSS regions and regions 

where any of the models produced higher or lower WSS than the other.  
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Figure 3. Forest plot showing the overestimation of space-and-time-averaged aneurysmal WSS produced by 

the non-Newtonian blood rheology. The plot illustrates effect sizes, Hedges’ g, (represented by a square) and 

the confidence intervals (the horizontal lines) for each study and the pooled effect (the centre of the diamond) 

and its confidence interval (the width of the diamond) across all studies. Vertical dotted lines for each study 

show the study mean and the green squares are sized according to the study weight.  

 

The forest plot presented in Figure 3 illustrates the results provided by the meta-analysis. 

Standardised mean differences (SMDs) , defined as the difference between the mean values of the 

two groups (i.e., Newtonian and non-Newtonian cases) divided by a representation of the standard 

deviation 
29

, are used to present effect sized reported by each study and the pooled effect size. 

Cohen’s d and Hedges’ g are two different formulations for calculation of the SDMs, which differ in 

the type of the standard deviation used to standardise the mean differences 
29

. Since the Cohen’s d 

is known to overestimate the effect sized in small samples 
29

, in this study we used Hedge’s g which 

is the unbiased estimation of the effect size. As suggested by Cohen 
85

, effects of size 0.2, 0.5, and 

0.8 can be interpreted as small, medium, and large, respectively. Based on the reviewed works and 

our meta-analysis, it can be concluded that differences between the aneurysmal WSS values 

produced by any of the investigated rheological models have not been shown to be significant. 

Although all the reviewed studies reported differences in magnitude of the WSS values, it is not still 

clear whether any of the investigated rheological models produce systematically larger or smaller 

WSS values. Flow stasis and low recirculating flow are known to play an important role in 

aneurysmal inflammatory phenotype and thrombosis, and consequently in rupture or device-

induced aneurysm healing. Thus, the observed discrepancies in WSS values suggest consideration of 

non-Newtonian behaviour of blood where the aneurysmal flow is very slow and disturbed due to the 

irregular aneurysm shape or is reduced by endovascular devices. Such consideration is more 

important when local haemodynamic evaluations, rather than global time- or space-averaged 

haemodynamic quantities, are of interest. Moreover, although all the reviewed studies reported 

almost no influence of blood rheological model on the WSS distribution and characterisation of 

regions where shear stress is relatively low or high, it is not still clear whether the reported 

discrepancies in magnitude and direction of CFD-predicted shear stresses result in false predictions 

about the aneurysm or the endovascular treatment fate.  
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Inlet boundary conditions to the vascular model of interest are another ingredient of the flow 

simulation that contains uncertainty. Inflow boundary conditions are often taken from literature, 

where typical flow waveforms in a particular artery are reported for a specific cohort of people who 

usually have demographic differences with the specific patient whose aneurysm is being simulated. 

Some studies 
86-88

 used patient-specific inflow boundary conditions obtained from patient-specific 

measurements. Such patient-specific boundary conditions are superior to the typical literature-

based boundary conditions, since they are acquired from the same patient. However, even the 

patient-specific boundary conditions cannot fully represent systemic blood flow, since systemic flow 

is highly dependent of the state of the person (e.g., level of stress, physical activity, sleep pattern, 

etc.) and measurements are only acquired at a particular point in time and under very specific 

scanning conditions. Nevertheless, although not representative of the effect of intra-subject 

variability, using one-shot measurements of patient-specific inflow boundary conditions has been 

shown to have limited effects on the distribution of WSS and OSI on the aneurysmal sac. However, 

comparing results obtained from simulations with typical literature-based and directly measured 

inflow boundary conditions has revealed remarkable differences in the magnitude of aneurysmal 

WSS and OSI 
86-89

. Consequently, exactly how intra-/inter-subject variations of systemic flow 

conditions may affect intra-aneurysmal haemodynamics and the rupture risk has become a relevant 

question within the research community.  

 

Bowker et al. 
90

 investigated the effect of moderate aerobic exercise on three middle cerebral artery 

aneurysms and observed an average of 20% increase in time-averaged WSS on the aneurysm sac; 

this result has been obtained by keeping the inlet waveform fixed and increasing the time-averaged 

inflow and heart rate by 7.8% and 73.4%, respectively. Geers et al. 
91

 systematically investigated the 

effect of time-averaged inflow rate, heart rate, and inflow wave pulsatility index and showed that, 

under a fixed time-averaged flow rate, increasing heart rate and inflow pulsatility index had no 

effect on the aneurysmal time-averaged WSS magnitude. Xiang et al. 
92

 studied the effect of inflow 

waveforms on intra-aneurysmal haemodynamics of four aneurysms. They performed CFD 

simulations with four different waveforms that had the same time-averaged flow rate and showed 

that different waveforms produced the same spatial distributions on WSS and oscillatory shear index 

(OSI) on the aneurysm wall. They also observed the same values of time-averaged WSS magnitudes, 

but drastically different values of OSI in the four CFD simulations performed for each aneurysm. 

They finally concluded that inflow boundary conditions have only limited effects on the aneurysmal 

WSS and OSI for the purpose of aneurysm rupture stratification. Keeping the time-averaged flow 

rate fixed, Sarrami-Foroushani et al. 
93

, performed CFD simulations using inflow waveforms obtained 

from a data-driven model of internal carotid artery flow and observed that variations in ICA flow 

waveform had no effect on the time-averaged WSS but altered the local directionality of WSS; they 

also showed that the inflow waveform variations changed the rupture outcome prediction in 4 out 

of 19 cases when simple logistic regression model was used to predict the rupture outcome. For 

each aneurysm in a fifteen-aneurysm cohort, Morales et al. 
84

 performed eleven CFD simulations 

with different inflow rates (but using the same waveform) and showed that spatiotemporally 

averaged aneurysmal WSS varied as a quadratic function of time-averaged inlet flow rate. They 

showed that values of aneurysmal OSI did not change by changing the time-averaged flow rate while 

keeping the waveform constant.  

 

Since patient-specific flow measurements are rarely available as a clinical routine for aneurysm 

patients, CFD modellers often scale the typical literature-driven flow waveforms to approximately 

impose patient-specific boundary conditions to their models. For each aneurysm model, scaling is 

performed in order to maintain a fixed spatiotemporally averaged velocity or WSS at the inlet 

boundary. The literature-based flow rate is scaled according to the inlet diameter squared, if the 

scaling is based on time-and-space-averaged velocity, and cubed, if the scaling is based on time-and-
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space averaged WSS. The choice of inlet location (and consequently inlet diameter) and scaling 

model (cubed or squared) is, however, a source of uncertainty in inlet boundary conditions. Valen-

Sendstad et al. 
94

 investigated the effect of the choice of inlet location and the scaling model on the 

resulting inflow rates. They showed that scaling according to the squared diameter produced flow 

rates more consistent with the physiological flow rates. They also quantified the uncertainties arising 

from truncating the ICA at different locations and showed that all truncation locations below the 

cavernous segment produced the same uncertainties as physiological uncertainties of ICA flow rate 

and thus lead to reliable CFD simulations. Visually comparing CFD-predicted and DSA-imaged intra-

aneurysmal flow patterns, Pereira et al. 
95

 showed that reliable CFD outcomes were obtained using 

vascular models with inlet vessels truncated as far upstream as obtainable from the medical images, 

and coupled to Womersley inlet velocity profiles. Hodis et al. 
96

 also studied the effect of inlet artery 

length on 10 ICA ophthalmic aneurysm models and showed that removing two bends from the 

parent artery resulted in approximately 15% error in peak systolic space-averaged WSS over the 

aneurysm sac.    

 

 
Figure 4. Forest plot showing the overestimation of space-and-time-averaged aneurysmal WSS produced by 

the generalised inflow boundary conditions. The plot illustrates effect sizes, Hedges’ g, (represented by a 

square) and the confidence intervals (the horizontal lines) for each study and the pooled effect (the centre of 

the diamond) and its confidence interval (the width of the diamond) across all studies. Vertical dotted lines for 

each study show the study mean and the green squares are sized according to the study weight. 

 

Jansen et al. 
86

, McGah et al. 
88

, and Karmonik et al. 
89

, performed quantitative comparisons between 

time-and-space-averaged aneurysmal WSS values obtained from CFD simulations based on 

measured patient-specific and generalised inflow boundary conditions and reported values of time-

and-space-averaged WSS on the aneurysm sac for different cases. In these studies, the inlet 

boundaries of the vascular domains located on the internal carotid artery (ICA) and generalised ICA 

flow waveforms were obtained from studies by Ford et al. 
56

 and van Ooij et al. 
97

, in which the ICA 

flow was measured over cohorts of 17 young and healthy volunteers and 8 patients with intracranial 

aneurysms, respectively.  For each aneurysm case, McGah et al. 
88

 scaled the generalised waveform 

to maintain a physiological mean WSS of 1.5 Pa at the inlet boundary. However, Karmonik et al. 
89

 

directly used the generalised flow waveforms obtained from the study by Ford et al. 
56

 without 

scaling; while Jansen et al. 
86

 have not reported the scaling process clearly.  According to a random-

effects meta-analysis, the standardised mean difference (Hedges’ g) was 0.30 with a 95% confidence 
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interval of 0.08 to 0.52 (p-value = 0.003). This suggests a moderate effect of inflow waveform on the 

prediction of WSS magnitude by CFD. Figure 4 illustrates the results provided by the meta-analysis of 

the effect of using generalised boundary conditions on the aneurysmal WSS magnitude. It is worth 

noting that in this meta-analysis study, we used aneurysmal WSS values provided by patient-specific 

boundary conditions as the baseline values. WSS values generated by the generalised boundary 

conditions can be arbitrarily higher or lower than the baseline values. However, we calculated the 

effect sizes in a consistent way keeping the WSS values generated by patient-specific boundary 

conditions as baseline for all studies. Thus, bearing in mind that the “sign” has no physical meaning 

in this meta-analysis, the term “overestimation” was used in consistency with other meta-analyses 

presented in this work.    

 

 
Figure 5. Forest plot showing the overestimation of maximum peak systolic aneurysmal WSS produced by the 

rigid arterial wall assumption. The plot illustrates effect sizes, Hedges’ g, (represented by a square) and the 

confidence intervals (the horizontal lines) for each study and the pooled effect (the centre of the diamond) and 

its confidence interval (the width of the diamond) across all studies. Vertical dotted lines for each study show 

the study mean and the green squares are sized according to the study weight. 

 

A rigid-wall assumption is often made in cerebrovascular blood flow simulations 
98

. Estimating 

regional aneurysmal wall motion from dynamic X-ray images, Dempre-Marco et al. 
67

 compared CFD 

simulations of blood flow in aneurysms with rigid and non-rigid wall assumptions and observed that, 

although the distribution of WSS on the sac and elevated WSS areas remained almost identical, rigid 

wall simulations tended to overestimate the pointwise aneurysmal WSS magnitude by around 50%. 

On the other hand, fluid-structure-interaction (FSI) techniques have been used to simulate 

aneurysmal flow in non-rigid aneurysmal models.  Torii et al. 
68, 69, 99

 performed non-rigid fluid-

structure-interaction simulations on aneurysms and reported up to 20% differences among WSS 

magnitudes obtained from rigid and non-rigid simulations. Takizawa et al. 
100

, Bazilevs et al. 
101, 102

, 

and Torii et al. 
99

, performed quantitative comparisons between maximum peak systolic aneurysmal 

WSS values obtained from rigid and flexible wall (fluid structure interaction) CFD simulations and 

reported values of time-and-space-averaged WSS on the aneurysm sac for different cases. According 

to a random-effects meta-analysis, the standardised mean difference (Hedges’ g) was 0.34 with a 

95% confidence interval of 0.22 to 0.45 (p-value < 0.001). Figure 5 illustrates the results provided by 

the meta-analysis.  
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Our meta-analysis suggests an effect of wall distensibility on the prediction of WSS magnitude by 

CFD. However, visual inspections and quantitative comparisons based on global space-averaged 

measures showed an agreement between the rigid-wall and non-rigid-wall simulations as long as the 

distribution of WSS on the aneurysm wall, or the main characteristics of flow in the aneurysm (e.g., 

the complexity of flow pattern, or presence of an impinging flow jet, etc.) are of interest 
13, 67, 103

. The 

main challenge to the current structural models of aneurysm wall is the present limitations in 

measurement techniques leading to uncertainties in identification of wall mechanical properties like 

thickness or modulus of elasticity. Aneurysms often have pathological walls with material properties 

varying spatially over sac. Despite some attempts to create ad hoc models of such variations, e.g. a 

thinner wall on the sac 
104

, the structural models are still far from the physiological reality. Thus, 

notwithstanding the important effects induced by rigid wall assumption, such issues with realistic 

quantification of aneurysm wall mechanics have resulted in rigid-wall CFD simulations remaining 

predominant in the context of intracranial aneurysm modelling. To the best of our knowledge, the 

effect of using rigid-wall assumption on rupture risk stratifications and predictions of endovascular 

treatments’ outcome has not been studied yet. However, the observed effects on WSS magnitudes, 

and presumably direction, magnifies the importance of future studies on non-rigid aneurysm wall 

models, especially when quantification of WSS and its mechanistic relation to the aneurysm wall 

biology and intra-aneurysmal thrombogenesis is of interest, e.g., in VETMs.  

 

All in all, our meta-analyses found that wall distensibility and inlet flow waveform uncertainties have 

effects on the magnitude of aneurysmal wall shear stress predictions by CFD. Since only the 

maximum WSS values, representing a state of maximum stress 
105

 and wall deformation 
101

, were 

reported in some of the studies, our meta-analysis on the effect of wall distensibility is based on 

maximum WSS. This limits the comparability of wall compliance meta-analysis with the other two 

meta-analyses that are based on the averaged WSS, i.e., the meta-analyses on the effect of inflow 

waveform and blood rheology. In future, in order to perform compliant wall simulations, 

improvements on the structural models of arteries and current techniques for measuring mechanical 

properties of the aneurysm wall are necessary. To the best of our knowledge, the effect of rigid wall 

assumption on the endovascular treatment predictions, and stratification and rupture risk 

assessment of intracranial aneurysms has not been explored yet. In addition, inter-subject variability 

of arterial flow rates as well as intra-subject variations of the systemic flow conditions in response to 

the regulatory systems lead to an uncertainty in the parent arteries’ flow rate waveforms. Despite 

the recent studies 
92, 93

 on quantification of the uncertainties raised from inter-subject variability of 

inflow waveforms, the effect of intra-subject variability of systemic flow on aneurysmal WSS is still 

not attempted by the research community. Recent studies  
106, 107

 have revealed some new aspects 

of the effect of flow multi-directionality on the biological responses of the endothelium, which may 

play an important role in aneurysmal wall inflammation and degradation and aneurysm thrombosis 

by activating platelet activators 
108, 109

. However, the sensitivity of WSS directionality to the above 

mentioned sources of uncertainty has not been well investigated in the literature. These, on the 

other hand, accentuate the importance of addressing geometric and flow uncertainties in the 

endovascular treatment models.  

 

Uncertainties in aneurysmal blood flow modelling may also arise in outlet boundary conditions. 

Ramalho et al. 
110

 investigated the sensitivity of intra-aneurysmal haemodynamics to the outlet 

boundary conditions assigned using four different methods: traction-free, zero-pressure, coupling to 

a zero-dimensional model, and coupling to a one-dimensional model. They observed that coupling 

the outlet boundary to a zero-dimensional or a one-dimensional model resulted in more appropriate 

flow distribution between the side branches. However, using the reduced-order models as boundary 

conditions requires proper choice of model parameters, like resistance and capacitance in zero-

dimensional models, and vascular structural and mechanical properties in one-dimensional models. 
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Uncertainty in such model parameters should be addressed to produce reliable patient-specific 

results, e.g. 
111, 112

.  

 

In addition to the uncertainties in quantifying physiological model parameters (i.e., blood density 

and viscosity) and boundary conditions, variabilities in discretisation strategies may influence the 

model outcomes. Providing a fixed set of boundary conditions and flow model parameters, the two 

recent CFD challenges on aneurysmal flow modelling invited CFD modellers to simulate blood flow in 

selected aneurysms and investigated how variations in solution strategies influence aneurysmal 

blood velocity and pressure quantifications. In the Aneurysm CFD Challenge 2013 
113

, despite using 

different solution strategies and resolutions (mesh sizes of 86k-31200k using first or second order 

elements and time step sizes of 0.01-10 ms), approximately 80% of the 26 participating groups 

reported similar results with standard deviations of below 9% for cycle-averaged and peak systolic 

velocity, and pressure on the parent artery centreline in the two aneurysm cases studied; flow inside 

both studied aneurysms was stable and comparison among participating groups resulted in standard 

deviations below 20% for the velocity cut-planes through the aneurysm sacs. However, the 

aneurysmal flow inside the aneurysm involved in the Aneurysm CFD Challenge 2012 
71

 was not 

stable and thus despite the overall agreement among the 27 submitted solutions, solutions with 

higher temporal resolutions (time step sizes below 0.2 ms) were able to capture flow instabilities; 

detection of flow instabilities by some groups resulted in greater inter-study variabilities particularly 

in peak systolic velocity patterns. According to the above challenges, CFD simulations with high 

temporal resolutions of at least 0.2 ms are required to capture aneurysmal flow instabilities. On the 

other hand, despite a strong correlation (R
2
 > 0.9) between time-averaged WSS magnitudes, Valen-

Sendstad et al. 
114

 observed a weak correlation (R
2
 = 0.23) between OSI values predicted by normal 

(with spatial resolutions of 0.1-0.2 mm and temporal resolutions of about 1 ms) and high resolution 

(with spatial resolutions of about 0.06 mm and temporal resolutions of about 0.05 ms) simulations. 

Comparing normal and high resolution CFD simulations, they observed an average of 30% and 60% 

differences in pointwise values of time-averaged and maximum WSS on the aneurysm sac, 

respectively. They suggested that particularly for bifurcation unstable aneurysms, normal resolution 

CFD simulations cannot accurately capture oscillations both in magnitude and direction of WSS 

vectors. Due to the observed differences between OSI values and pointwise WSS magnitudes 

predicted by normal and high resolution schemes, Valen-Sendstad et al.
114

 argued that although 

normal resolution CFD simulations may be adequate for aneurysm rupture risk assessment based on 

spatiotemporally averaged flow indices, they cannot be relied on to fully characterise WSS as a 

complex biomechanical stimuli on the aneurysm wall.  

 

Mesh resolution near the wires also influences the flow quantification in the presence of 

endovascular devices. Comparing the solutions provided by 6 participating groups for three 

particular stented aneurysms, the Virtual Intracranial Stenting Challenge (VISC) in 2007 
70

 showed 

that an accurate reconstruction of blood flow around the stent wires requires an adequately fine 

mesh resolution near the struts. Janiga et al. 
48

 observed more than 15% relative difference between 

intra-aneurysmal maximum flow velocities obtained based on first- and second-order numerical 

discretisation. They recommended second-order solvers for flow simulation in stented aneurysms.  

 

To sum up, mesh-dependency tests are necessary when building VETMs, in particular, to ensure the 

convergence on the aneurysmal wall and near the device wires. Although assessments of device 

performance based on the highly reduced indices (e.g., flow reduction or increase in the aneurysm 

sac turnover time) can be done using coarser discretisations, higher resolution CFD simulations are 

required for an accurate resolution of velocity and WSS fields, especially when the interaction 

between localised haemodynamics and biology is of interest, e.g., platelet activation in the high 

shear flows between the struts 
22

, and inflammatory or thrombogenic biochemical surface reactions 
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107, 115
. In VETMs, CFD solutions require temporal resolutions higher than 0.2 ms to capture flow 

instabilities of interest, and spatial resolutions in the order of 0.1-0.2 mm within the vasculature and 

of about one-third of the wire radius near the wires. In addition, volumetric meshes require at least 

a few layers of prismatic boundary layer elements near the wall. 

 

Modelling of endovascular devices and their deployment  
 

Mathematical models developed for device deployment can be either mechanistic (physics-based) or 

phenomenological. Mechanistic models of device deployment dynamics account for the design and 

mechanical properties of the particular device and its mechanical interactions (contact) with the 

flow, the arterial wall, and the device itself. This makes mechanistic models potentially more 

accurate. However, such models have a large number of model parameters and, consequently, are 

more prone to uncertainty in the identification of model parameters. In contrast, while they may 

ignore some of the underlying biomechanical mechanisms, phenomenological models make certain 

geometrical or physical assumptions to describe the observable process of device deployment. 

These models are computationally faster and their parameters are more easily obtainable from the 

device manufacturer. Therefore, phenomenological models are more commonly used for simulating 

virtual treatment procedures for the embolisation of aneurysms.   

 

Mechanistic virtual coil models have been employed to describe the dynamics of coil deformation 

after insertion into the aneurysm sac 
116-119

. Such models may have many ingredients to adjust in 

order to optimise the deployment strategy, such as the diameter, length, and mechanical properties 

of the coils as well as a proper set of boundary conditions describing interactions of the coil with the 

micro-catheter, aneurysm wall, and the coil itself. Equations of blood flow are then solved within the 

coiled aneurysm. Phenomenological models of endovascular coil deployment can be categorised 

into: (i) models that only modify the governing equations of blood flow  to account for the 

impedance of fluid flow in the porous region of a thrombosed coil 
120-124

, and (ii) models that use 

mathematical descriptions to explicitly model the coil deployment inside a specific aneurysm and 

then solve blood flow equations in the aneurysm sac with a deployed coil inside 
54, 125-127

. The 

dynamics of stent deployment have been mechanistically modelled using finite element models 

(FEMs) 
11, 128-131

. Such models, however, are very computationally expensive since they consider the 

structural properties of the stent as well as its interactions with the micro-catheter and the vascular 

wall. Phenomenological models describe the endovascular stent by representing it as a porous 

medium 
132, 133

, by mapping of the stent design on a previously expanded cylinder inside the vessel 
54, 

55
, by deforming a mesh until it reaches the vessel wall 

10, 52, 134, 135
, or by weaving stent wires around 

a circular cone deformed to fit against the vessel wall 
9
. Flore et al. 

130
 and Bernardini et al. 

128
 

compared aneurysmal flow after placement of an endovascular stent with a mechanistic FE model 

with that predicted after deploying the stent using a phenomenological fast virtual deployment 

model and observed a good quantitative agreement accompanied by a reduction in the 

computational time.  

 

Virtual treatment models have been used to pre-operatively study the effect of coil shape, 

orientation, and packing density in patient-specific aneurysm models. Schirmer et al. 
127

 investigated 

the effect of orientation of helical coils on the aneurysmal flow and showed that the coil orientation 

with respect to the aneurysmal flow has a considerable influence of the effectiveness of helical coils. 

They showed that helical coils that are located parallel to the flow jet entering the aneurysm are 

more effective in preventing flow from entering the aneurysm and reducing the level of aneurysmal 

WSS. They observed the least flow reduction in aneurysms with coils placed orthogonal to the 

entering jet. Similarly, Jeong et al. 
136

 investigated the effect of coil shape and orientation on the 

aneurysmal haemodynamics and showed that cage-shaped coils deployed orthogonally to the 
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entering flow jet provided the least flow reduction in aneurysms. Aguilar et al. 
137

 studied the effect 

of coil surface area (diameter) and packing density on the intra-aneurysmal flow. They observed that 

coiled aneurysms with the same coil surface area but different packing densities produced similar 

intra-aneurysmal haemodynamics. They also observed that the coiled aneurysm with the largest coil 

surface area had the most effect on flow reduction and concluded that the coil surface area 

influenced on its performance. Morales et al. 
138

 studied the effect of coil packing density and 

configuration on the intra-aneurysmal flow and showed that at low packing densities (< 12%), the 

aneurysmal flow was highly dependent on the coil configuration and this dependency decreased as 

packing density grew. They observed an insignificant influence of coil configuration at high packing 

densities. 

 

 

Aneurysmal haemodynamics following the placement of a flow diverter stent are known to be 

dependent on the aneurysm size and shape 
139-142

, location 
139, 141

, stent design and configuration 
129, 

135, 143-146
, and its orientation and position in the parent vessel 

147-150
. The stent porosity has also been 

shown to highly influence the effectiveness of the deployed stent 
151, 152

. Virtual treatment models 

provide the opportunity to investigate the effect of the aforementioned variables using image-based 

patient specific models before the actual placement of flow diverters 
15

. In clinical practice, flow 

diverters are usually selected to be oversized, i.e., to have slightly greater diameter than the vascular 

calibre. This results in an adequate appositioning against the vascular wall on the one hand and a 

stretch of stent cells along the vascular axis on the other. Mut et al. 
153

 studied the effect of stent 

oversizing on the post-treatment aneurysmal haemodynamics and showed that oversizing will result 

in larger stent cells and will decrease the haemodynamic effectiveness of the flow diverter stent. 

While deploying flow diverters, clinicians can maximise the strut local compaction, and consequently 

the flow diversion, across the aneurysm neck. The dynamic push-pull flow diverter deployment 

technique has been used to increase and decrease the local density of the flow diverter at the 

aneurysm neck and perforator-rich regions of the parent vessel, respectively, to allow maximum 

flow diversion at the neck while maintaining the perforators and branch vessels 
154

. Janiga et al. 
155

 

simulated flow through similar flow diverters that are differently deployed to have eight different 

local compactions at the neck; and, observed that different local compactions lead to different post-

deployment intra-aneurysmal flow reductions ranging from 24.4% to 33.4%. They remarked that 

flow diverter local compaction across the aneurysm neck can be virtually and pre-operatively 

optimised to reach maximum flow reduction. However, Xiang et al. 
22

 simulated this deployment 

technique and showed that although resulting in an increased flow diversion, it pushes the flow 

diverter to bulge out inside the aneurysm, and produces a weaker inflow compared to the standard 

deployment technique that results in lower shear rates near the stent struts. Since high shear-

induced activation of platelets plays a role generation of a stable white thrombus (versus instable 

stasis-induced red thrombus) inside the aneurysms, Xiang et al. 
22

 suggested that this deployment 

technique may result in lowering the platelet activation and, consequently, white thrombus 

formation potential.  

 

Performance of endovascular devices in treatment of aneurysms is assessed by their ability to induce 

a flow stasis and consequently  an occluding stable blood clot in the aneurysm sac 
2
. Virtual 

endovascular treatment models can be used to pre-operatively predict the likelihood of 

recanalisation in candidate aneurysms for coil embolisation. Presence of high WSS ( > 35 Pa as 

reported by 
156, 157

) at the neck of the coiled aneurysms was shown to have a  correlation with post-

treatment recanalisation and regions of high WSS coincided with regions where recanalisation 

happened 
156-159

.   

Delayed or incomplete occlusion and post-treatment rupture are the challenging complications 

associated with flow diverter treatments. Currently, there is no reliable measure to predict the 
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performance of implanted flow diverters in terms of inducing a durable clot that occludes the sac 

completely and triggers the process of healing. Several attempts have been made to computationally 

quantify the stent-induced post-treatment haemodynamic alterations and use them to predict the 

treatment outcomes. Chung et al. 
160

 evaluated the treatment outcome in 36 rabbits with elastase-

induced aneurysms treated with flow diverters; nine aneurysms were occluded completely or near 

completely within 4 weeks (categorised as fast group) and six aneurysms incompletely occluded at 8 

weeks (categorised as slow group); differences were observed between the morphological indices of 

the two groups; e.g., neck area was 0.365±0.082 cm
2
 in the slow and 0.144 ±0.078 cm

2 
in the fast 

occlusion group, p-value = 0.015. However, from haemodynamic measures (measured immediately 

after stent deployment), the aneurysm inflow rate and mean intra-aneurysmal velocity were lower 

in the fast occlusion group (inflow rate was 0.155±0.095 mL/s in the slow and 0.047±0.053 mL/s in 

the fast occlusion group, p-value = 0.024 and intra-aneurysmal velocity was 0.506±0.298 cm/s in the 

slow and 0.221±0.224 cm/s in the fast occlusion group, p-value = 0.058); no differences were 

observed between WSS-based measures (e.g., space-averaged WSS, minimum WSS, or low WSS 

areas). Mut et al. 
161

 examined post-stent aneurysm flow in 23 aneurysms (15 aneurysms considered 

as fast with occlusion times less than 3 months, and the other 8 considered as slow with incomplete 

occlusion or patency at 6 months); they found differences in post-treatment mean velocity 

(1.89±1.88 mL/s in the slow and 0.47±0.52 mL/s in the fast group, p-value = 0.021), inflow rate 

(3.11±2.04 cm/s in the slow and 1.13±0.92 cm/s in the fast group, p-value = 0.004), and shear rate 

(32.37±20.93 /s in the slow and 20.52±23.18 /s in the fast group, p-value = 0.021) values between 

the fast and slow groups; they suggested a threshold of 1.3 cm/s on post-stent mean velocity could 

predict occlusion time (slow or fast) with an accuracy of 84%. Kulcsar et al. 
162

 examined pre- and 

post-treatment haemodynamics in eight para-ophthalmic aneurysms treated with flow diverters; 

one was occluded but ruptured 5 day after treatment, one remained patent after one year, and 

others were occluded during the one year follow-up. In aneurysms with complete occlusion, they 

observed reductions of 10%-80% in the mean velocity, 12%-58% in the maximum velocity, 44%-81% 

in the mean WSS, and 32%-82% in the maximum WSS after flow diverter placement; however, mean 

and maximum velocities, and mean and maximum WSS were reduced by 60% and 47%, and 68% and 

60% in the aneurysm that remained patent, respectively. In the aneurysm with post-treatment 

rupture, Kulcsar et al. 
162

  also observed 20% and 0% reductions in the mean and maximum 

velocities, respectively, while the mean WSS was reduced by 60% and a reduction of 20% was 

observed in the maximum WSS after stenting. They pointed out that lower reduction rate in the 

maximum velocity of the ruptured aneurysm suggest a persisting jet that prevent the successful 

occlusion of this aneurysm. However, based on the observations reported by Kulcsar et al. 
162

, the 

averaged haemodynamic measures in the case with persisting patency are not significantly different 

from those aneurysms with successful occlusion. Focusing on the relative changes (post- to pre-

treatment ratio) induced by flow diverters, Ouared et al. 
163

 attempted to find patient-unspecific 

haemodynamic ratio thresholds that significantly determine the condition required for a durable 

aneurysm occlusion; they examined pre- and post-stent space-and-time-averaged velocity and WSS 

in 12 aneurysms (nine were occluded at 12 months’ follow-up while the remaining three were still 

patent) but found no significant absolute occlusion threshold based on post-stent velocity and WSS 

absolute values; however, they found an area under curve (AUC) with a p-value of  only 0.052 for 

pre- to post-stent mean velocity ratio with a minimum of one-third velocity reduction necessary to 

generate a long-term occlusion (with a sensitivity and specificity of about 99% and 67%, 

respectively), independent of the aneurysm geometry; despite post-treatment WSS reductions in all 

aneurysms, they could not find any significant occlusion threshold based on post- to pre-stent WSS 

ratios.  

 

The above-mentioned studies identified reductions in aneurysmal flow and WSS following the 

treatment with endovascular devices; however, most of them found no significant haemodynamic 
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differences between cases with successful occlusions or persisting patency. Although the observed 

post-treatment haemodynamic changes suggest the capability of pure haemodynamic models in 

predicting the treatment outcomes, the limited sample sizes in each individual study prevents any 

general conclusion; for example, all aneurysms included in the study by Kulcsar et al. 
162

 have post-

treatment mean velocities greater than what is suggested by Mut et al. 
161

 as a fast occlusion 

threshold; or the so called patient-unspecific velocity reduction occlusion threshold proposed by 

Ouared et al. 
163

 results in a sensitivity and specificity of about 67% and 50% in the cohort studied by 

Kulcsar et al. 
162

. Despite the important role of WSS on aneurysm wall biology and initiation of 

thrombosis, none of the reviewed studied identified a significant difference between the fast and 

slow occlusion outcomes based on averaged WSS-based measures; this could be attributed to the 

highly localised patterns of aneurysmal WSS and the consequent biological aneurysm wall 

phenotypes that are captured by the averaged quantities studied in the mentioned works. 

Moreover, inducing a selective aneurysmal clotting that triggers the healing process is crucial 
164

. 

Unlike the stasis-induced red thrombus, which is less organised and contains a high content of 

leukocytes and proteolytic enzymes, white thrombus is more stable and contains a low content of 

leukocytes and proteolytic enzymes 
22

. Unstable red thrombus forms under low shear flow; 

conversely, white thrombus forms through activation of platelets in high shear rate regions (e.g., 

near the stent struts) 
22

. Recent findings on post-procedural ruptures of aneurysms treated with flow 

diverters suggest that the presence of fresh and non-organised red thrombus may result in a 

pathophysiological cascade leading to aneurysm wall degradation and rupture 
21

. This revealed that 

device-induced intra-aneurysmal flow stasis may result in formation of unorganised red thrombus 

and lead to aneurysm rupture after treatment. Xiang et al. 
22

 hypothesised that white thrombus 

should desirably be induced in the aneurysm to promote stabilisation red thrombus and generate a 

stable clot that assist in the formation of a neointimal layer over the aneurysm neck. The hypothesis 

that the stable intra-aneurysmal clot is a combination of red (forms via stent-induced stasis) and 

white (forms via stent-induced platelet activation)  thrombi needs further investigation and 

validation 
22

. This hypothesis also magnifies the importance of appropriate 

anticoagulant/antiplatelet therapies in such complex problems 
22, 164

. Summing up, the favourable 

treatment outcome, i.e., formation of a complete stable clot at a rate faster than thrombus-induced 

wall degradation, however, is highly affected by the mechanical and biochemical interactions 

between clot and intra-aneurysmal flow, in the presence of the anticoagulant/antiplatelet therapies. 

The above discussion implies that whether or not an implanted endovascular device leads to a 

complete aneurysm occlusion may not be assessed only based on post-treatment highly averaged 

haemodynamic quantities. Information from the intra-aneurysmal biochemistry and biology is 

required to reliably predict device performance. This could be achieved by coupling mechanistic 

blood coagulation sub-models to the VETMs or devising more advanced phenomenological 

haemodynamic surrogates that capture the ongoing biological processes more effectively. Creating 

device performance indicators that compare the device-induced formation rates of instable red 

versus stable white thrombi in the presence of anticoagulant/antiplatelet therapies may help predict 

the efficacy of an endovascular device for a specific patient. 

 

Uncertainty in modelling of the endovascular devices 

 

Uncertainty in modelling of the endovascular devices can arise either from uncertain model 

parameters or the way each model represents deployment of the device and its interaction with 

blood flow (model uncertainty). Phenomenological models of coil and stent deployment often rely 

on parameters such as device design, diameter, and length, which are often obtainable from the 

manufacturer. However, mechanistic models include mechanical properties of the devices and 

boundary conditions, which cannot be easily measured, and thus, introduce uncertainty into the 

model. The effect of device configuration, orientation, and position of the devices has been 
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investigated in the literature, but to the best of our knowledge, the quantification of the uncertainty 

in the model parameters has not been attempted so far.    

 

Modelling endovascular devices as porous media, although is not strictly a source of uncertainty, 

introduces errors in quantification of aneurysmal flow; especially local values of haemodynamic 

variables. Morales et al. 
12

 compared post-treatment aneurysmal flow fields obtained from 

modelling the deployed coil as a porous medium with that obtained from modelling the coils 

explicitly. They observed considerable differences in intra-aneurysmal velocity and local 

concentration of contrast agent predicted by each of the two techniques. However, due to the lack 

of quantitative comparisons between post-treatment aneurysmal flow fields obtained from models 

and in vivo measurements, it is not yet certain, which of the proposed models better represents the 

device performance under specific conditions. Levitt et al. 
165

 compared post-treatment 

haemodynamics in two coiled aneurysm phantoms numerically simulated using the porous medium 

technique and explicit model of coils obtained from high-resolution high-energy synchrotron X-ray 

micro-tomography; substantial differences up to 50% and 130% respectively in time-averaged WSS 

and OSI values averaged over the aneurysm sacs suggest inaccurate haemodynamic quantifications 

using homogeneous porous medium coil models. Although synchrotron tomography is not currently 

available in the routine clinical practice,  this  modality can be used to evaluate the accuracy of other 

more complex coil modelling techniques. In two of the three stented aneurysms, Raschi et al. 
166

 

reported a qualitative and quantitative agreement (with up to 10% difference in post-treatment 

reductions in aneurysm-averaged WSS) between aneurysmal post-treatment haemodynamics 

predicted by explicit and porous medium models of the deployed stents; in the third aneurysm, 

post-treatment reduction in aneurysm averaged WSS differed up to 25% between the porous 

medium and explicit models of the flow diverters. In a similar study with two stented aneurysms, 

identical WSS distributions with relative root mean square errors of 21%-24% in mean WSS 

magnitude averaged over the entire sac and 45%-81% in mean WSS magnitude averaged over the 

aneurysm dome are reported for simulations with flow diverters modelled either as porous medium 

or explicitly 
132

. Capturing the local variations of porosity is a challenge in porous medium models of 

both coils and flow diverters. For example, complex geometry of the host artery, or particular 

deployment techniques (e.g., the push-pull technique) result in local variation of stent porosity at 

the aneurysm neck which cannot be easily mimicked by the porous medium models; especially if 

pre-operative evaluations of the devices are of interest so that the post-deployment porosities 

cannot be estimated by micro-tomography techniques. Thus, although refinements may improve on 

the predictions by encouragingly cost-effective porous medium models, the geometrical complexity 

of endovascular devices and the consequent effects on the flow seem to be a serious challenge to 

these models.    

 

Intra-procedural changes in the host vessel geometry (shape and size) introduce further 

uncertainties in VETMs that has yet to be studied in more detail and quantified. The parent vessel 

can undergo dilation as a consequence of stent expansion during deployment, vasodilator drug 

administration, and the intentional post-release manipulations to correct stent apposition all leading 

to reported differences of about 5% and 10%, respectively, between virtual and real stent final 

radius and length 
167

. Delayed geometrical and angular alterations of the host arteries within a year 

after deployment are also reported in stented aneurysms 
168

. Straightening of the parent artery after 

deployment of stents was reported by King et al. 
169

 In sidewall vertebral artery aneurysms, this 

resulted in alterations in the flow direction and rate (by 10%) of the aneurysm inflow jet 
170

. 

However, none of the current deployment techniques accounted for such device-induced 

geometrical alterations 
48

.  Formation of a rapid and stable clot, which completely occludes the 

aneurysm sac, is the desired goal of a successful endovascular aneurysm treatment 
171

; and, 

uncertain intra-procedural alterations in the physiological flow can affect the treatment outcome. 
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Mut et al. 
172

 investigated intra-aneurysmal haemodynamics in aneurysms treated with three 

different stents under five different time-averaged flow rates in the parent vessel and observed that 

a change of 30-50% in the parent vessel flow rate during the stenting procedure resulted in a 30-80% 

change in the aneurysmal haemodynamic variables. This observation highlights the importance of 

inlet flow variability as a source of uncertainty (see the uncertainty in blood flow modelling section) 

in vascular treatment models.  

 

Modelling blood clotting  
 

Clotting in aneurysms  

 

In ruptured intracranial aneurysms, clot formation is the response of the haemostatic system and 

prevents blood loss at the site of injury, where the aneurysm has burst. Chronic spontaneous 

thrombosis can also occur in unruptured aneurysms, resulting in further wall damage and later 

aneurysm rupture or a natural healing process through complete occlusion of the aneurysm sac 
173

. 

On the other hand, as mentioned before, intrasaccular thrombosis can also be induced by 

endovascular devices, like coils and stents, to occlude aneurysm sac from the vascular bed and 

reduce the rupture risk.    

 

The desired process of healing in endovascular treatment is to generate a stable clot throughout the 

aneurysm sac. The aneurysm will then be excluded from the parent vessel by formation of a 

neointimal layer over the aneurysm neck 
174-176

. Endovascular treatments are associated with 

complications such as incomplete occlusion, recanalisation or recurrence 
177, 178

, and 

thromboembolisation 
179

, which expose the patient to the risk of a later haemorrhage or an ischemic 

stroke. Anticoagulant drugs are usually prescribed after endovascular treatments 
180

, and prevent 

uncontrolled acute device-induced thrombus formation and reduce the risk of thromboembolisation 

on one hand and prolong the endosaccular clot formation on the other. Due to the prolonged 

treatment procedure, further wall inflammation and damage may occur due to the presence of an 

incomplete clot partially covering the aneurysm wall, increasing the risk of post-treatment rupture 
21, 

181
. Moreover, the increased time of clotting due to the prescription of antiplatelets and 

anticoagulants can further increase the risk of bleeding in patients with endovascular treatments 
180

. 

 

Mechanisms of intra-aneurysmal thrombosis  

 

It has been shown that adverse haemodynamic stresses on the aneurysm wall can result in wall 

inflammation and damage to the intact arterial endothelium 
20

. The cell-based model of coagulation 
182

 provides an explanation for spontaneous thrombosis resulting from the endothelial damage and 

exposure of vascular tissue factor (TF) to the circulating blood in the aneurysm sac. WSS at regions 

where flow is low and multidirectional or at regions where flow variations are dominated by 

frequencies higher than the systemic flow frequency (the heart rate) have been shown to correlate 

with the pro-inflammatory response of the endothelial cells 
115, 183

. Inflamed endothelium expresses 

the NF-κB transcription factor (a nuclear transcription factor that can be activated by environmental 

signals, like WSS, and mediate wall inflammation and weakening), leading to upregulation of blood 

borne TF, which can subsequently trigger spontaneous thrombosis in such regions 
184, 185

. Platelet 

activation and aggregation within the recirculation regions followed by deposition in regions of low 

flow has also been used to explain spontaneous coagulation in aneurysms 
186, 187

.  

 

As far as device-induced coagulation in aneurysms is considered, pro-coagulant alterations in 

aneurysm haemodynamics, platelet activation as a result of blood contact with the deployed 

devices, and shear-induced platelet activation are key factors in initiating endosaccular thrombosis. 
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Intra-aneurysmal flow reduction using endovascular devices is thought to create dead zones where 

the flow stasis favours platelet adhesion and activation, a key step in the thrombosis process 
22, 23

. 

Such flow stasis can also damage the endothelium and expose sub-endothelial TF 
188

. Blood contact 

with the artificial material (the deployed devices) is hypothesised to also be responsible for the 

initiation of blood coagulation inside the aneurysm sac 
189, 190

. Xiang et al. 
22

 showed that platelets 

can become activated in high-shear regions near the flow diverter stent struts and can be 

transferred to and deposited in low-flow regions in the sac. They further distinguished between 

white and red thrombi, where the former favours aneurysm healing and the latter leads to further 

wall weakening and the ultimate aneurysm rupture after flow diverter placement.  

 

Computational models for spontaneous thrombosis in aneurysms 

    

The most challenging part of a mechanistic model of thrombus formation in aneurysms is the 

mechanism used to describe thrombosis initiation. It has been observed that blood clots form or at 

least deposit in the regions where blood flow is extremely low and multidirectional 
25, 191-193

. 

However, it is not yet well understood whether clotting starts extrinsically due to the endothelial 

damage and TF exposure in disturbed flow regions, i.e., aneurysmal wall regions where 

haemodynamic stresses are extremely low and multidirectional; or, intrinsically due to platelet 

activation and aggregation and exposure of blood borne TF under certain haemodynamic conditions 
194

. Coagulation models in aneurysms can be classified into two main groups. The former only 

characterise blood flow in aneurysms and do not include any biochemical reactions. The latter, 

however, couple both flow and reaction to model coagulation in aneurysms. Some models include 

additional parts that consider the mechanical interactions between the clot and the blood flow field.     

   

Rayz et al. 
25, 195

 and Ouared et al. 
24, 196

 correlated flow velocity, flow residence time (RT) and WSS 

with clot formation and simulated clotting in aneurysms without considering the biochemical 

reactions. For three patients with magnetic resonance imaging (MRI) scans before and after 

thrombus formation, Rayz et al. 
195

 showed that blood clots developed in regions with low WSS and 

high RT. They revealed a correlation between the location of intraluminal blood clots and regions of 

high RT and low WSS. Zimny et al. 
197

 classified thrombosis initiation mechanisms in aneurysms into 

intrinsic and extrinsic mechanisms. In their multiscale model, intrinsic mechanisms initiated clotting 

through platelet activation by the inflamed wall or by the contact of blood with external devices 

(e.g., coils and stents) and extrinsic mechanisms initiate clotting through exposure of TF due to 

damage to the aneurysm wall. Such damage was considered to be a result of post-treatment flow 

alterations in the sac or any cuts that occurred during the deployment procedure. They finally 

extended the mesoscale model presented by Ouared et al. 
24, 196

 to a three-dimensional aneurysm 

model and simulated flow-mediated thrombus generation based on a threshold on aneurysmal WSS 

under which thrombosis initiates. De Sousa et al. 
23

 simulated flow in ten patient-specific aneurysms 

and showed that spontaneous thrombosis was present in aneurysms with low shear rate and 

suppressed pulsatility. They also showed for three aneurysms treated with flow diverters that after 

flow diverter deployment, the aneurysmal shear rate fell below a certain threshold that has been 

correlated with the onset of thrombosis generation.  

 

Although such models can provide some information about the possibility of presence of 

endosaccular thrombosis under certain aneurysmal morphology or haemodynamic environment, 

they will not provide enough information about the morphology of the aneurysmal blood clot and its 

interaction with the aneurysmal blood flow. Since these models do not include the underlying 

biochemical reactions, they cannot be used to predict effects of the chemical composition of blood 

or use of anticoagulants on spontaneous clotting or the final outcome of endovascular treatment. 

Coupling blood flow with a network of biochemical reactions, Bedekar et al. 
26

 and Biasetti et al. 
198
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simulated clot formation in intracranial and abdominal aortic aneurysms, respectively. They both 

used TF exposure on the aneurysm wall as the initiator of the clotting process and assigned a 

prescribed concentration of TF on the aneurysm wall as boundary condition. This approach 

benefited from a biochemical web of surface reactions to model clot formation on the aneurysm 

wall; however, it assumed that TF was uniformly exposed on the aneurysm wall and initiated the 

coagulation cascade. On the contrary, it has been observed that inflammatory lesions and 

endothelial damage, which are thought to be responsible for TF exposure, are localised phenomena 

resulted from region-specific adverse haemodynamic conditions. Malaspinas et al. 
192

 set up a series 

of in vitro experiments and obtained WSS thresholds below which coagulation starts in idealised 

aneurysm geometries. Then, they used those thresholds to simulate clotting in two real aneurysms 

and successfully validated their results against patient-specific medical images. Although Malaspinas 

et al. 
192

  took a threshold-based approach to study spontaneous clotting in aneurysms, they 

simulated the underlying biochemical reactions; that is, the threshold has been used as the initiator 

of a web of chemical reactions. This makes their model capable of investigating the effect of patient-

specific deficiencies in certain coagulation factors and/or the effect of anticoagulants on the clotting 

time and the final percentage of aneurysm occlusion.  

 

Computational models for device-induced thrombosis in aneurysms 

 

Xiang et al. 
22

 presented a model of blood flow in stented aneurysms, and demonstrated that blood 

flow near stent struts can provide shear rates high enough to activate platelets and trigger blood 

coagulation in the aneurysm sac where the flow is low enough for platelets to aggregate. Ngoepe et 

al. 
199

 coupled flow and biochemistry to simulate both spontaneous and stent-induced thrombosis in 

patient-specific aneurysm geometries. They used a level-set method to track the clot surface at each 

instance of the time and consider the effect of clot on the flow domain. They considered vascular TF 

as the sole initiator of the clotting process; however, instead of a uniform exposure of TF on the 

aneurysm wall, they used a shear rate threshold below which TF can be expressed on the wall and 

initiate the clotting process. This allowed coagulation to start only on the portions of the 

endothelium that are expected to be damaged, which is more physiologically relevant than exposing 

TF uniformly on the aneurysm lumen.  

 

Recently, observing the fact blood clotting in aneurysms is not necessarily triggered by the exposure 

of extravascular TF due to the wall damage, Ou et al. 
193

 presented a model with more emphasis on 

the blood-borne TF as the initiator of stasis-induced thrombosis in aneurysms. To concentrate on the 

role played by the blood-borne TF, they ignored exposure of TF on the sub-endothelium and 

thrombogenicity of the flow-diverter. They hypothesised that accumulation of blood-borne TF in 

aneurysmal dead zones, where flow is low enough, is responsible for the initiation of thrombosis in 

those regions. The validity of their proposed model was supported by in vivo observations of 

surgically induced stasis in ligated right common carotid arteries of rats.  
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Figure 6. Possible mechanisms of intra-aneurysmal thrombosis 

 

Uncertainty in computational models of blood coagulation     

 

Blood coagulation, either as part of haemostatic system or under pathological conditions, is a very 

complex system with several sources of uncertainty. One may consider the lack of in vivo 

experimental data and the limited knowledge on the underlying pro- and anticoagulant mechanisms 

as the main sources of uncertainty in such a complex process. It has been implied that neither 

cascade nor cell-based models of coagulation can satisfactorily explain in vivo coagulation in 

pathologies like intracranial aneurysms 
189

. The role of the vessel wall in chemical initiation and 

hosting the coagulation process and interactive effects of the clot and blood flow field are still 

uncertain 
26, 199, 200

.   

 

According to Virchow’s triad, thrombosis can be initiated as a result of damage to the endothelium, 

damage to the blood itself, or under certain blood flow conditions. Particularly, as depicted in Figure 

6, coagulation in aneurysms can be initiated due to 1) platelet activation as a result of endothelial 

damage and contact of blood with the vascular TF, 2) platelet activation as a response to 

upregulation of the blood-borne TF due to pro-inflammatory response of the endothelium, 3) 

platelet activation as a result of blood contact with thrombogenic surface of endovascular implants, 

and 4) platelet activation as a response to high blood shear force at high shear regions like near the 

flow-diverter struts. Blood stasis (dead zones) in complex aneurysmal geometries is always a 

favourable region for activated platelets to deposit and trigger blood coagulation. When considering 

blood coagulation in a given aneurysm, it is unclear beforehand if any or all of the above mentioned 

mechanisms are responsible for initiation or amplification of the thrombosis. Moreover, none of the 

current models developed to simulate blood coagulation in aneurysms include all of the above 

mechanisms or measure the relative importance of them for a particular aneurysm.  

 

Insufficient experimental data and uncertain role of the coagulation factors can even increase the 

level of uncertainty of the current models. For example, activation of the coagulation factor XII (a 

coagulation plasma protein that can be activated on artificial surfaces) in the presence of 

endovascular implants, which plays an important role in amplification of the coagulation, is not 

included in the cell-based model of coagulation 
189

.  

 

Intra-subject variability in blood composition and pathologic deficiencies of certain coagulation 

factors can also increase the amount of uncertainty in coagulation modelling. It has been shown that 

uncertainty in the concentration of certain coagulation factors can result in completely different 

thrombin generation curves in a single patient. This can even be generalised to inter-subject, age-, 

sex-, and lifestyle-related variabilities in concentration of coagulation factors. These variabilities can 

also affect kinetics of the underlying reactions in terms of their rate constants. Danforth et al. 
201

 and 

Luan et al. 
202, 203

 investigated uncertainties in the reaction rate constants and showed that the 
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predictive capability of the entire model is highly sensitive to variabilities in some of the numerous 

rate constants involved in a biochemical model of coagulation. 

 

Conclusions 

Endovascular treatment of intracranial aneurysms requires evaluating the best treatment options in 

terms of efficacy and safety. Whether a certain endovascular treatment leads to formation of a 

stable clot in a specific aneurysm is a question that challenges neurointerventionalists. Endovascular 

planning systems that would allow pre-interventional assessment of aneurysmal haemodynamics 

before and after virtual treatment are potentially valuable clinical tools. Underpinning such systems, 

computational fluid dynamics (CFD) alongside other computational techniques for creating image-

based vascular surface models and models of endovascular devices have already been extensively 

used to characterise intra-aneurysmal blood flow, and to understand the interplay between blood 

flow, aneurysm rupture risk, and endovascular treatment outcome. This paper overviewed the state-

of-the-art in this area; and highlighted the importance of future efforts concentrating in device-

induced thrombosis and uncertainty modelling in the context of VETMs.  

 

We have presented a review of the current status of vascular anatomy and blood flow models, 

endovascular device deployment models, and blood coagulation models as the main ingredients that 

can be integrated into a VETM to help clinicians in the management of intracranial aneurysms. To 

provide a complete picture of treatment outcome, current systems for VETM need to be extended 

to incorporate post-treatment aneurysmal response and account, for instance, for the mechanisms 

of clot formation in the presence of endovascular devices. Although efforts exist to model intra-

aneurysmal blood coagulation 
200, 204

, none of the current models include all of the underlying 

mechanisms of intra-aneurysmal coagulation (see Figure 6) or measure the relative importance of 

them for a particular aneurysm. Most of the models have not been personalised or are difficult to 

personalise based on available patient-specific data. Stratification 
205, 206

 and success criteria for 

endovascular treatment need to be established that objectively define the ideal outcome in a way 

that could be used by the modelling community as part of a treatment optimisation framework. 

Therefore, future research will have to first bridge the gap between available empirical evidence 

from clinical studies as to what constitutes and leads to a successful treatment outcome and the 

technical ability to computationally model the complex interplay between factors due to the 

anatomy, haemodynamics, blood clot, and endovascular device. This underlying complexity, on the 

other hand, will have to be modelled in a judiciously simplified manner not only to make the 

problem computationally tractable while remaining faithful to key mechanisms but also to enable 

personalisation of model parameters to limited patient-specific data. At the same time, current 

attempts to create advanced haemodynamic surrogates for intra-aneurysmal biological phenotypes 

(e.g. thrombosis) 
23, 25, 195, 207

, should be further validated against in vivo observations and potentially 

used to develop more accurate predictors of intra-aneurysmal thrombosis that those attainable by 

simulating even simplified models the underlying complex biological mechanisms. 

 

In an editorial, Kallmes 
28

 expressed concerns regarding the status of computational studies on 

intracranial aneurysms and their clinical relevance. Two challenges were raised: 1) Can the virtual 

endovascular treatment model (VETM) be used to predict flow quantities that are useful in clinical 

diagnosis and prognosis? 2) Do the numerous modelling assumptions and related uncertainties 

make the results questionable? In another editorial, Cebral and Meng 
208

 emphasised that certain 

approximations and simplifications are needed in CFD studies to make them more cost effective and 

feasible. They suggested that what is important is measuring the effect of those assumptions on 

model outcomes and their relative importance, which could be evaluated using sensitivity analysis 

techniques. In this work, we have reviewed the three main ingredients of an image-based patient-

specific virtual endovascular treatment model for intracranial aneurysms. Each of these sub-models 
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is prone to uncertainties, which should be addressed in order to make the virtual endovascular 

treatment model reliable as well as patient-specific. For those uncertainties that we found enough 

quantitative analyses, we performed a meta-analysis to identify their pooled effect.  As presented in 

Table 1, we categorised uncertainties into: 1) those for which a meta-analysis has been performed 

and thus their effects are supported by the highest level of evidence, 2) those which have been 

studied in the literature but for which we could not perform a meta-analyses due to effects not 

being reported quantitatively or having only been considered in a limited number of studies, and 3) 

those which have not been studied yet in the context of IAs and thus their effect on the model 

outcomes is not still clear. 

 

Virtual endovascular treatment models are influenced by several sources of uncertainty that need to 

be accounted for when interpreting the results of their predictions. Uncertainty handling is relevant 

to most computational biomechanics problems but can become particularly severe in complex multi-

scale models. Meta-analyses have been performed on three well-known sources of uncertainty, and 

the uncertainties arising from vascular wall distensibility and inflow waveform variabilities showed 

effect sizes (Hedge’s g) of 0.34, 95% CI [0.22, 0.45], p-value < 0.001, and 0.3, 95% CI [0.08,0.52], p-

value = 0.003, respectively. Significance of non-rigid FSI models in future understanding of complex 

biomechanical processes at the aneurysm wall has also been pointed out by Chung and Cebral 
103

. 

Physiologically realistic FSI models of aneurysms require measuring local variations of wall 

mechanical properties over highly heterogeneous pathologic aneurysms’ wall which is not easily 

achievable in routine clinical practice. In future, such uncertainties should be addressed by 1) using 

more accurate techniques for measuring model input parameters (uncertainty mitigation), 2) 

consideration to the propagation of uncertainties from input parameters into the model outputs by 

reporting confidence intervals and sensitivities instead of deterministic results (uncertainty 

exploration), or 3) replacing model outputs with other alternative variables, which carry the same 

information but are less sensitive to the unknown model parameters (sensitivity reduction). 

Specifically, more advanced imaging techniques can provide higher quality images of the vascular 

lumen along with fully automatic segmentation techniques that do not require a posteriori manual 

editing and can eliminate some of the geometric uncertainty. Conducting more experimental studies 

regarding the mechanisms underlying thrombosis, particularly in aneurysms, can reduce model 

uncertainties in aneurysmal clotting and thus produce more reliable virtual treatment outcome 

predictions. However, inherent uncertainties in the systemic flow (and several other model 

parameters) cannot be eliminated. In such cases, advanced uncertainty quantification techniques 
111, 

209, 210
 can be used to systematically explore the effects of these uncertainties. The concept of 

personalisation should not be limited to deterministic identification of model parameters at a 

particular moment in time. Instead, model parameters should be treated as uncertain and/or 

fluctuating quantities; and uncertainty quantification techniques should be employed to propagate 

those uncertainties through the virtual treatment models in order to produce confidence intervals 

and sensitivities associated with the model predictions.
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Table 1. Major sources of uncertainty in different sub-models of a typical endovascular treatment model. 

b) Uncertainties for which a meta-analysis has not been performed 

Source of Uncertainty Reference(s) 

First Author (Year) 

Main Findings 

Segmentation and 

reconstruction accuracy 

 

Cebral (2005) 

Castro (2006) 

Gambaruto (2011) 

Geers (2011) 

Mikhal (2013) 

Schneiders (2013) 

Overestimation of neck size by CTA compared to 3DRA lead to a 44.2% difference in time-and-space-

averaged WSS over the aneurysm sac 
39

. 

Overestimation of neck size by 3DRA compared to 2D DSA lead to differences up to 98% in maximal WSS 

over the aneurysm sac 
211

. 

Reconstruction smoothing level can affect aneurysmal WSS by 15% 
44

.  

Reconstruction of aneurysm and parent vessel surface models significantly affect aneurysmal 

haemodynamics. Special care should be taken about removing kissing vessels, overestimation of 

aneurysm neck size by CTA and 3DRA, smoothing levels, and parent vessel reconstruction. 

Length of parent vessel 

proximal to the aneurysm 

 

Pereira (2013) 

Hodis (2015) 

Valen-Sendstad (2015) 

Length of proximal parent vessel have a large effect on the aneurysmal haemodynamics (approximately 

20% on the aneurysmal WSS 
95

). Parent vessels should at least be truncated as far upstream as images 

allow, preferably below the cavernous segment on ICA. 

Outlet boundary conditions Ramalho (2012) Outflow boundary conditions highly influence the aneurysmal haemodynamics (approximately 20% on 

the aneurysmal WSS) when multiple outlets are present. 0D and 1D outlet boundary conditions provide 

realistic flow split between branches when tuned carefully.  

Moving parent arteries Sforza (2010) Pulsating intracranial vasculature motion has small effects on the aneurysmal haemodynamics (less than 

5% on the aneurysmal WSS).  

Using different CFD solvers Steinman (2012) Standard deviations of below 9% for cycle-averaged and peak systolic velocity and pressure. 

a) Uncertainties for which a meta-analysis has been performed 

Source of Uncertainty Reference(s) 

First Author (Year) 

Summary Effect (Hedges’ g) 

Mean (95% CI) 

Wall distensibility 

 

Torii et al. (2009) 

Bazilevs et al. (2010a) 

Bazilevs et al. (2010b) 

Takizawa et al. (2012) 

0.34 (0.22 – 0.45) 

 

Inlet flow rate waveform (inter-

subject variability) 

 

Karmonik et al. (2010) 

McGah et al. (2013) 

Jansen et al. (2014) 

0.30 (0.08 – 0.52) 

Blood rheology Fisher & Rossmann (2009) 

Morales et al. (2013) 

Castro et al. (2014) 

0.02 (-0.04 – 0.07) 
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Discretisation schemes Valen-Sendstad (2014) Strong correlation (R
2
 > 0.9) between time-averaged WSS magnitudes between values obtained from 

normal and high resolution simulations. 

Weak correlation (R
2
 = 0.23) between OSI values predicted by normal and high resolution simulations. 

Endovascular device 

deployment model structure 

(imprecise governing 

equations) 

Morales (2012) 

 

 

Levitt (2016) 

 

Raschi  (2014) 

 

Augsburger (2010) 

Modelling aneurysmal coils explicitly or approximating them by a porous medium will highly affect the 

predictions of post-treatment haemodynamics (approximately 70% difference in the post-treatment 

intra-aneurysmal velocity).  

Differences up to 50% and 130%, respectively in post-treatment time-averaged WSS and OSI values 

averaged over the aneurysm sacs obtained from explicit and porous medium models of coiled  

Aneurysm-averaged WSS Differences of 10-25% between aneurysmal post-treatment haemodynamics 

predicted by explicit and porous medium models of the deployed stents. 

Relative root mean square errors of 21%-24% in mean WSS magnitude averaged over the entire sac and 

45%-81% in mean WSS magnitude averaged over the aneurysm dome between simulations with flow 

diverters modelled either as porous medium or explicitly. 

Intra-procedural systemic flow 

alterations 

Mut (2014) Intra-procedural parent vessel flow rate alterations greater than 30% can result can result in a 30-80% 

change in the aneurysmal haemodynamic variables.  

c) Uncertainties that have so far not been studied in intracranial aneurysm simulations 

Source of Uncertainty 

Intra-procedural alterations in parent vessel geometry 

Blood coagulation model structure (missing reactions etc.) 

Parameters of mechanistic models of medical devices (coils and stents) 

Variabilities in blood composition and coagulation kinetic reaction rates in normal or pathological conditions 
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