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Abstract

We report strongly non-reciprocal behaviour for quantum dot exciton spins coupled

to nano-photonic waveguides under resonant laser excitation. A clear dependence of

the transmission spectrum on the propagation direction is found for a chirally-coupled

quantum dot, with spin up and spin down exciton spins coupling to the left and right

propagation directions respectively. The reflection signal shows an opposite trend to the

transmission, which a numerical model indicates is due to direction-selective saturation

of the quantum dot. The chiral spin-photon interface we demonstrate breaks reciprocity

of the system and opens the way to spin-based quantum optical components such as

optical diodes and circulators in a chip-based solid-state environment.
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The deterministic coupling of a two-level system to a one-dimensional waveguide provides a

near-ideal platform for demonstrating quantum-optical effects such as single-photon nonlin-

earities.1 A key parameter for such “1-D atoms” is the β-factor, which quantifies the relative

coupling to the waveguide compared to other optical modes. In the limit of β → 1 and with

no decoherence, the scattering of a single photon results in its complete reflection, leading

to a 100% dip in the transmission spectrum.2 Such effects have been observed in a variety

of systems, notably semiconductor quantum dots (QDs) coupled to photonic crystal waveg-

uides3,4 and SiV or GeV centres coupled to nanobeams,5–7 with transmission dips as large

as 60% now reported.8

The recent discovery of non-reciprocal coupling between dipole emitters and nano-photonic

structures9–16 adds a new dimension to the system. These chiral effects arise from the spin-

orbit interaction of light17 and lead to directionality in the β-factor, with circular dipoles

of opposite sense coupling to modes propagating in opposite directions. The result of a

transmission-type experiment on a chirally-coupled emitter has to be different to the non-

chiral case, as the emitter does not couple to the backward propagating mode and hence

reflection is not possible. In the coherent, single-photon limit, with β → 1, light is transmit-

ted with 100% probability and so the transmission dip on resonance is now expected to be

negligibly small.

The ideal behaviour is hard to observe in practice: the β-factor is never perfect and

dephasing is always present to some extent. Moreover, the directional coupling efficiency is

less than unity. In these non-ideal conditions, the behaviour is expected to lie somewhere

between the limits of perfect reflection and perfect transmission for the non-chiral and chiral

cases respectively. In this paper, we present experimental data on a single QD chirally

coupled to a nanobeam waveguide and then use a theoretical model to describe the system.

The key finding is the observation of a spin-dependent dip in the transmission, which depends

strongly on the direction of propagation, thereby breaking reciprocity. We also present

experimental data on directional spin-dependent reflectivity, where, unexpectedly, the more
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weakly coupled dipole gives the larger signal. The theoretical modelling shows that this

counter-intuitive behaviour is caused by the increased saturation of the more strongly coupled

QD spin at the power levels used in the experiment. The use of a semiconductor emitter

fully integrated into a single-mode nanophotonic waveguide leads to a much larger overall

β-factor than used in previous work on non-reciprocal transmission for cold atoms coupled

to a nanofiber,18 moving the system closer to the regime where the transmission dip on

resonance is small.

The studies of non-reciprocal behaviour were carried out on a QD located at a chiral

point (C-point) of a nanobeam waveguide, where opposite circular polarizations propagate

in different directions.15 The structure consisted of a single self-assembled InGaAs quantum

dot embedded within a single-mode, suspended vacuum-clad GaAs waveguide with out-

couplers at its ends for efficient photon extraction, as shown in Fig. 1a. (See Methods for

further details of the sample.) The selection rules shown in Fig. 1b imply that opposite spin

excitons couple to modes propagating in opposite directions. This applies both to emission,

as shown schematically by the blue arrows in Fig. 1c, and to resonant scattering of incoming

photons, as represented by the red arrows.

QDs near C-points were identified by exciting from above the waveguide with a non-

resonant laser at 808 nm and collecting the photoluminescence (PL) from the left and right

out-couplers.15,19 The PL spectra, with a magnetic field of B = 1 T applied out of the

waveguide plane, for the QD employed in this work are shown in Fig. 1d. Clear evidence of

directional emission is present with σ+ light propagating predominantly to the left and σ−

predominantly to the right, as in Fig. 1c. The large degree of directionality shows the strong

chiral coupling for this particular QD. The unidirectional emission contrast was calculated

as in15,19 from the relative intensity of the Zeeman components Iσ+ and Iσ− measured at a

particular out-coupler:

C =
Iσ+ − Iσ−

Iσ+ + Iσ−
. (1)
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Figure 1: (a) Scanning electron microscope (SEM) image of a typical nanobeam waveguide with the
left (L) and right (R) out-couplers labelled, along with the direction of the out of plane magnetic
field ~B. Such structures support both longitudinal and transverse field modes and subsequent
propagation of in-plane circularly polarised light. (b) Selection rules for exciton transitions. The {⇑
,⇓} and {↑, ↓} symbols refer to hole and electron spins, respectively. The splitting of the transitions
is caused by a Faraday-geometry magnetic field. (c) Directional spin-photon coupling. Emission
and resonant scattering are shown by the blue and red arrows respectively. The exciton spin states
that are coupled to the mode are indicated with the same notation as in (b). (d) PL Spectra
for the Zeeman components of the chirally coupled QD at B = 1 T, collected from the left and
right outcouplers (see Fig. 1(a)). The observed linewidths are resolution limited and are also likely
increased by the non-resonant excitation employed. The central energy (zero detuning) corresponds
to 1.35743 eV.
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Over 50 randomly positioned QDs were examined to find those with high spin-dependent

directionality. For the QD employed for the data in Fig. 2, the directional PL contrast ratios

were CL = 0.84 and CR = −0.91 for the left and right out-couplers, showing the strongly

chiral coupling for this particular QD.

Having identified a chirally-coupled QD, the non-reciprocal behaviour in resonant trans-

mission was probed. A tunable single-frequency laser was input to one of the out-couplers

and the transmitted light detected from the opposite out-coupler. An 808 nm non-resonant

repump laser was applied to stabilise the QD charge state;20 no resonant transmission dips

were observed without the repump laser. The QD charge state was not known with certainty

but this was not important as, under the applied magnetic field of B = 1 T, both charged

and neutral excitons emit circularly-polarised light that couples to chiral fields.15 In fact, it

is most likely that we observed a charged exciton, since a repump laser creates free electron-

hole pairs. The use of the repump laser permits the measurement of differential transmission

and reflectivity spectra, where the contribution of the resonant QD transition under study

is clearly identified. (See Methods.)

Differential transmission spectra for L→R propagation are shown in Fig. 2a and for the

reverse case of R→L propagation in Fig. 2b. Energies are measured as a function of detuning

from the exciton transition energy at B = 0 T. Clear transmission features from both the σ−

and σ+ exciton transitions are seen. However, on comparing Figs. 2a and 2b, it is apparent

that the σ− transition is dominant for L→R propagation, whereas σ+ is dominant for R→L

propagation, providing clear evidence for non-reciprocal behaviour in resonant transmission.

All spectra were collected with an incident laser power of 50 nW and weak saturation of the

QD exciton transition is occurring at this power. We discuss the saturation in detail and its

effect on the spectra when we go on to model the system but note now that the maximum

transmission dip is reduced from more than 3% at lower powers to 2.5%.

The differential transmission spectra in Figs. 2a and 2b have dispersive Fano-like line-

shapes which arise from the interaction of the QD with the weak Fabry-Pérot cavity formed
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by reflections from the out-couplers of the sample.3 The lineshape is determined by the phase

difference between the QD optical response and continuum, and is highly sensitive to the

wavelength of the transition and the precise position of the QD relative to the Fabry-Perot

modes. This in turn depends on the propagation direction and the coupling of the incoming

beam to the waveguide modes, a function of the measurement geometry. Positive signals

occur when the QD resonance shifts the system to a point on the Fabry-Pérot mode with

higher overall transmission, giving a larger increase in transmission than the drop caused

by incoherent scattering. The contrast ratio was quantified by fitting the data to Fano line-

shapes. (See Methods). The fits give directional contrast ratios, defined by Eq. 5, of −0.86

and 0.54 for L→R and R→L propagation, respectively. On noting that L→R propagation

in transmission corresponds to R detection in PL, and vice versa for R→L propagation,

it is apparent that these contrasts correlate well with those obtained in PL, with the de-

tailed differences likely originating from the different excitation regimes. The asymmetry

in the directionality between the two propagation directions was observed previously in PL

experiments15 and is likely related to the intrinsic structural asymmetry of the QD.

Figures 2c and 2d present results obtained in the L→L and R→R reflection geometries

respectively. As for the transmission, the normalized differential signal ∆R is plotted —

see Methods, Eq. 3 — leading to the possibility of both positive and negative changes in

the reflectivity. In Fig. 2c, the resonant laser is incident from the left grating-coupler and

the signal is detected in back-scattering from the same grating. In marked contrast to the

transmission experiment with the laser incident from the left (Fig. 2a), a stronger peak is

seen in reflectivity for σ+, with only a weak feature at σ−. The opposite is observed when

the laser is incident from the right coupler, as shown in Fig. 2d. The contrast ratios deduced

from Fano fits to the differential reflectivity are 0.83 and −0.73 respectively for L→L and

R→R propagation. (See Methods.) The contrasts have opposite signs to those measured for

the same direction of incidence in the transmission data.

As a control experiment, we repeated the measurements for a non-chiral system, where the
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Figure 2: Differential transmission and reflectivity spectra for the chirally-coupled QD at B = 1 T:
(a) transmission change ∆T , L→R (left to right) propagation; (b) transmission change ∆T , R→L
propagation; (c) reflectivity change ∆R, input from left; (d) reflectivity change ∆R, input from
right. Differential spectra are used to isolate the resonant contribution of the QD transition. (See
Methods.) The black solid lines show the results of Fano lineshape fits according to Eq. 4.
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QD is positioned close to the centre of the waveguide. We find that in both the transmission

and reflection geometry, similar magnitude spectral features are observed for both spin states

(see Supporting Information, Section S1). This provides strong evidence that the non-

reciprocal effects we observe here are indeed due to chiral-coupling between the QD and

waveguide.

The difference between the behaviour in transmission and reflection for the chirally-

coupled QD, with opposite spins dominating in the two cases, is, at first, rather surprising;

one might naively expect that the QD transition coupled most strongly to the mode would

show the largest signals in both transmission and reflection. This would certainly be true for

a non-chirally-coupled QD, but it is not the expected behaviour for a chirally-coupled QD,

as we now discuss.

The complete system under consideration is shown schematically in Fig. 3a. A QD is

coupled to the single optical mode of a nanobeam waveguide and driven by a resonant laser

field. The laser scatters from the QD and is either transmitted through the waveguide,

reflected back in the direction of the laser input or lost from the sample. The transmission

of an ideal system with perfect directional coupling is 100% for both QD spin states, but

the behaviour of a realistic system is more complicated, being highly sensitive to a number

of key parameters that account for the effects of imperfect directional coupling, an emitter-

waveguide coupling (β-factor) less than unity, dephasing, spectral wandering and blinking.

In the Supplemental Information we model a system such as that shown in Fig. 3a using

the well-known Input-Output formalism.21 The magnitude of the transmission reduction and

reflection due to the QD is then calculated given knowledge of the QD-waveguide coupling,

spectral wandering, blinking and dephasing time of system. In practice, we do not have

access to these values directly and, as many of them contribute to the spectrum of the

QD in the same manner (spectral wandering and pure dephasing for example), they cannot

be deduced from the data. Furthermore, Fig. 2 shows highly Fano-type behaviour, which

originates from reflections at the input and output couplers.
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Table 1: Parameters used in the theoretical model.

Parameter Symbol Value Notes
β-factor β 0.7 calculated in ref.15

Directionality βd 0.95 deduced from Fig. 1d
Radiative lifetime τ 1 ns 0.95 ns measured
Dephasing time τd 0.8 ns comparable to refs3,4,12,20

Spectral wandering variance σ 4 µeV deduced from PL linewidth
Dark probability Pdark 0.25 within range of refs3,4

Owing to the number of free parameters, it is then not possible to perform a first-

principles fitting of the theory to the experimental data. We can however use good estimates

for these parameters, derived from both experimental data and the literature, to show that

the observed behaviour of the system is both reasonable and expected. For instance the

coupling between the QD and waveguide is deduced from simulations15 and the QD lifetime

is directly measurable. We define the quantity βd as the fraction of the QD emission directed

into the waveguide which propagates in R→L direction and use a value of βd = 0.95. This

implies a PL contrast ratio of [βd − (1 − βd)] = 0.90, in agreement with the results in

Fig. 1d. A lower limit of the pure dephasing time τd > 120 ps is set by the 8µeV QD

linewidth, but the actual value of τd is longer due to the inhomogeneous broadening caused

by spectral wandering. In the model we use γd = (τd)
−1 = (800 ps)−1 as a reasonable semi-

quantitative estimate for a quantum dot in a nano-photonic environment under resonant

excitation.3,4,12,20 The final parameters we require are estimates for the spectral wandering

and blinking probability, Pdark. The spectral wandering is characterised by the parameter

σ, the variance of the distribution, with σ = 4 µeV giving a good fit to the measured

8 µeV QD linewidth. It is not possible to obtain a direct experimental estimate of Pdark but

previously reported values (e.g. in Refs.3,4) fall within the range 0 ≤ Pdark ≤ 0.5 and so we

use Pdark = 0.25 as a reasonable estimate. These parameters are summarised in Table 1

The transmission spectra, calculated using the parameters of Table 1 are shown in Fig. 3b.

The central energy of the QD is set at 1.3 eV, and the splitting between the low and high
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energy Zeeman components is 0.16 meV (as in the experimental data in Figs 1d and 2), with

the higher frequency component having the stronger coupling. The transmission dips are

asymmetric, with the dip being stronger for the component preferentially coupled to the QD,

in agreement with the experimental data and our intuitive understanding. The depth of the

dips are close to those observed in Fig. 2, a maximum of 4% experimentally and 5% in the

model, showing that the parameters used in the model are a reasonable approximation to

the real system. We furthermore note that the size of the stronger dip is strongly dependent

on the input power, which indicates that the system is saturated at powers of the order of

1 nW impinging on the QD.

The qualitative behaviour in reflection is expected to be significantly different. Consider

a R→L input laser, coupling with relative efficiency of ∼95% to the σ+ dipole, which is in

turn coupled with ∼5% efficiency to the L→R mode. By contrast, the σ− dipole couples with

relative efficiency of 5% to the R→L mode but 95% efficiency to the L→R mode. As a first-

order approximation and ignoring the interference effects that dominate in symmetrically-

coupled systems, the fraction of the laser reflected into the L→R mode is ∼ (95%× 5%)2 ≈

0.2% in both cases. (Note that the reflected and transmitted intensities are dependent on

the square of the β-factor8). This intuitive result with equal reflectivity peaks is reproduced

by our numerical model provided that the power input to the system remains low, as shown

in Fig. 3c. This low-power regime is characterised by the balancing of the stronger coupling

to the laser with weaker back-scatter coupling, and vice versa. At higher powers asymmetry

develops, as the more strongly coupled transition saturates first.

In order to obtain a more thorough comparison of experiment and theory, we need to

relate the power levels used in the model to those for the measured spectra. The powers

used numerically are those within the waveguide—after unknown coupling losses—and this

makes direct comparison difficult. We can, however, calibrate the external power relative

to that within the waveguide by analysing the predicted power dependence of the stronger

transmission dip and comparing with experiment. In the main part of Fig. 4, we plot the
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Figure 3: (a) Schematic of the system. A laser is coupled into a section of waveguide containing a
QD, which is located at a C-point. The laser is either transmitted down the waveguide, reflected
from the QD back down the waveguide or scattered into a continuum of free-space loss modes. (b)
Calculated transmission and (c) reflection of the system for incident L→R laser driving. Powers of
1, 10 and 100 pW are represented by blue, red and green curves respectively, with 1, 10 and 100 nW
shown in yellow, purple and orange. The saturation data in the inset of Fig. 4 indicates that the
experimental conditions correspond to a power between 100 pW and 1 nW in the simulation.
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power saturation dependence predicted by the model and show as an inset the experimen-

tally determined power dependence. The spectra used to determine the experimental power

dependence can be found in the Supplemental Information, Fig. S2.
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Figure 4: Theoretical power dependence of the main transmission dip on resonance for the prefer-
entially coupled component. Inset: the experimentally measured dependence. The power employed
for the resonant transmission and reflection experiments is indicated by the grey star marker. The
spectra used to determine the experimental power dependence can be found in the Supplemental
material.

At low powers, below 10 pW, the main part of Fig. 4 (the theory, the blue curve) confirms

that the magnitude of the transmission dip is independent of incident laser power: fewer than

one photon is interacting with the QD within its lifetime. As the power is increased up to 10

nW, the magnitude of the dip decreases as the QD can only interact with a certain fraction

of the input light. At powers above 10 nW, the QD scatters an insignificant fraction of the

incident photon flux and the fully saturated regime is entered. Experimentally we see very

little reduction in transmission dip between 5 and 20nW and a marked reduction in trans-

mission dip thereafter. By comparing points with the same 30% reduction in transmission

dip and cross-correlating, we are able to deduce that the power of 50 nW incident on the

sample corresponds to a power of 100 pW to 1 nW within the waveguide. Having semiquan-

titatively calibrated the power, and returning to the theory curves of Fig. 3, we see that in

this power range (represented by the green and yellow curves), the low frequency component
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still dominates in transmission, but the reflectivity has developed an asymmetry, with the

higher frequency component being the stronger. The model thus qualitatively predicts the

asymmetry in reflection observed in Figs 2c and 2d through the different saturation powers

for the two transitions.

To take a specific example; in Fig. 2d we observe a contrast of -0.73 between the strongly

and weakly coupled transitions. With the knowledge that the power incident on the QD lies

in the range 100 pW to 1 nW, we now deduce this ratio from the reflectivity predictions of

Fig. 3c. We see that for the green curve (100 pW), the contrast is -0.11 and -0.67 is predicted

for the yellow curve (1 nW). The magnitude of experimental asymmetry in reflectivity is thus

reproduced semi-quantitatively by the theory, providing good evidence for its origin in the

direction-dependent saturation of the QD. Furthermore, we see that the green and yellow

curves of Fig. 3b show that the transmission dips have contrasts of 0.5 and 0.33 for the more

strongly and weakly coupled components respectively. This is in good agreement with the

experimental data of Fig. 2b, which shows a ratio of 0.43.

Finally we note that a key parameter that can be calculated is the maximum phase shift,

∆φ, that is imparted to a single photon as it is transmitted past the QD. The value of ∆φ

is π for an ideal system with β → 1, βd → 1, and (τd)
−1 → 0. Since the transmission

probability of the ideal system is 100%, a scalable quantum network can be implemented

using this spin-dependent phase-shift.22 In our system, ∆φ is calculated to be of the order of

0.4 rads if we ignore spectral wandering, which occurs on time scales longer than the emitter

lifetime. The actual ‘useful’ phase shift that could be extracted from an experimental sample

would, of course, be lower, owing to spectral wandering and blinking. If we moved from a

simple nanobeam to a photonic crystal platform, we could expect an increase in the β-factor

from ∼ 0.7 to ∼ 0.9 and this would potentially boost ∆φ to > 0.6 rads. The limiting factor

at this point would then be the pure dephasing time, with a 3 ns time (as opposed to the

800 ps used for the modelling) giving ∆φ ∼ 2 rads. Since the dephasing time is an intrinsic

property of the QD, a more realistic way to engineer this enhancement would instead be to
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reduce the radiative lifetime via a Purcell enhancement.

In conclusion, we have reported non-reciprocal transmission for a QD chirally coupled

to the electromagnetic field supported by a nano-photonic waveguide. The key experimen-

tal result is the observation of a spin-dependent dip in the transmission spectrum, varying

with the direction of propagation. The results observed in reflection geometry are initially

counter-intuitive, with the more weakly-coupled transition giving a larger signal. We have

shown that this is caused by partial saturation of the more-strongly coupled transition. We

also show that the modelling of a realistic QD leads to a good understanding of the ex-

perimental data and what could be expected in non-ideal conditions. Further work with

narrower-linewidth QDs in charge-stabilised structures4,8 is expected to lead to the observa-

tion of deeper transmission dips down to ∼ 30% limited by the β-factor, so that the power

dependence of the reflectivity could be explored in more detail. Alternatively, the use of dots

with Purcell enhancement23 and higher coherence could take us closer to the regime where

a single photon can be deterministically imparted with a π-phase shift on transmission.

The proof-of-principle results demonstrated in the paper have the potential to pave the

way towards a spin-photon interface that would have applications in communication and

quantum information technologies. For example, the use of QDs with high directionality

but low β-factors could open the way to the realisation of on-chip, compact optical diodes

operating at the single-photon level,18 or single-photon logic devices where the spin state

is switched by external laser control,13 while moving to higher β could lead to spin-based

quantum networks,22 where quantum information is transmitted by emitted photons in a

scalable, on-chip geometry.

Methods

Sample . The experiments were carried out on single QDs embedded in vacuum-clad single-

mode waveguides. The InGaAs quantum dots were grown by the Stranski-Krastanov tech-
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nique and were embedded in 140 nm thick GaAs regions, grown on top of a 1 µm thick

AlGaAs sacrificial layer. Single-mode nanobeam waveguides of thickness 280 nm and height

140 nm were produced by a combination of electron-beam-lithography and wet and dry

etching. Second-order Bragg-grating in/out-couplers24,25 were added on both ends of the

waveguides for coupling to external laser fields. A scanning electron microscope image of a

typical structure is shown in Fig. 1a. Further details of the sample structure and fabrication

may be found in Ref.20

Experimental set-up. The measurements were made at 4 K in a confocal system

with separate control of the excitation and detection spots. The spatial resolution was 1–

2 µm26 and a Faraday-geometry magnetic field B = 1 T was applied to split the σ+ and

σ− Zeeman transitions, as shown in Fig. 1b. This provided a convenient method to observe

the interactions of a resonant laser field with well-defined spin states of the QDs within the

mode-hop-free scan range of the laser.

A weak non-resonant 808 nm repump laser with power 10 nW was used to stabilize the

charge state of the dot.20 The repump laser beam was mechanically chopped at 500 Hz,

and lock-in techniques were employed to maximise the signal to noise in the detection of

the resonant laser transmitted to the out-coupler.27 The normalized differential transmission

spectrum ∆T was obtained by finding the difference between the detected intensity with and

without the repump laser:

∆T =
(IT

ON
− IT

OFF
)

IT
OFF

, (2)

where IT
ON

is the transmitted signal with the re-pump laser on and IT
OFF

is the background

signal with no re-pump laser. This differential signal gives the contribution of the quantum

dot transition that is resonant with the laser. The differential reflectivity ∆R was defined

equivalently:

∆R =
(IR

ON
− IR

OFF
)

IT
OFF

, (3)

where the superscript R indicates that the reflected signal is measured.
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Fitting . The fitting of the transmission and reflection data was performed using Fano

lineshapes described by the following equation:

y(ω) = y0 + A
(qΓ + ω − ω0)

2

Γ2 + (ω − ω0)2
, (4)

where y0 is a background level, A is the signal amplitude, q is the Fano parameter, Γ is

the line broadening, and ω0 is the resonant frequency. The contrast ratio for the directional

differential transmission and reflectivity were then calculated from the appropriate fitted

amplitudes according to:

C =
Aσ+ − Aσ−

Aσ+ + Aσ−
, (5)

where Aσ+ and Aσ− are the Fano amplitudes for the σ+ and σ− Zeeman components at the

out-coupler under study.
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