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Article

Quantitative In Situ Monitoring
of Parahydrogen Fraction Using
Raman Spectroscopy

Andrew J. Parrott1 , Paul Dallin2, John Andrews2,

Peter M. Richardson3 , Olga Semenova3 , Meghan E. Halse3 ,

Simon B. Duckett3, and Alison Nordon1

Abstract

Raman spectroscopy has been used to provide a rapid, noninvasive, and nondestructive quantification method for deter-

mining the parahydrogen fraction of hydrogen gas. The basis of the method is the measurement of the ratio of the first two

rotational bands of hydrogen at 355 cm�1 and 586 cm�1 corresponding to parahydrogen and orthohydrogen, respectively.

The method has been used to determine the parahydrogen content during a production process and a reaction. In the first
example, the performance of an in-house liquid nitrogen cooled parahydrogen generator was monitored both at-line and

on-line. The Raman measurements showed that it took several hours for the generator to reach steady state and, hence,

for maximum parahydrogen production (50%) to be reached. The results obtained using Raman spectroscopy were

compared to those obtained by at-line low-field nuclear magnetic resonance (NMR) spectroscopy. While the results

were in good agreement, Raman analysis has several advantages over NMR for this application. The Raman method

does not require a reference sample, as both spin isomers (ortho and para) of hydrogen can be directly detected,

which simplifies the procedure and eliminates some sources of error. In the second example, the method was used to

monitor the fast conversion of parahydrogen to orthohydrogen in situ. Here the ability to acquire Raman spectra every
30 s enabled a conversion process with a rate constant of 27:4� 10�4 s�1 to be monitored. The Raman method described

here represents an improvement on previously reported work, in that it can be easily applied on-line and is approximately

500 times faster. This offers the potential of an industrially compatible method for determining parahydrogen content in

applications that require the storage and usage of hydrogen.
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Introduction

Molecular hydrogen (H2) exists as two nuclear spin iso-

mers: the anti-symmetric singlet nuclear spin state parahy-

drogen (pH2) and the symmetric triplet spin nuclear state

orthohydrogen (oH2). The equilibrium distribution of the

two isomers is a function of temperature. At room tem-
perature, the equilibrium composition is approximately

25% pH2 and 75% oH2, a mixture typically referred to as

normal hydrogen (nH2). At lower temperatures the equi-

librium distribution shifts to favor the lower-energy

pH2 isomer, so that at its boiling point (20.3 K) the equi-

librium composition of H2 is almost 100% pH2. However, as

the conversion between oH2 and pH2 is forbidden, conver-

sion between isomers is very slow unless a catalyst
is used.1–5

The pH2 isomer is useful for a wide range of applications,

including: liquid fuels;6–8 matrix isolation spectroscopy;9,10

certain hyperpolarization methods for nuclear magnetic

resonance (NMR) spectroscopy;4,3,11,12 and as a moderator

for spallation neutron sources.13,14 For many of these
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applications, the proportion of the pH2 isomer is of vital

importance. For example, for fuel applications H2 is usually

stored as a liquid. If the oH2 is not fully converted to pH2

(e.g., by passing over a suitable catalyst) before condensa-

tion from the gas state, then the slow exothermic conver-

sion of oH2 to pH2 will liberate enough heat to vaporize up
to 64% of the liquid.7 For pH2-based hyperpolarization

methods in NMR, the greater the level of pH2 enrichment,

the greater the NMR signal enhancement.4,11,15 Indeed vari-

ous methods of generating high purity pH2 for NMR studies

have been reported15,16 and major NMR vendors also

supply this type of specialized equipment.17

The research group at the University of Strathclyde has

an in-house built pH2 generator, which is used to provide
gaseous pH2 for signal amplification by reversible exchange

(SABRE) hyperpolarization studies on a bench-top NMR

spectrometer.18–20 To validate the hyperpolarization

experiments, it is desirable to be able to rapidly monitor

the pH2 fraction produced by this generator. The two spin

isomers differ slightly in several physical properties, such as:

heat capacity, vapor pressure, speed of sound, and thermal

conductivity. These properties can be used to measure the
pH2 enrichment in an unknown sample.4,9,21–23

Nevertheless, many of these measurements often require

that other parameters also be measured very accurately

(e.g., temperature and pressure) and require calibration

with known mixtures to provide quantitative results.15,21,24

However, as the two spin isomers occupy different rota-

tional energy levels,1,3,4,25 it is possible to use Raman spec-

troscopy to probe the rotational transitions of H2 gas and
hence determine the composition of pH2 without calibra-

tion mixtures.8,13,14,25,26

In the context of monitoring pH2 enrichment,

Sundararajan et al.10 used a Raman microscope with a

514 nm laser for off-line monitoring of H2 gas used for

matrix isolation spectroscopy. They reported that even

with 1000 scans, the analysis could not be conducted quan-

titatively. Teshigawara et al.14 used a Raman microscope for
off-line monitoring of H2 moderators in a neutron source.

They did not report the analysis time but did claim that

sufficient signal was obtained for quantitative analysis.

Matthews et al.8,26 reported the use of a specialized gas

cell for off-line monitoring of H2 gas from a liquid hydrogen

storage tank. They used a 532 nm laser and reported an

integration time of only 60 s. However, the density of the

gas measured (and hence pressure) was much higher (12 g
L�1) than typically produced by the pH2 generator used

here (0.5 g L�1). Sutherland et al.13 reported an on-line

method using a fiber optic coupled probe to monitor the

pH2 fraction in a H2 moderator used for a neutron source.

However, they reported relatively long analysis times of

around 20min per measurement.

Here we report that by using a Raman spectrometer

fitted with a non-contact optic, with a backscattering
180� geometry, the acquisition of Raman spectra of H2

gas from the in-house built pH2 generator can be greatly

simplified. This allows Raman spectra from at-line samples

to be easily acquired using existing infrastructure (i.e., con-

ventional NMR tubes). Also, this configuration allows the

facile set-up of an on-line method of monitoring the per-

formance of the generator, by focusing the laser onto a
simple glass flow tube in the flow path of the generator.

The rapid nature of the Raman procedure (every 30 s)

enables in situ monitoring of the fast back conversion of

pH2 to oH2 inside contaminated NMR tubes.

Experimental

At-line and on-line Raman analysis was used to characterize
an in-house built pH2 generator, the schematic of which is

shown in Fig. 1. nH2 gas with a room temperature equilib-

rium content of pH2 was produced from water using a

hydrogen generator (HG) electrolysis cell (Peak

Scientific), operating at 4 bar for at-line experiments and

5 bar for on-line experiments. The nH2 gas then flowed

into a two-way valve (V1), which directed the gas into

either a chamber for enrichment of the pH2 content or
directly into the rest of the system. The chamber for the

enrichment of pH2 content was of similar design to that

reported previously in the literature.4,27 Briefly, it consisted

of a copper coil (C) (OD¼ 9.5mm, ID¼ 7.7mm, L¼ 3m)

packed with charcoal (Sigma-Aldrich), which was sub-

merged in a Dewar (D) filled with liquid nitrogen. The char-

coal was held in place with two 40 mm in-line filters (F) at

either end of the coil. On-off valves (V2, V3, V4) were used
to control whether nH2- or pH2-enriched gas was provided

to the outlet of V4. The system was equipped with a pres-

sure transducer (P) (Omega) to check the pressure of the

gas as well as a vacuum pump (V) (Vacuubrand, ultimate

vacuum of 7 mbar) to allow the system (and any connected

flow tube (FT) or NMR tube) to be evacuated of gas.

At the start of each experiment, the copper coil was

filled with H2 to the desired pressure without being
cooled. The coil was then purged so that the pressure

was just above atmospheric and filled again to ensure that

only H2 gas was entering the system. The coil was then

cooled with liquid nitrogen and the purge process repeated.

Once the pressure in the coil had again reached the desired

level (usually after around 15min), this was regarded as the

start of the generator running time.

For at-line Raman analysis, the outlet of V4 was con-
nected to a standard NMR tube (Wilmad Precision,

527-PP-7) equipped with a Young’s valve (GPE Scientific)

(not shown in Fig. 1). For on-line analysis, V4 was con-

nected to a FT which had a 40mm section of the same

type of NMR tube partway along its length. The outlet of

the FTwas connected to a pneumatic control unit (Bruker)

for a polarizer box (PB) (as shown in Fig. 1), which con-

trolled when gas flowed along the FT into the PB and then
out into the atmosphere. The PB was used to allow gas to
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flow for 15 s, with a desired interval (typically around every

5min) between each flow duration. Between intervals, the

PB held the gas pressure constant at 5 bar in the FT. The PB

has previously been used to automate SABRE NMR experi-

ments,19,20,28,29 but in this case it was simply used to con-

trol the flow of gas out of the pH2 generator.

The Raman spectrometer (RS) used to record the spec-

tra of the gas samples was a RamanRxn1 analyzer (Kaiser
Optical Systems), which utilized a CW diode laser with a

maximum output of 400mW at 785 nm. The axial transmis-

sive spectrograph (f/1.8) was equipped with a holographic

transmission grating (HoloPlex). The detector was a

charged coupled device cooled to �40 �C (Peltier cooling).

The spectral range was 100–3425 cm�1 (Raman shift) with

an average spectral resolution of 4 cm�1. The spectrometer

was coupled with a 5m fiber optic (FO) cable to a filtered
MR probe fitted with a non-contact optic (NCO). This

NCO was used to focus the laser onto the center of the

NMR tube for at-line or in-situ analysis, or the center of the

NMR tube section within the FT for on-line analysis. The

same optic was used to collect the backscattered light

(180� geometry) from the sample. The NCO had a

10mm focal length and the size of the focused beam was

approximately 100 mm at the focal point. The laser power
was around 270 mW at the sample. The spectrometer was

calibrated with a neon atomic line source and a NIST trace-

able white light source for wavelength and intensity accur-

acy, respectively. The calibration was verified using a

cyclohexane standard before any analysis. A single scan

with an integration time of 25 s was used for each spec-

trum. A dark spectrum, also of 25 s, was recorded before
each scan and used for dark correction, giving a total acqui-

sition time of around 50 s. For the experiments studying the

stability of pH2 in an NMR tube using a sampling frequency

of 30 s, a single dark spectrum was recorded just before

presenting the tube to the laser and used to correct all of

the recorded spectra for that sample.

Immediately after recording the at-line Raman spectrum

of H2 contained in a standard NMR tube, the 1H NMR
spectrum was also recorded in a method similar to that

reported previously.15,16,21,27 The sample was placed in a

bench-top NMR spectrometer (Magritek Spinsolve) operat-

ing at a 1H Larmor frequency of 43.5 MHz. A spectrum was

recorded using a standard 90� pulse and detect sequence,

with a bandwidth of 200 kHz, and 512 points per free induc-

tion decay (acquisition time of 2.56ms) zero filled to 2048

points. A repetition time of 300ms was used between
scans. This duration is sufficiently larger than the T1
of oH2, which is reported as being in the range of

3–15ms,27 to allow for quantitative analysis. A total of

256 scans were acquired, resulting in a total acquisition

time of 77 s.

All data analysis was conducted in the R programming

environment.30 The hyperSpec package31 was used to load

the Raman data, and the robust baseline correction algo-
rithm provided by the baseline package32 (with a span set-

ting of 0.1) was used to remove the influence of the glass

background in the Raman spectra.

Results and Discussion

Raman Spectra of Hydrogen Gas

Gas analysis by Raman spectroscopy can be challenging,

because the small scattering cross-sections and low densi-

ties of the molecules in the gas phase lead to weak Raman

signals.33–35 Therefore, to confirm if sufficient signal could

be obtained using our Raman set up, the spectra from an

evacuated NMR tube (&7 mbar), a tube filled to 4 bar with

H2 gas directly from the hydrogen generator (i.e., nH2), and

a tube filled to 4 bar from the pH2 generator after it had
been running for 2 h were compared. The resulting spectra

are shown in Fig. 2. From this figure, it can be seen that

peaks for the first two rotational bands of hydrogen at the

expected Raman shifts of 355 cm�1 and 586 cm�1 are

clearly visible in the spectra of the two gas samples.

These correspond to the rotational transitions S0ð0Þ

(J ¼ 0 ! 2) and S0ð1Þ (J ¼ 1 ! 3). Two further much

weaker bands at 812 cm�1 and 1032 cm�1 were also
observed (see Fig. S1 in the Supplemental Material),

Figure 1. Schematic of the in-house built pH2 generator. H2 gas

at 4 bar for at-line experiments, or 5 bar for on-line experiments

(as shown in figure), was produced from water using a hydrogen

generator (HG) electrolysis cell. The gas flowed into a two-way

valve (V1), which directed the gas into either a chamber for

enrichment of the pH2 content or directly into the rest of the

system. The chamber for the enrichment of pH2 content is a

copper coil (C) (OD¼ 9.5mm, ID¼ 7.7mm, L¼ 3m) packed with

charcoal, which was submerged in a Dewar (D) filled with liquid

nitrogen. The charcoal was held in place with two 40mm in-line

filters (F) at either end of the coil. On-off valves (V2, V3, V4) were

used to control whether nH2- or pH2-enriched gas was provided

to the outlet of V4. The system pressure was measured using a

pressure transducer (P). A vacuum pump (V) was used to allow

the system (and any connected flow tube (FT) or NMR tube) to be

evacuated of gas.
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corresponding to the transitions S0ð2Þ (J ¼ 2 ! 4) and

S0ð3Þ (J ¼ 3 ! 5) respectively.25,36 Higher rotational

levels were not observed because these levels are not sig-

nificantly populated at room temperature.3,36 From

the spectrum of the evacuated tube, it can be seen that
sampling through the glass wall of the NMR tube does

not complicate the spectrum in this region, except with

a broad glass signal which can be easily removed with

baseline correction (see Fig. S1 for examples of non-

baseline correct spectra). As expected, the spectrum

from the pH2-enriched sample had a much greater propor-

tion of signal from the rotational band corresponding to the

pH2 isomer, compared to the spectrum from the nH2

sample.

As pH2 and oH2 isomers occupy different rotational

energy levels, with pH2 occupying even values of J (0, 2,. . .)

and oH2 occupying odd values of J (1, 3,. . .),1,3,4,37 the ratio

of these bands can be used to determine the para : ortho

ratio.25 Here we used the same calculation method as

reported by Matthews et al.8,26 Briefly, the Raman scatter-

ing intensities, IJ, of the rotational bands of H2 are given
by Eq. 1

IJ ¼
ðJþ 1ÞðJþ 2Þ

ð2Jþ 1Þð2Jþ 3Þ
xJpJg

2
J o

3
s ð1Þ

where xJ is the fraction of gas at the Jth level, pJ is the

Boltzmann population of the Jth level at the measurement

temperature, gJ is the anisotropy of the polarizability
tensor, and os is the scattered light angular frequency.

Therefore, the ratio of the areas of the first two rotational

bands (I0 and I1 at 355 cm
�1 and 586 cm�1, respectively) can

be used to calculate the ratio of x0 and x1, and hence the

para : ortho ratio, r, as shown by Eq. 2.

r ¼
x0

x1
¼

3I0p1g
2
1

5I1p0g
2
0

ð2Þ

This can be simply rearranged to give the pH2 fraction, xpH2
,

as shown by Eq. 3.

xpH2
¼

r

1þ r
ð3Þ

pJ must be considered, as not all pH2 molecules will occupy

the J¼ 0 ground rotational energy level (likewise not all

oH2 molecules will occupy J¼ 1) at the measurement tem-

perature (294 K).1,3,37 Values for pJ were calculated using

Boltzmann’s distribution law,1,3 with a rotational tempera-

ture of hydrogen, yR, of 87.6 K.3,38 The values reported by

Hunt et al.39 were used for gJ.

Using this method, xpH2
for the Raman spectrum of the

nH2 sample shown in Fig. 2 was calculated as being 25.6%.

This value is very close to the expected equilibrium value of

25.1% for H2 at 294 K. Equilibrium values of xpH2
can be

calculated using Boltzmann statistics.1,3,11 For the pH2-

enriched sample, xpH2
was calculated as being 39.5%.

While this shows some enrichment over the nH2 sample,

the enrichment is much lower than the 52.1% expected at

the 77 K operating temperature of the pH2 generator. This
discrepancy could be due to the generator requiring> 2 h

to reach its maximum xpH2
output, or because conversion

of pH2 back to oH2 is occurring inside the NMR tube.

These two issues are explored below.

At-Line and On-Line Monitoring of Generator

Performance

Normally it is assumed that when H2 gas is passed over a

catalyst, such as the charcoal used here, the thermodynamic

equilibrium position is obtained rapidly, usually within a few

minutes.4,11,40 However, as discussed above, it appears that

the generator used here requires considerably longer to

reach the equilibrium xpH2
at its operating temperature. To

investigate how long the pH2 generator takes to reach

steady state, a series of at-line samples of H2 gas were
taken for Raman analysis over an 8 h time period. The ana-

lysis was repeated on several different days to check for

consistency of performance. The results are presented in

Fig. 3, which shows that the pH2 fraction gradually increases

from around 32% to around 43.5% within 2 h. After 2 h, the

increase in xpH2
begins to flatten out, and it takes> 8 h

before a fairly steady production of around 50% is achieved.

From Fig. 3 it can also be seen that the generator performs
similarly over several different days of operation, with some

scatter caused possibly by different operating conditions in

the laboratory (e.g., the room temperature which will affect

the temperature of the H2 gas entering the conversion

chamber). The data from each separate day of operation

can be fitted to the exponential function given in Eq. 4,

xpH2
ðtÞ ¼ xpH2

ð0Þ � x
f
pH2

h i

exp
�t

�

� �

þ x
f
pH2

ð4Þ
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Figure 2. Raman spectra of an evacuated NMR tube, a tube

filled with nH2 at 4 bar, and a tube filled with pH2-enriched H2 at

4 bar.
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where xpH2
ðtÞ is the pH2 fraction at time t, xpH2

ð0Þ is the pH2

fraction at time zero, � is a time constant, and x
f
pH2

is the

final pH2 fraction as time approaches infinity. Values in the

ranges of 94–142min, 31.4–33.5%, and 48.5–50.5% were

estimated for �, xpH2
ð0Þ, and x

f
pH2

respectively, using non-

linear least squares regression (see Table SI for full details).

One possible reason why x
f
pH2

does not reach the equilib-

rium value of 52.1% expected for pH2 fraction at liquid

nitrogen temperatures is that the gas flowing through the
coil does not reach 77K due to insufficient cooling. A value

of 50.0% for xfpH2
instead suggests a slighter higher tempera-

ture of 80K.

Gamliel et al.27 also used a liquid nitrogen cooled pH2

generator (although with an iron(III) oxide catalyst), and

used NMR spectroscopy to measure xpH2
of the resulting

enriched gas. They reported a slow increase in xpH2
over

time, with 42.3% reached after around 2 h, increasing to
46.3% after 3.7 h. This is broadly similar to the rate of

increase shown in Fig. 3. They also report that the increase

in xpH2
is not linear with time, although they do not specify

the form of the non-linear behavior.

To monitor the performance of the pH2 generator on-

line, a simple glass tube was inserted between the outlet of

the generator and the inlet of a pneumatic control unit, as

shown in Fig. 1. This control unit is normally used to control
the input of pH2 into a mixing chamber used for hyperpolar-

ization experiments.19,20,28 In this case the pneumatic control

was used to regulate the pressure in the flow tube and to

control the flow of gas out of the pH2 generator. The Raman

laser was focused onto the inside of the glass tube to provide

in-situ analysis of the composition of the H2 gas flowing dir-

ectly out of the generator and into the control unit.

Figure 4 shows the result of the calculated values of xpH2

from the on-line Raman monitoring of the generator

output. For the first 7 h of running time (before point A

on Fig. 4), the pneumatic control unit was set to sample H2

every 340 s. A sample by the pneumatic control unit con-

sisted of a flow of gas regulated down from 5 bar to 4 bar

for 15 s. As can be seen from Fig. 4, xpH2
increases from

around 30% to 40% within the first 4 h, and a further 2 h is

then required to reach 48%. This trend is similar to the case

when at-line sampling was used (see Fig. 3).
The sampling frequency used in hyperpolarization stu-

dies that also use a similar pneumatic control unit is

reported as being in the range of 10–45 s,20,28,41 which is

much more rapid than the once per 340 s used here.

Therefore, after reaching steady state, the performance

of the pH2 generator was tested by increasing the sampling

frequency of the pneumatic control unit to once every

160 s (between points A and B on Fig. 4) and then to
once every 100 s (between points B and C on Fig. 4).

From Fig. 4, it can be seen that xpH2
decreases rapidly

after point A. After point C, the sampling frequency was

reduced to once every 220 s; after this point, xpH2
gradually

increases again back towards the maximum value of xpH2
. As

the pneumatic control unit regulates when flow occurs

within the pH2 generator, a quicker sampling frequency

results in a shorter residence time for the gas within the
coil that contains the conversion catalyst, and hence less

contact time for conversion from oH2 into pH2. This

explains why the xpH2
decreases when the sampling fre-

quency is too fast.

These results clearly show that the generator used here

would not be suitable for use with very high sampling fre-

quencies, as the xpH2
would fluctuate depending on the

resulting residence time. This important observation may
have been missed without the use of rapid on-line
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Figure 4. Plots of xpH2
against time for the in-house built pH2

generator. xpH2
was calculated from on-line Raman measurements

of the gas flowing at 5 bar between the generator and a pneumatic

control unit. Raman spectra were recorded every 60 s. The con-

trol unit was set to take 15 s samples of H2 every 340 s before

point A, every 160 s between points A and B, every 100 s between

points B and C, and every 220 s after point C. The solid line is a

local polynomial regression (loess) fitting through the data, cal-

culated using a span of 0.2.
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Figure 3. Plots of parahydrogen fraction (xpH2
) against generator

running time for experiments conducted on six different days

(different symbol shapes and colors). Samples were taken for

Raman analysis by filling NMR tubes with pH2-enriched H2 at 4 bar.

The black horizontal dashed line shows the equilibrium value xpH2

at the generator operating temperature (77 K). The solid lines

show the fits of the data points from each day to the exponential

function Eq. 4 (details in the main text and Table SI).
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monitoring. On-line monitoring could be used to judge the

performance of any improved designs for the pH2 gener-

ator to make sure that performance is optimized and con-

sistent. Possible improvements include: using various other

catalyst materials such as hydrous ferric oxide37 instead of

charcoal; increasing the submerged coil volume so that the
residence time of the gas within the conversion chamber is

increased; and increasing the surface area for heat transfer

between the liquid nitrogen and the H2 gas on the surface

of the catalyst.

Comparison and Validation with Nuclear Magnetic

Resonance Measurements

To validate the Raman measurements, NMR analysis was

also conducted on the pH2-enriched gas provided from

the generator. As the samples taken for the at-line study

with Raman were in standard NMR tubes, the exact same

samples could be used for NMR analysis by simply inserting

the sample into the bore of the NMR instrument. Here we

used a bench-top NMR instrument (1H frequency of

43.5MHz). While this provided less signal intensity than a
high field instrument, it allowed the analysis to be con-

ducted at-line, i.e., the pH2 generator, Raman spectrometer,

and NMR spectrometer were all located within the same

laboratory.

Quantification of xpH2
in the gas phase by NMR can be

challenging because of the low density of spins (e.g., com-

pared to the liquid phase) and because pH2 is NMR silent.16

However, the ortho isomer is NMR visible and the xpH2
can

be calculated by taking the ratio of peak area from an

unknown sample to that of a known sample (at the same

gas density), usually nH2.
15,16,21,27 Therefore, the NMR

method only requires a single reference sample and no

further calibration is needed.

Figure 5 compares the NMR spectra of a tube filled with

nH2- and pH2-enriched H2 at 4 bar. As expected, the signal

is very broad16,27 (around 100 ppm or 4350Hz) and the
area is lower for pH2-enriched gas. As can also be seen

from the spectra of an evacuated NMR tube in Fig. 5,

there is a significant background signal. To correct for

this, the background signal was subtracted from the spectra

of the nH2 samples and the at-line samples (see Fig. S2 for

example corrected spectra) in a similar method to that

reported by Hövener et al.16

xpH2
was calculated from the at-line NMR spectra of H2

gas in the NMR tubes using Eq. 5.15

xpH2
¼ 1� xoH2

S0

Sref
ð5Þ

where S0 is the area of the oH2 peak in the NMR spectrum

of an unknown sample and Sref is the area of the oH2 peak in

the NMR spectrum of a sample with a known oH2 com-
position xoH2

. An NMR tube filled with H2 directly from the

hydrogen generator at 4 bar and 294K was used as the

reference sample. The tube was filled and measured five

times to account for slight deviations in filling pressure

and the average area was used as the value for Sref. Based
on the measurement temperature, xoH2

was calculated as

74.9%. Figure 6 shows the comparison of xpH2
calculated

from at-line samples using Raman and NMR analysis; it can

be seen that there is very good agreement between the

two methods, with R2¼ 0.991 and RMSE¼ 0.48%.

Although there is excellent agreement between the two

measuring techniques, Raman analysis has several advan-

tages over NMR for this application. The Raman technique
does not require a reference sample, as both spin isomers

can be directly detected, which simplifies the procedure

and eliminates some sources of error. In NMR analysis,

pH2 is only measured indirectly by measuring the change

in the oH2 signal. While accurate results can be achieved

with the pH2 fractions analyzed from the generator used in

this work (xpH2
5 52%), it would be more difficult to ana-

lyze higher pH2 fractions from a more efficiently cooled
generator. This is because there is less oH2 signal to meas-

ure with NMR as the pH2 fraction increases. As NMR is an

indirect method, it therefore requires a reference sample

with a known composition of oH2. An obvious choice is to

use another tube filled with hydrogen that has a room tem-

perature equilibrium composition of oH2 (i.e., nH2).

Although this assumes that the reference and unknown

samples are filled to the same density, i.e., the same tem-
perature and pressure.15,21 To avoid this problem, Feng

et al.15 also used the unknown sample as the reference

sample, by waiting 72 h for the sample to return to the

room temperature equilibrium composition of oH2.

However, this assumes no leaking of the sample and the

method is not compatible with taking multiple samples in

quick succession. Therefore, we used the approach of using

a separate sample of nH2 as the reference, as used
elsewhere.16,21,27
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Figure 5. Nuclear magnetic resonance spectra of an evacuated
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pH2-enriched H2 at 4 bar.
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The temperature of the laboratory was measured with a

standard kerosene-in-glass thermometer with an accuracy

of �1.5 K, and the pressure of the gas in the tube was

measured with a pressure transducer with an accuracy of

�0.008 bar. Taking into account the density of H2,
42 this

added an uncertainty of �1.1% to the values of xpH2
mea-

sured by NMR. As the at-line samples were filled manually,

the repeatability of pressure was only better than �0.05 bar

between different samples. This resulted in an uncertainty

of �2.6% to the values of xpH2
(see Fig. S3 for details). The

Raman method is insensitive to changes in density between

samples, because this changes the intensity of the peaks but

not the ratio between the peaks. Therefore, an accurate
result could be obtained as long as the filling density was

high enough to provide sufficient signal.

Both the Raman and the NMR methods require calcula-

tion of the Boltzmann distribution between rotational

energy levels of H2, to calculate p0 and p1 in Eq. 2 for

Raman, and to calculate xoH2
in Eq. 5 for NMR. These cal-

culations required the temperature of the gas to be mea-

sured. However, as the Boltzmann distribution only varies
slowly around room temperature, this added an uncertainly

of less than �0.1% for Raman analysis and �0.01% for NMR

analysis (see Figs S4 and S5 for details).

In Situ Monitoring of the Conversion of pH2 in

Nuclear Magnetic Resonance Tubes

Conversion between oH2 and pH2 spin isomers is forbid-
den, so spontaneous gas phase conversion is very slow.3,5,37

However, the glass wall of an NMR tube (e.g., as used for a

SABRE hyperpolarization experiment) offers a surface for

the heterogeneous conversion between spin isomers,

which is more rapid.15,37 Various paramagnetic species in

the glass wall (or in the sample) may also accelerate the

conversion.37 In fact, storage of samples under nH2 at liquid

nitrogen temperatures before thawing and NMR detection
led to one of the first reports of parahydrogen-induced

polarization (PHIP), as pH2 enrichment was built up

during sample storage.4,43,44 Additionally, if there is an

imperfect seal when filling the NMR tube, small amounts

of oxygen could be introduced. This oxygen could then also

act as a paramagnetic catalyst for the conversion of the spin

isomers.21

Gamliel et al.27 measured the conversion of pH2 in NMR

tubes (type of glass not specified), using an NMR method

similar to that described above to determine the pH2 frac-

tion in the gas. They reported that no conversion of pH2

occurred; however, they only monitored the samples for

20min. Tom et al.21 also measured the conversion of pH2 in

NMR tubes using NMR to monitor the pH2 content. They

reported that the back conversion to oH2 at room tem-
perature for a sample starting with& 99.9% pH2 enrich-

ment was 0.4% h�1 in tubes made from the same type of

borosilicate glass as used here. Similarly, Feng et al.15 moni-

tored the conversion of pH2 to oH2 every 8min for 64 h in

an NMR tube. They found that the conversion profile fol-

lowed an exponential function with a time constant of

around 846min. Hövener et al.16 observed a similar profile

in a borosilicate glass vial monitored over 41 h, again using
NMR to determine the pH2 fraction; they reported a simi-

lar time constant of around 820min.

To determine whether conversion of pH2 to oH2 was

occurring inside the NMR tubes used here, five different

tubes were filled with H2 from the pH2 generator at 4 bar

and then analyzed with Raman spectroscopy every 30 s

for 40min. The sampling was done in a similar manner

to the at-line study described above, except that the
NMR tube was left in the beam path of the laser between

measurements, resulting in an in situ measurement of

any conversion occurring inside the NMR tube.

For three of the tubes it was found that almost no back-

conversion occurred within 40min. For instance, for

one sample xpH2
values were scattered around a mean

of 40.5%, with a total range of about 1%, and a standard

deviation of 0.3% (see Fig. S6). This indicates that good
precision and repeatability can be achieved even with

rapid sampling.

For two of the NMR tubes used, conversion from pH2

to oH2 occurred rapidly with a significant decrease in pH2

fraction within 40min. To investigate this further, these two

tubes were refilled with fresh pH2 to 4 bar and analyzed

every 30 s for 3 h. The results are shown in Fig. 7, which

shows that xpH2
decreases very rapidly in both of these

tubes, with complete conversion within 3 h and within 1 h

for tubes 1 and 2, respectively. The two tubes that cata-

lyzed the pH2 to oH2 conversion had very reproducible

behavior. It was possible to fit an exponential to the

decay of xpH2
against time, where the fit had the same

rate constant for each replicate experiment. The rate con-

stant was 5:3� 10�4 s�1 for tube 1 and 27:4� 10�4 s�1

for tube 2. The reason for the vertical offset seen for tube 1
is that the tube was filled at different pH2 generator running
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Figure 6. Plot of xpH2
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against xpH2
calculated using the NMR spectra from the same at-
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times and so had slightly different starting values of xpH2
.

This suggests that these tubes were contaminated with

some form of impurity that accelerates the conversion of

pH2 to oH2.

These results show that by using in-situ Raman analysis it
was possible to monitor a rapid reaction in the gas phase,

which may have gone unnoticed with other analysis tech-

niques. The results also highlight the need to check glass-

ware used when working with pH2-enriched gas, as many

different types of impurities can promote the back conver-

sion to oH2.
2,5,37

To determine the long-term stability of pH2 in a non-

contaminated tube, a fresh sample was analyzed every
20min for a period of 18 h. This sample started with a

xpH2
of 43.0% and decayed with a linear rate of 0.08% h�1

to 41.6% (see Fig. S7). This confirms that pH2 is very stable

within the non-contaminated NMR tubes and thus any con-

version will have a negligible impact on the level of xpH2
for

the measurement times used in the at-line and on-line

monitoring discussed above (�50 s).

Conclusion

In this work, we have presented a rapid method to deter-

mine quantitatively the pH2 fraction in H2 gas using Raman

spectroscopy. The Raman method has several advantages

over other analytical techniques for determining pH2 frac-

tion, most notably that no calibration samples are required.

Here, we used a NCO to acquire Raman spectra of H2 gas
at moderate pressures (� 5 bar) from within standard NMR

tubes or a glass flow tube. This approach greatly simplifies

the set-up and allows for much more rapid analysis com-

pared to previous literature reports of using Raman spec-

troscopy to measure pH2 fraction.
8,10,13,14,26

The performance of an in-house built pH2 generator was

measured on-line by recording Raman spectra from a flow
tube at the outlet of the generator. It was found that the

generator required much longer than anticipated to reach

steady state output (around 7 h). It was also found that

increasing the flow rate of the gas within the generator

reduces the enrichment achieved, presumably because of

a reduction in residence time of the gas flowing in the

generator. This result has important implications for hyper-

polarization experiments requiring pH2 such as SABRE, as
the NMR signal enhancement achieved is proportional to

the enrichment level of the pH2 gas used.
4,11,15 The on-line

monitoring method reported here could be used in the

future to correlate the enhancement of the NMR signal

by SABRE to the pH2 fraction and to assess any changes

to the pH2 generator design.

The rapid nature of the analysis used here permitted

Raman spectra to be acquired every 30 s, so that the fast
interconversion of the spin isomers of hydrogen from an

enriched composition back to the room temperature equi-

librium fraction within contaminated NMR tubes could be

followed in detail. This interconversion may have been

unnoticed with other slower analytical methods. Our

results reveal a clear challenge when working with what is

predicted to be essentially identical NMR tubes. It is also

vital to take note that many PHIP approaches use sealed
NMR tubes and often monitor product formation over

minutes to hours.4,11,45,46 Significant care must therefore

be taken in excluding sample preparation effects in such

studies.

The results reported here for on-line and in-situ moni-

toring using commercially available hardware, represent

close to a 500-fold increase in sensitivity compared to

some previously reported work.13 Improvement and cus-
tomization of the experimental set-up, e.g., by the use of

multiple optical passes, could be expected to further

increase the signal. More generally, this work demonstrates

that Raman spectroscopy can be used to quantify the pH2

fraction in H2 gas in a fast and convenient manner. This is

important in many other applications which require pH2,

such as storage of H2 for fuel.
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