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RAMIFICATION OF THE EIGENCURVE AT CLASSICAL RM

POINTS

ADEL BETINA

Abstract. J.Belläıche and M.Dimitrov have shown that the p-adic eigencurve

is smooth but not étale over the weight space at p-regular theta series attached to

a character of a real quadratic field F in which p splits. In this paper we prove the

existence of an isomorphism between the subring fixed by the Atkin-Lehner involution

of the completed local ring of the eigencurve at these points and an universal ring

representing a pseudo-deformation problem. Additionally, we give also a precise cri-

terion for which the ramification index is exactly 2. We finish this paper by proving

the smoothness of the nearly ordinary and ordinary Hecke algebras for Hilbert mod-

ular forms over F at the overconvergent cuspidal Eisenstein points, being the base

change lift for GL(2)/F of these theta series. Our approach uses deformations and

pseudo-deformations of reducible Galois representations.

1. Introduction

Let p be a prime number and C be the p-adic eigencurve of tame level N constructed

using the Hecke operators Up and Tℓ, < ℓ > for ℓ ∤ Np. Recall that C is reduced and

there exists a flat and locally finite morphism κ : C → W, called the weight map, where

W is the rigid space over Qp representing homomorphisms Z×
p × (Z/NZ)× → Gm. The

eigencurve C was introduced by Coleman-Mazur in the case where the tame level is one

(see [11]), and by Buzzard and Chenevier for any tame level (see [6] and [7] for more

details).

By construction of C, there exists a morphism Z[Tl, Up]ℓ∤Np → Orig
C (C) such that

we can see the elements of Z[Tl, Up]ℓ∤Np as global sections of the sheaf Orig
C , bounded

by 1 on C. Therefore, the canonical application ”system of eigenvalues” C(Q̄p) →
Hom(Z[Tl, Up]ℓ∤Np, Q̄p) is injective, and induces a correspondence between the systems of

eigenvalues for Hecke operators of normalised overconvergent modular eigenforms with

Fourier coefficients in Cp, of tame level N and of weight k ∈ W(Cp), having nonzero

Up-eigenvalue and the set of Cp-valued points of weight k on the eigencurve C; more-

over, since the image of Z[Tl, Up]ℓ∤Np is relatively compact in Orig
C (C) and Orig

C (C) is
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2 ADEL BETINA

reduced, there exists a pseudo-character T : GQ,Np → Orig
C (C) of dimension 2 such that

T (Frobℓ) = Tℓ.

The weight map C → W is étale at non-critical p-regular points corresponding to

classical modular forms of weight ≥ 2. It follows from the semi-simplicity of the action

of the Hecke algebra, the classicality criterion of overconvergent modular forms and the

fact that the multiplicity of the operator Up is exactly one (see [11, 7.6.2], [10], [21] and

[27]). However, the étalness of the weight map can fail in weight one (For more details

see [3], [9] and [16]).

The locus of C where |Up| = 1 is open and closed in C, is called the ordinary locus of

C and denoted by Cord. The ordinary locus Cord is isomorphic to the rigid space given

by the maximal spectrum of the generic fiber of the universal p-ordinary Hecke algebra

of tame level N generated by the Hecke operators Tℓ for all primes ℓ ∤ Np and Up.

Let f(z) =
∑

n≥1 ane
2iπnz be a cuspidal classical weight one newform corresponding

to a point of Cord. According to a theorem of Deligne and Serre [14, Prop.4.1 ], there

exists a continuous irreducible representation with finite image ρ : GQ → GL2(Q̄) such

that ρ(Frobℓ) = aℓ for all prime numbers ℓ ∤ Np.

We fix an algebraic closure Q̄p of Qp and an embedding ıp : Q̄ →֒ Q̄p, which determines

an inclusion GQp →֒ GQ. Since the image of ρ is finite and f is ordinary at p, ρ|GQp
=

ψ1 ⊕ψ2, where ψ1, ψ2 : GQp → Q̄×
p are characters and ψ2 is unramified. We say that f is

regular at p if and only if ψ1 6= ψ2.

Let T be the completed local ring of C at f and Λ be the completed local ring of W at

κ(f). The weight map κ induces a finite flat local homomorphism κ# : Λ → T of local

reduced complete rings.

We denote by C the category of complete noetherian local Q̄p-algebras with residue

field isomorphic to Q̄p and whose morphisms are local homomorphisms of Q̄p-algebras.

Under the assumption that f is p-regular, the functor of p-ordinary deformations of ρ

is representable by an universal 2-tuple (R, ρord), where ρord : GQ → GL2(R) is the

universal ordinary deformation of ρ (see [3, §2]). Under the assumption that ρ is p-

regular, M.Dimitrov and J.Belläıche obtained in [3] the following crucial results which

will be often referred to in this paper.

Theorem (J.Belläıche-M.Dimitrov [3]).

(i) There exists an ordinary deformation ρT : GQ,Np → GL2(T ) of ρ such that

Tr ρT (Frobℓ) = Tℓ when ℓ ∤ Np, and the morphism κ# : Λ → T sends the

universal deformation of det ρ to det ρT .

(ii) R is a discrete valuation ring and the p-ordinary deformation ρT induces an

isomorphism R ≃ T .
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(iii) The morphism κ# : Λ→ T is ramified if and only if f has RM by a real quadratic

field in which p splits.

Let F be a quadratic real field in which p splits, ǫF : GQ/GF → {−1, 1} be the non

trivial character and σ be a generator of Gal(F/Q). We say that f has RM by F if and

only if ρ ≃ ρ⊗ǫF . According to [18, Prop.3.1], there exists a character φ : GF → Q̄×
p such

that ρ ≃ IndQF φ. The embedding ιp singles out a place v of F above p; and denote by vσ

the other place above p. The hypothesis of f being p-regular implies that φ|GFv
6= φσ|GFv

.

Since p splits in F , it follows that GFv = GQp , φ|GFv
= ψ1 and φσ|GFv

= ψ2.

The map given by ρord → ρord ⊗ ǫF yields an automorphism τ : R → R. Denote by

Rτ=1 the sub-ring of R fixed by τ .

In section §3, we introduce a local ring Rps representing a pseudo-deformation functor

of the reducible Galois representation ρ|GF
to the objects of the category C, with some

local condition at p (i.e ordinary at v) and with invariant trace by the action of σ on GF

(see Definition 3.4). We write Rps
red for the quotient of Rps by its nilradical.

Theorem 1.1. There exists an isomorphism Rτ=1 ≃ Rps
red and Rps

red is a discrete valu-

ation ring.

Denote by H ⊂ Q̄ the number field fixed by ker(ad ρ), H∞,v (resp. H∞,vσ) be the

compositum of all Zp-extensions of H which are unramified outside v (resp. vσ), H∞ be

the compositum of H∞,v and H∞,vσ , L∞ be the maximal unramified abelian p-extension

of H∞, and X∞ be the Galois group Gal(L∞/H∞). It is known that Gal(H∞/H) ≃ Z2s
p

acts by conjugation on X∞ and that X∞ is a finitely generated Zp[[Gal(H∞/H)]]-module

(see [20]).

Theorem 1.2. Let F ′′ be the maximal unramified extension of H contained in H∞ and

L0 be the subfield of L∞ such that Gal(L0/H∞) is the largest quotient of X∞ on which

Gal(H∞/F ) acts trivially. Assume that L0 is an abelian extension of F ′′ or Gal(L0/H∞)

is a finite group, then the ramification index e of C over W at f is exactly 2.

When H is a biquadratic extension of Q, the assumptions of the above Theorem are

related to the semi-simplicity of some torsion Iwasawa Modules (see [26] for more details).

Our approach is inspired by the paper [9] of Cho-Vatsal and uses the results of paper

[3]. More precisely, we prove in Lemma 2.4 that the ramification index of Rτ=1 →֒ R is

two. The key observation made in section §3 concerns that the ring Rτ=1 is isomorphic

to Rps
red. Therefore, the ramification index of κ at f is two if, and only if Rps

red ≃ Λ.

Hence, it is sufficient to prove that the relative tangent space of Rps
red over Λ is trivial,

which will be elaborated in Theorem 4.5.



4 ADEL BETINA

Let ρ̄ = IndQF φ̄ denote the residual representation of ρ, where φ̄ : GF → F×
p is a

character and Fp is a finite field of characteristic p. Assume that φ is the Teichmuller

lift of an unramified character φ̄ (in this case F = Q(
√
N)). We denote by m the

maximal ideal of the universal p-ordinary Hecke algebra hQ = hQ(Np
∞) of tame level

N determined by the representation ρ̄, and by hF = hF (p
∞) (resp. hn.ordF ) the reduced

p-ordinary (resp. p-nearly ordinary) Hecke algebra arising from cuspidal Hilbert modular

forms of level p∞ for the real quadratic field F .

Langlands proved in [28] that any primitive elliptic cuspidal eigenform fk belonging

to Sk(Γ1(N), ǫF ) of weight k ≥ 2 and of Neben type character ǫF has a base change

lift f̃k for GL(2)/F . More precisely, f̃k is a primitive Hilbert modular eigenform for

GL(2)/F of weight k, level 1, with a trivial Neben type character and such that L(f̃k, s) =

L(ρfk|GF
, s), where ρfk is the p-adic Galois representation attached to fk (i.e L(fk, s) =

L(ρfk , s)). Moreover, Hida constructed in [24, §2] an involution ω on hQ,m, and following

the work of Langlands, Doi, Hida and Ishii in the papers [28] and [18], there exists a

base-change morphism:

β : hF → hQ.

The above-mentioned authors constructed also an action of ∆ = Gal(F/Q) on hF

given by σ(Tq) = Tqσ . Let y denote the inverse image of m under this base-change map.

Doi, Hida, and Ishi were interested by the congruence relations between Hilbert mod-

ular forms, and their reflection in certain twisted adjoint L-values. This question led

them to study the congruences between forms that arise via base-change from Q, and

those being intrinsic to F . Subsequently, they conjectured under suitable assumptions

that

hF,y/(∆− 1)hF,y ≃ hω=1
Q,m ,

where hω=1
Q,m is the fixed part of hQ,m by the involution w (see [18, 3.8]).

Since the dihedral representation ρ becomes reducible upon restriction to GF , it follows

from the properties of the base-change morphism β that the restriction of ρ to GF is

the Galois representation associated to an ordinary p-adic cuspidal weight one Hilbert

Eisenstein series E1(φ, φ
σ) of level 1 (see [18, §3.4]). The system of Hecke eigenvalues

associated to E1(φ, φ
σ) gives a height one prime ideal n = β−1(pf ) of hF , where pf is the

height one prime ideal of hQ corresponding to the system of Hecke eigenvalues associated

to f . Denote by nn.ord the height one prime ideal of the nearly ordinary Hecke algebra

hn.ordF given by the inverse image of n via the natural surjection hn.ordF ։ hF ; namely

nn.ord is the closed point of Spechn.ordF [1/p] associated to the system of Hecke eigenvalues

of E1(φ, φ
σ).



RAMIFICATION OF THE EIGENCURVE AT CLASSICAL RM POINTS 5

Let Tord be the completed local ring for the étale topology of SpechF [1/p] at a geo-

metric point (i.e Q̄p-point) corresponding to n (i.e Tord is the completion of the strict

local ring at n), and write Tord∆ for the reduced quotient of Tord by the radical of the

ideal generated by elements of the form ∆(a)− a.

Theorem 1.3. The base-change morphism β induces an isomorphism of local rings

βf : Tord∆ ≃ T+, where T+ is the subring of T fixed by τ under the identification R ≃ T .

Theorem 1.3 allows us to use the exact same arguments that are already given in

the proof of Theorem [9, B] to deduce the following variant of the Conjecture [18, 3.8]

without assuming that φ̄2|Iv 6= 1 as in [9, B].

Corollary 1.4. Assume that p > 2 and that the following conditions hold for ρ̄:

(i) The character φ̄ is everywhere unramified and φ̄|GFv
6= φ̄σ|GFv

.

(ii) The restriction of ρ̄ to Gal(Q̄/Q(
√

(−1)(p−1)/2p)) is absolutely irreducible.

Then the image of the base-change morphism β : hF → hω=1
Q,m has a finite index.

Theorem 1.5. Assume that φ is unramified everywhere and φ(Frobv) 6= φσ(Frobv),

then:

(i) The affine scheme Spechn.ordF is regular at the point nn.ord corresponding to the

system of Hecke eigenvalues associated to E1(φ, φ
σ).

(ii) The affine scheme SpechF is regular at the point n corresponding to the system

of Hecke eigenvalues associated to E1(φ, φ
σ), and in this case Tord ≃ Tord∆ ≃ T+.

Hida proved in [22] that an ordinary Hilbert cuspform of cohomological weight is a

specialization of a unique, up to Galois conjugacy, primitive p-ordinary Hida family. Ge-

ometrically, this translates into the smoothness of the nearly ordinary Hecke algebra at

the height one prime ideal corresponding to that cuspform. In fact, Hida proves even

more, namely the nearly ordinary Hecke algebra being étale at that prime ideal over

the Iwasawa algebra Zp[[T1, T2, T3]]. On the other hand, the criterion for classicality of

Hilbert overconvergent modular forms of [5] and [31] generalizes the result of Hida, and

implies that the Hilbert eigenvarieties are étale over the weight space at the points corre-

sponding to classical non-critical p-regular Hilbert cuspforms (see [1] for the construction

of the Hilbert Eigenvarieties).

However, there are examples where the étaleness of the Hilbert eigenvarieties (resp.

parallel Hilbert eigencurves) over the weight space fails in weight one. More precisely,

while the Hilbert Eigenvariety is smooth at some classical weight one points with real

multiplication, the parallel weight Hilbert Eigencurve is singular at those points, con-

trasting the famous Hida’s control theorem (see [4] and [15]).
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The purely quantitive question of how many Hida families specialize to a given classical

p-stabilized weight one eigenform, can be reformulated geometrically as to describe the

local structure of the ordinary locus of the Hilbert Eigenvarities at the corresponding

point.

Now, let Tn.ord be the completed local ring for the étale topology of Spechn.ordF at a

geometric point (i.e Q̄p-point) corresponding to nn.ord and F (resp. Ford) be any nearly

ordinary (resp. cuspidal ordinary of parallel weight) p-adic family which specializes to

the ordinary p-adic cuspidal Eisenstein series E1(φ, φ
σ) in weight one. It follows from

Theorem 1.5 that F (resp. Ford) is unique up to a Galois conjugation, since there is

only one irreducible component of Spechn.ordF (resp. SpechF ) specializing to the point

nn.ord (resp. n), and it follows from the fact that Tn.ord and Tord are regular rings (hence

integral domains). Moreover, Ford is the base change lift of a p-ordinary Hida Family

passing through f .

In the following, the main ideas behind the proof of Theorem 1.5 will be explained :

First, we construct in Proposition 6.3 a p-nearly ordinary deformation

ρTn.ord : GF → GL2(T
n.ord)

of a reducible but indecomposable representation ρ̃ with trace φ+ φσ (this construction

is inspired by [2]).

Subsequently, we introduce a deformation problem Dn.ord of ρ̃ with some local con-

ditions at p; as such, Dn.ord is representable by Rn.ord which surjects to the local ring

Tn.ord of dimension 3. The computation of the tangent space tn.ordD of Dn.ord represents

an important part of the proof and shows using Galois cohomology that tn.ordD is of di-

mension 3 (see Theorem 6.8). Hence, the surjection Rn.ord
։ Tn.ord is an isomorphism

of complete local regular rings of dimension 3.

Finally, a direct computation shows that the tangent space of the p-ordinary quotient

Tord of Tn.ord is of dimension one, and hence Tord a discrete valuation ring.

Remark.

(i) Suppose that the residual representation ρ̄ of ρ satisfies the assumptions of the

theorems of Taylor-Wiles [36] and [38], φ̄2|Iv 6= 1 and p ≥ 3, then Cho-Vatsal showed

under theses additional assumptions Theorem 1.1.

(ii) H.Darmon, A.Lauder and V.Rotger stated in [13] a formula for the q-expansion

of a generalised overconvergent form f † in the generalized space associated to f (which

is not classical). The coefficients of the generalised eigenform f † are expressed as p-adic

logarithms of algebraic numbers.
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(iii) S.Cho provided in [8, §7] several examples of the ramification index e of C over W
at f being exactly 2. More precisely, Cho presented examples where hω=1

Q,m is unramified

over the Iwasawa algebra Zp[[T ]].

(iv) Dimitrov and Ghate provided in [16, §7.3] several examples emphasising that T
is of rank two over Λ. As such, the index e is also 2 in their examples.

(v) Pilloni gave in [30] a geometric definition of overconvergent modular forms of any

p-adic weight and reconstructs the eigencurve C without using the Eisenstein family.

Notation. If L is a number field and S the places of L above Np, we denote by GL,S the

Galois group of the maximal extension of L unramified except at the places belonging

to S and at infinite places.

Throughout this paper, O will denote the ring of integers of a p-adic field containing

the image of the character φ.

Let Fp denote the residue field of O.

Let CNLO denote the category of complete, local, Noetherian O-algebras with residue

field Fp, and whose morphisms are the local morphisms of local rings inducing the identity

on their residue fields.

For any commutative local ring A, write MA for the free A-module A⊕A, and mA for

the maximal ideal of A.

Let ΛO denote the Iwasawa algebra O[[T ]].

If W is a representation of G and {Gi}i∈I are subgroups of G, we will write:

Hi(G,W )Gi = ker

(
Hi(G,W ) → ⊕

i∈I
Hi(Gi,W )

)
.

Let H be a normal subgroup of G, then we denote by Hi(H,W )G/H the elements of

Hi(H,W ) which are invariant under the action of G/H.

We assume throughout this paper that p splits into two places v, vσ of F , and let p

(resp. pσ) denote the prime ideal over p of the ring of integers of F corresponding to the

place v (resp. vσ).

Let ∆ be the Galois group of the real quadratic extension F/Q.
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2. Preliminaries and some properties of R and Rτ=1

For A any local ring with maximal ideal mA and belonging to the category C , let

D(A) be the set of strict equivalence classes of representations ρA : GQ → GL2(A) such

that ρA mod mA = ρ and which are ordinary at p in the sense that

(ρA)|GQp
≃

(
ψ′

A ∗

0 ψ′′

A

)
,

where ψ′′
A is an unramified character lifting ψ2. According to Schlesinger’s criteria the

functor D is representable by (R, ρord) (see [3, §2]) and denotes by tD its tangent space.

2.1. Some properties of ρord and the ring Rτ=1. Let H ⊂ Q̄ be the number field

fixed by ker(ad ρ) and G be the Galois group of the finite Galois extension H/Q. Since

the projective image of ρ is dihedral, G contains elements of order 2 and with non trivial

restriction to F ; with a slight abuse of notation we will denote one of them by σ. Let

(e1, e2) be a basis in which ρ|GF
= φ ⊕ φσ, by rescaling this basis one can assume that

ρ(σ) = ( 0 1
1 0 ) in PGL2(Q̄)

We will exhibit a suitable basis of the free R-module MR, where the diagonal entries

of the realization of ρord in this basis depend only on the trace of Tr ρord. The existence

of this basis will be crucial to define the functor of p-ordinary pseudo-deformations in

section §3, since the line ofMR which is stable under the action of GQp is not necessarily

stable under the action of the complexe conjugation c.

Lemma 2.1. Let γ0 be a fixed element of GFv , which lifts Frobv (ιp : GFv

≃−→ GQp) and

satisfies φ(γ0) 6= φσ(γ0), then there exists a basis Bord
R of MR, such that ρord(γ0) = ( ∗ 0

0 ∗ )

and ρord|GFv
= ( ∗ ∗

0 ∗ ) in this basis.

Proof. Let K be the field of fractions of R (R is a discrete valuation ring). Since R
is Henselian (even complete) and φ(γ) 6= φσ(γ0), there exists a basis of MR ⊗ K such

that ρord ⊗K(γ0) = ( ∗ 0
0 ∗ ) and ρord|GFv

⊗K = ( ∗ ∗
0 ∗ ). Moreover, R is a discrete valuation

ring, hence we can rescale this basis in the aim to get a basis of MR fulfilling the desired

conditions. �

Remark 2.2. Since φ(γ0) 6= φσ(γ0), any other basis satisfying the same assumptions of

Lemma 2.1 is obtained by conjugating the chosen basis by a diagonal matrix. Such conju-

gation does not change a(g), d(g) and the product b(g).c(g), where ρord(g) =
(
a(g) b(g)
c(g) d(g)

)
.

As ρ is dihedral, N(ρ⊗ ǫF )N = ρ, where N =
(
−1 0
0 1

)
in (e1, e2).

Definition 2.3. Let g →
(
ã(g) b̃(g)

c̃(g) d̃(g)

)
be the realization of ρord in a basis Bord

R satisfying

the assumption of Lemma 2.1. Consider the automorphism Ñ of EndR(MR) given by
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(
−1 0
0 1

)
in the basis Bord

R , then the map ρord → Ñ(ρord⊗ ǫF )Ñ induces an automorphism

t of the deformation functor D, hence an automorphism τ : R → R, with τ2 = 1.

Since Tr t(ρord) = Tr(ρord ⊗ ǫF ), a theorem of Nyssen [29] and Rouquier [32] implies

that the deformation t(ρord) is isomorphic to ρord ⊗ ǫF . Therefore, the involution τ is

independent of the choice of a basis of MR in which Ñ =
(
−1 0
0 1

)
.

Let A be a ring in the category C. Then any deformation ϕA : GQ,Np → A× of det(ρord)

is equivalent to a continuous homomorphism h : GQ,Np → 1 + mA. Using the class field

theory, we obtain an isomorphism Hom(GabQNp
, 1+mA) ≃ Hom((Z/NZ)××Z×

p , 1+mA) =

Hom(1 + qZp, 1 +mA), where q = p if p > 2, and q = 4 if p = 2.

Since 1 + mA does not contain elements of finite order and Λ ≃ Q̄p[[1 + qZp]], any

deformation of det ρ to the ring A is obtained via a unique morphism Λ → A. By an

abuse of notation, we will write κ# : Λ→ R for the morphism induced by the deformation

det ρord of det ρ (i.e we identify R and T ).

Lemma 2.4.

(i) The involution τ is an automorphism of Λ-algebras.

(ii) Let Rτ=1 denote the subring of R fixed by τ , then Rτ=1 is an object of the

category C and has Krull dimension equal to one.

(iii) Rτ=1 is a discrete valuation ring.

(iv) Let L denote the field of fractions of Rτ=1 and recall that K is the field of

fractions of R, then L is equal to the set of elements of K fixed by τ .

(v) The involution τ : R → R is not trivial and the injection ι : Rτ=1 → R has

ramification index equal to 2.

Proof.

(i) Since det(ρord) = det(Ñ(ρord ⊗ ǫF )Ñ), τ ◦ κ# = κ#.

(ii) Since κ# : Λ → T is a finite flat homomorphism and R ≃ T , Rτ=1 is finite over

Λ. The fact that Λ is a Henselian ring of dimension one (even complete) implies that

Rτ=1 is a finite product of local rings with Krull dimension equal to one. However, the

ring Rτ=1 is a domain (Rτ=1 ⊂ R), so Rτ=1 is a complete local ring of dimension one.

(iii) Since Rτ=1 is a local domain, Noetherian and has Krull dimension equal to one,

it is sufficient to show that it is integrally closed. Let α be any element of the field of

fractions of Rτ=1 such that α is integral over Rτ=1; write α = x/y, where x ∈ Rτ=1

and y ∈ Rτ=1 − {0}. Since Rτ=1 is a subring of R, α is integral over R, and it follows

that α ∈ R (as R is integrally closed). However, τ(α) = τ(x)/τ(y) = x/y = α, hence

τ(α) = α and α ∈ Rτ=1.

(iv) Let a ∈ K and assume that τ(a) = a. Since R is a valuation ring, a ∈ R or

a−1 ∈ R, so a ∈ Rτ=1 or a−1 ∈ Rτ=1, hence a ∈ L.
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(v) Assume that τ is trivial, then ρord ≃ ρord⊗ ǫF . According to [18, Prop.3.1], ρord ≃
IndQF φ

ord, where φord : GF → R× a character. Since R ≃ T , ρord is a representation

associated to a primitive Hida family containing f (i.e corresponding to the unique

irreducible component of Spec T ). Thus, ρord is a dihedral representation with real

multiplication by F . Therefore, any specialization to weight k ≥ 2 of a Hida family

passing through f is a classical modular form of weight k ≥ 2 having a real multiplication

by F . However, it is well known that there is no RM modular forms of weight ≥ 2,

resulting in a contradiction. Therefore, τ is not trivial. Since K = Lτ=1 and τ2 = 1,

L/K is an extension of degree two. �

In the following proposition, we will compute the valuation of any generator of the

ideal of reducibility of ρord|GF
(i.e the ideal generated by {b̃(g)c̃(g′) | g, g′ ∈ GF }).

Proposition 2.5. Let g →
(
ã(g) b̃(g)

c̃(g) d̃(g)

)
be the realization of the universal deformation

ρord in the basis Bord
R which lifts (e1, e2), νR : R → N∪ {∞} be the discrete valuation of

R, and w0 (resp. wσ0 ) be the place of H over v (resp. vσ) singles out by ιp, then:

(i) There exist elements g0, h0 of GH such that the order of both b̃(g0) and c̃(h0) in

R is one, and the image of GHwσ
0
under b̃ is contained in m2

R.

(ii) One always has dimQ̄p
H1(F, φσ/φ)GFv

= 1.

Proof. (i) Note that tD is also the tangent space of the local ring R representing D.

Since p splits in F (i.e GQp = GFv), [3, Prop.2.3] implies the following isomorphism :

tD = ker
(
H1(GQ, ad ρ) → H1(GQp , φ/φ

σ)⊕H1(Ip, Q̄p)
)

(1)

We have the following decomposition of ad ρ:

ad ρ ≃ 1⊕ ǫF ⊕ IndQF (φ/φ
σ), given by

(
a b
c d

)
=

(
a 0
0 d

)
+

(
0 b
c 0

)
and inducing the following

decomposition:

H1(GF , ad ρ) ≃ H1(GF , φ/φ)⊕H1(GF , φ/φ
σ)⊕H1(GF , φ

σ/φ)⊕H1(GF , φ
σ/φσ) (2)

given by
(
a b
c d

)
→ (a, b, c, d), where the action of σ ∈ Gal(F/Q) exchanges a, d and b,

c.

After applying restriction-inflation exact sequence to the isomorphism (1), we deduce

from the relation (2) and [3, Prop.4.2] that H1(GQ, ad ρ) = H1(GF , ad ρ)
Gal(F/Q), and

a = d = 0, b = cσ, c ∈ H1(F, φσ/φ)GFv
if
(
a b
c d

)
∈ tD ⊂ H1(GF , ad ρ)

Gal(F/Q). According

to [3, Theorem 2.2], dim tD = 1, so c is not trivial and the same holds for b (since b = cσ).

On the other hand, c = bσ, so b ∈ H1(F, φ/φσ)GFvσ
. The restriction-inflation exact

sequence yields b|GH
∈ H1(H, Q̄p)

Gal(H/F )
GHwσ

0

, where H1(H, Q̄p)
Gal(H/F )
GHwσ

0

is the subspace of
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H1(H, Q̄p) given by the homomorphisms which are unramified at wσ0 and invariant under

the action of Gal(H/F ).

Let ρǫ ∈ D(Q̄p[ǫ]) be the deformation of ρ induced by the composition of ρord with the

canonical projection R ։ R/m2
R ≃ Q̄p[ǫ]. Therefore, ρǫ(g) = (1+ ǫρ1(g))ρ(g), where the

cohomology class of the cocycle ρ1 =
(
a b
c d

)
is a generator of tD. Let g →

(
a′(g) b′(g)
c′(g) d′(g)

)

be the realization of ρǫ by a matrix. Since ρ|GF
is diagonal, b|GH

6= 0, c|GH
6= 0 and

b|GHwσ
0

= 0, then b′|GH
6= 0, c′|GH

6= 0 and b′|GHwσ
0

= 0, hence b̃|GH
6= 0, c̃|GH

6= 0 modulo

m2
R, and we have also b̃|GHwσ

0

= 0 modulo m2
R (since GH = ker(ad ρ)).

(ii) It is a direct result of the isomorphism tD ≃ H1(F, φσ/φ)GFv
and [3, Theorem 2.2]

(i.e dimQ̄p
tD = 1). �

2.2. Criterion to extend a GF -representation to GQ. In this subsection, we give a

sufficient condition for extending a representation ρK : GF → GL2(K) to all GQ, which

will be crucial in the proof of Theorem 1.1.

Definition 2.6. Let K be a ring and ρK : GF → GLn(K) be a representation. Write

ρtK(g) for ρK(tgt−1), where t is an element of GQ with a non trivial restriction to F .

Consider the following condition on ρK :

(C) For each t ∈ GQ, there exists r(t) ∈ GLn(K) such that ρK = r(t)−1ρtKr(t).

Proposition 2.7. Let ρK : GF → GLn(K) be a representation, where K is a ring.

Assume that the only matrices in Mn(K) that commute with the image of ρK are the

scalar matrices, and ρK satisfies the condition (C). Then:

(i) If GQ = GF ⊔ GF .t for a fixed t ∈ GQ, r can be selected, guaranteeing that

the following conditions are satisfied : ∀h ∈ GF , r(ht) = ρK(h)r(t) and r(h) =

ρK(h).

(ii) The function ̺ : GQ ×GQ → K× defined by ̺(t′, t) = r(t′)r(t)r−1(t′t) is an ele-

ment of H2(GQ,K
×) for the trivial action of GQ. Moverover, ̺ factors through

∆ = Gal(F/Q).

(iii) If the cohomology class of ̺ ∈ H2(∆,K×) vanishes, then there exists a represen-

tation r : GQ −→ GLn(K) extending ρK , and if r′ is another extension of ρK ,

then r′ = r ⊗ ǫF .

Proof. See [25, A 1.1]. �

Corollary 2.8.

(i) Let ρK : GF → GLn(K) be a representation, where K is a field. If ρK satisfies

the hypothesis of Proposition 2.7, there exists a finite extension L/K and a

representation ρL : GQ −→ GLn(L) extending ρK .
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(ii) Let A be a ring in the category C and ψA : GF → A× be a character invariant

under the action of GQ. Then there exists a character ψ′
A : GQ → A× extending

ψA.

Proof. (i) We have a functorial isomorphism H2(∆,K×) ≃ K×/(K×)2. Choose an el-

ement x ∈ K× corresponding to the cohomology class of [̺] in H2(∆,K×). Let L be

a finite extension of K containing
√
x, then the cohomology class of [̺] in H2(∆, L×)

vanishes. Hence, we may conclude by Proposition 2.7.

(ii) The residue field of A is Q̄p and it is algebraically closed. Consequently, Hensel

lemma’s implies that the group H2(∆, A×) = A×/(A×)2 is trivial, and as such the desired

result follows from Proposition 2.7. �

3. Pseudo-deformation and the ring Rps

3.1. Pseudo-Character and pseudo-representation. The first occurrence of pseudo-

representation appeared in the work of Wiles (see [37], pp 563 − 564 for details), but

his definition requires the presence of a complex conjugation c, which forces the pseudo-

representation to depend only its trace. In our case, the complex conjugation c will

be replaced by γ0 which is a fixed lift of Frobv to GFv . In Lemma 3.3, we illustrate

through the presence of γ0 how a pseudo-representation depends only on its trace and

determinant.

Definition 3.1. Let A be a commutative ring and γ0 be a fixed lift of Frobv to GFv
such

that φ(γ0) 6= φσ(γ0).

Let ã, d̃ : GF → A, x̃ : GF × GF → A be a three continuous functions satisfying the

following conditions: For all g, h, t, s, w, n ∈ GF , the following applies :

1) ã(st) = ã(s).ã(t) + x̃(s, t)

2) d̃(st) = d̃(s).d̃(t) + x̃(t, s)

3) x̃(s, t).x̃(w, n) = x̃(s, n).x̃(w, t)

4) x̃(st, wn) = ã.(s).ã(n).x̃(t, w)+ ã(n).d̃(t).x̃(s, w)+ ã(s).d̃(w).x̃(t, n)+ d̃(t).d̃(w).x̃(s, n)

5) ã(1) = d̃(1) = 1 and x̃(h, 1) = x̃(1, g) = 0.

6) x̃(γ0, g) = x̃(h, γ0) = 0.

We say that πA = (ã, d̃, x̃) is a pseudo-representation (see [37, 2.2.3] for more de-

tails). The trace and determinant of πA are the functions Tr(πA)(g) = ã(g) + d̃(g), and

detπA(g) = ã(g)d̃(g)− x̃(g, g).

Let π = (φ, φσ, 0) be the pseudo-representation associated to the representation ρ|GF
.

Definition 3.2. Let A be a ring in C and πA = (ãA, d̃A, x̃A) be a continuous pseudo-

representation in A, we say that πA is a pseudo-deformation if and only if πA mod

mA = π.
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Meantime, the work [34] is a reference for pseudo-deformations.

Lemma 3.3.

(i) Let A be a ring in C, and πA = (ãA, d̃A, x̃A) be a pseudo-deformation, then πA

depends only on TrπA and detπA by the following formula:

ãA(g) =
TrπA(γ0g)− λ2TrπA(g)

λ1 − λ2

d̃A(g) =
TrπA(γ0g)− λ1TrπA(g)

λ2 − λ1

(1)

where λ1 = ã(γ0) and λ2 = d̃(γ0) are the unique roots of the polynomial

(2) X2 − TrπA(γ0)X + detπA(γ0).

(ii) If A is a domain, then πA depends only on its trace (i.e detπA depends on

TrπA).

Proof. (i) Since x̃(γ0, γ0) = 0, detπA(γ0) = ã(γ0)d̃(γ0), then ã(γ0) and d̃(γ0) are solutions

of (2). By assumption φ(γ0) 6= φσ(γ0), so Hensel lemma’s implies that ã(γ0) and d̃(γ0)

are the unique solution of (2).

Finally, the relation (1) follows directly from relations defining pseudo-deformation.

(ii) Let K be the fraction field of A and K̄ its algebraic closure. The function TrπA :

GF → K is a pseudo-character. According to [35, Theorem.1.1], there exists a unique

semi-simple Galois representation ρK : GF → GL2(K̄) such that Tr ρK = TrπA and

det ρK = detπA. �

3.2. Ordinary Pseudo-deformation. In this sub-section, we will define a sub-functor

of the pseudo-deformation functor of π, which is representable by a ring Rps belonging

to the objects of the category C.

Definition 3.4. Let G : C → SETS be the functor of all pseudo-deformations πA =

(ãA, d̃A, x̃A) of π which satisfy the following conditions:

(i) For all h ∈ GFv , h
′ ∈ GF , x̃A(h

′, h) = 0.

(ii) d̃A(g) = 1 if g ∈ Iv.

(iii) TrπA(t
−1gt) = TrπA(g) for each t in GQ and g ∈ GF .

Proposition 3.5.

(i) Let π′ǫ = (a′, d′, x′) be an element of G(Q̄p[ǫ]), then for any h in GF ,
x′(h,.)

φσ(h)φ(.)

(resp. x′(.,h)
φσ(.)φ(h)) is an element of Z1(F, φ/φσ) (resp. Z1(F, φσ/φ)).

(ii) The functor G is representable by (Rps, πps).

(iii) The determinant detπps is invariant under the action of σ.
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Proof. (i) It results from the defining properties of a pseudo-deformation.

(ii) The functor G satisfies Schlesinger’s criteria, the only non-trivial point is the

finiteness of the dimension of the tangent space tG of G, and this follows from [34,

Lemma.2.10] and the fact that H1(F, φ/φσ) has a finite dimension.

(iii) A direct computation shows that

Trπps(g2) = (Trπps(g))2 − 2 detπps(g),

so the assertion follows from the fact that ∀t ∈ GQ, ∀g ∈ GF , Trπ
ps(t−1gt) = Trπps(g).

�

Lemma 3.6. There exists a natural morphism Λ −→ Rps induced by the deformation

detπps of detπ.

Proof. According to (iii) of Lemma 3.5 and Corollary 2.8, we can extend detπps into a

character ϕ : GabQ,Np → (Rps)× and we choose one whose reduction modulo mRps is equal

to det ρ. Therefore, there exists a unique morphism Λ −→ Rps which sends the universal

deformation of det ρ to ϕ.

�

3.3. Proof of the isomorphism Rps
red ≃ Rτ=1.

Lemma 3.7. Let g →
(
ãg b̃g

c̃g d̃g

)
be the realization of ρord in a basis Bord

R = {v1, v2} (see

Lemma 2.1), then:

(i) The 3-tuple πRτ=1 = (ã|GF
, d̃|GF

, b̃|GF
c̃|GF

) is a pseudo-deformation of π.

(ii) There exists a unique local homomorphism g : Rps → Rτ=1 inducing the pseudo-

deformation πRτ=1 .

Proof. (i) It is a direct result of the relations defining a pseudo-representation.

(ii) Since the representation ρord|GF
is ordinary at GFv , there exists a unique morphism

g : Rps → R such that g ◦ πps = πRτ=1 .

Moreover, the action of τ on Tr ρord (resp. on det ρord) is given by Tr ρord → Tr ρord⊗ǫF
(resp. det ρord → det ρord ⊗ ǫF ), so τ acts trivially on Tr ρord|GF

(resp. on det ρord).

Since Rτ=1 is henselian (even complete), φ(γ0) 6= φσ(γ0) and Tr ρord(γ0), det ρ
ord(γ0)

are elements of the ring Rτ=1 (γ0 ∈ GFv ⊂ GF ), the eigenvalues λ1 and λ2 of ρord(γ0)

are in Rτ=1.

On the other hand, a direct computation shows that ã(g) = Tr ρord(γ0g)−λ2 Tr ρord(g)
λ1−λ2

,

d̃(g) = Tr ρord(γ0g)−λ1 Tr ρord(g)
λ2−λ1

and ã(gh) = ã(g)ã(h) + x̃(g, h). Therefore, τ(ã|GF
) = ã|GF

,

τ(d̃|GF
) = d̃|GF

and τ(b̃|GF
.c̃|GF

) = b̃|GF
.c̃|GF

. Therefore, g factors through Rτ=1. �

Lemma 3.8.

The morphism g : Rps → Rτ=1 is surjective.
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Proof. According to Lemma 2.5, there exist g0, h0 in GF such that the order of both b̃(g0)

and c̃(h0) in R is one, so x̃(g0, h0) = b̃(g0)c̃(h0) is of order 2 in R. However, Rτ=1 is a

discrete valuation ring and the injection ι : Rτ=1 →֒ R is ramified with a ramification

index equal to 2, so b̃(g0)c̃(h0) = x̃(g0, h0) has order one in Rτ=1. On the other hand,

since Rps is the universal ring representing the functor G, x̃(g0, h0) is contained in the

image of the maximal ideal of Rps under the morphism g.

Let B be the image of the morphism g, then B is a sub-algebra of Rτ=1. Let ντ

denote the discrete valuation of the ring Rτ=1 and mB denote the maximal ideal of B.
The discussion further above implies that mB contains an uniformizing element of Rτ=1.

Write a for the ideal mBRτ=1, so a = mRτ=1 since mB contains an uniformizing element

of Rτ=1.

According to Lemma 3.6, the ring Rps has a natural structure of Λ-algebra. Since

detπRτ=1 = g ◦ detπps, g is a morphism of Λ-algebras. Moreover, Rτ=1 is a finite

Λ-module, thus the morphism g : Rps → Rτ=1 is finite.

Now, apply Nakayama’s lemma to the Rps-module Rτ=1, and it will become apparent

that 1 is a generator of Rτ=1 as Rps-module. Hence, the morphism g is surjective.

�

Proof of theorem 1.1. We will show that the morphism g : Rps → Rτ=1 rises to an

isomorphism Rps/N ≃ Rτ=1, where N is the radical of Rps. Let L denote the kernel of

the morphism g; since g is surjective (see Proposition 3.8), the statement is equivalent

to L ⊂ N, meaning that SpecRτ=1 = SpecRps.

Let P be a prime ideal of Rps, and π′′ : Rps
։ Rps/P be the canonical surjection.

Let K denote the field of fractions of Rps/P and πP = (ãP, d̃P, x̃P) denote the pseudo-

deformation obtained by the composition π′′ ◦ πps.
If x̃P = 0, then ρK(g) =

(
ãP(g) 0

0 d̃P(g)

)
is the unique semi-simple representation asso-

ciated to πP.

By assumption Tr(ρK) = Tr(ρσK), so ãσP = d̃P (since the action of σ exchanges φ et φσ

and φ 6= φσ). In these terms, IndQF ãP is a representation extending ρK to GQ.

If there exist g1, h1 ∈ GF such that x̃P(g1, h1) 6= 0, [37, Prop.2.2.1] implies the exis-

tence of a Galois representation ρK : g →
(

ãP(g) x̃P(g,h1)/x̃P(g1,h1)

x̃P(g1,g) d̃P(g)

)
with Tr ρK = TrπP.

As ρK(γ0) is diagonal with distinct eigenvalues and x̃P(g1, h1) 6= 0 implies that ρK is

absolutely-irreducible. Moreover, TrπB is invariant under the action of σ (i.e TrπB =

Tr ρK = Tr ρσK), so [35, Theorem.1] yields an isomorphism ρK ⊗K ≃ ρσK ⊗K.

Therefore, there exists r(σ) ∈ GL2(L
′), where L′ is finite extension of K such that

r(σ)ρKr
−1(σ) = ρσK . Thus, the representation ρK satisfies the hypothesis of Corollary
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2.8, and hence there exist a finite extension L/L′ and a representation ρL : GQ −→
GL2(L) extending ρK .

Let A be the integral closure of Rps/P in L. Since Rps/P is a local Nagata ring (even

complete), A is finite over Rps/P; by using samilar arguments to those already used to

proof (ii) of Lemma 2.4, we may deduce that A ∈ C.

On the other hand, Tr ρL(σ
2) = Tr ρL(σ))

2 − 2 det ρL(σ), so Tr(ρL(GQ)) ⊂ A. Thus,

Tr ρL : GQ → A is a pseudo-character such that the restriction to GF of its reduction

modulo mA is equal to Tr ρ|GF
.

According to Proposition 2.7, the restriction of ρ to GF extends uniquely to GQ since

ρ ≃ ρ ⊗ ǫF , hence [35, Theorem.1] implies that the reduction of the pseudo-character

Tr ρL modulo mA is equal to Tr(ρ).

According to a theorem of Nyssen [29] and Rouquier [32], there exists a deformation

ρA : GQ → GL2(A) of ρ, such that Tr ρA = Tr ρL. In addition, we have GFv = GQp

(since p splits in F ) and by construction (ρK)|GQp
≃ (ρA ⊗ L)|GQp

≃
(
ψ′

1 ∗

0 ψ′

2

)
, where

ψ′
2 : GQp → A× is an unramified character lifting φσ|GFv

(i.e ψ′
2 = (d̃P)|GQp

); therefore,

by using similar arguments to those already used to proof [3, Prop.5.1], we deduce that

the representation ρA is ordinary at p.

Thus, there exists a unique morphism h : R → A inducing ρA.

Rps

π′′

��
��

g
// Rτ=1

�

� ι
// R

h
}}

Rps/P �

�

// A

The morphisms h ◦ ι ◦ g and π′′ induce two pseudo-deformations of π with the same

trace and determinant. Now, thanks to Lemma 3.3 we know that a pseudo-deformation

depends only on its trace and determinant, so h ◦ ι ◦ g = π′′. Therefore, the diagram

above is commutative and implies immediately the inclusion L ⊂ P. Finally, we may

conclude that the ideal L is included in the radical of Rps.

4. Proof of the main Theorem 1.2

Recall that H ⊂ Q̄ is the number field fixed by ker(ad ρ), H∞,v (resp. H∞,vσ) is the

compositum of all Zp-extensions of H which are unramified outside v (resp. vσ), H∞ is

the compositum of H∞,v and H∞,vσ , L∞ is the maximal unramified abelian p-extension

of H∞, and X∞ is the Galois group Gal(L∞/H∞). The Galois group Gal(H∞/H) ≃ Z2s
p

acts by conjugation on X∞ and Greenberg proves that X∞ is a finitely generated torsion

Zp[[Gal(H∞/H)]]-module (see [20]).
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Let F ′′ be the maximal unramified extension of H contained in H∞ and L0 be the

subfield of L∞ such that Gal(L0/H∞) is the largest quotient ofX∞ on which Gal(H∞/F )

acts trivially.

Hypothesis. Assume that Gal(L0/F
′′) is abelian. (GGG)

In this section, we prove that Rτ=1 is isomorphic to Λ when (GGG) holds, and it is

equivalent to prove that the tangent space of Rτ=1/(mΛ,m
2
Rτ=1

) is trivial when (GGG)

holds.

4.1. Tangent space of Rτ=1. Denote by tRτ=1 the tangent space of Rτ=1, since Rτ=1

is a discrete valuation ring (see Lemma 2.4), the dimension of tRτ=1 is one.

Write t′Rτ=1
for the sub-space of tRτ=1 of pseudo-deformations with determinant equal

to detπ = det ρ|GF
. It follows from theorem 1.1 that t′Rτ=1

→֒ tRτ=1 →֒ G(Q̄p[ǫ]). One

can see that the tangent space of Rτ=1/(mΛ,m
2
Rτ=1

) is isomorphic to t′Rτ=1
.

In the following lemma, we introduce a representation ρτ=1 : GF → GL2(Rτ=1) which

is conjugate to ρord|GF
by a matrix with coefficients in the field of fractions of R and such

that Tr ρτ=1 = πRτ=1 . The introduction ρτ=1 is necessary in order to produce a non

trivial extension in Ext1
Q̄p[GF ]

(φσ, φ).

Lemma 4.1.

(i) There exists a representation ρτ=1 : GF → GL2(Rτ=1) such that the pseudo-

representation associated to ρτ=1 is πRτ=1.

(ii) The residual representation of ρτ=1 modulo mRτ=1 has the following form ρ̃(g) =(
φ η
0 φσ

)
, where η/φσ is a non trivial element of H1(F, φ/φσ)GFvσ

.

(iii) There exists a basis (e′1, e
′
2) of MQ̄p

such that ρ̃|GFvσ
splits in this basis. More-

over, ρτ=1 is ordinary at vσ and the line stabilized by GFvσ
lifts e′2.

Proof. (i) According to Lemma 2.5, there exist g0, h0 ∈ GH such that the order of both

b̃(g0) and c̃(h0) in R is one. By [37, Prop.2.2.1], ρτ=1(g) =
(

ã(g) x̃(g,h0)/x̃(g0,h0)

x̃(g0,g) d̃(g)

)
is a

representation of GF . Since b̃(GF ) ⊂ mR and the order of b̃(g0) in R is one, the order of
x̃(g,h0)
x̃(g0,h0)

= b̃(g)

b̃(g0)
in Frac(R) is non-negative. Hence, x̃(g,h0)

x̃(g0,h0)
= b̃(g)

b̃(g0)
is an element of R.

However, x̃(g,h0)
x̃(g0,h0)

is invariant by τ , so that it belongs to Rτ=1.

(ii) Since for all g ∈ GF , x̃(g0, g) ∈ mRτ=1 , the residual representation of ρτ=1 has

the following form g →
(
φ(g) η(g)
0 φσ(g)

)
, where η/φσ is a non trivial element of H1(F, φ/φσ).

Proposition 2.5 implies that b̃(GHwσ
0
) ⊂ m2

R. Thus, for all g in GHwσ
0
, x̃(g,h0)
x̃(g0,h0)

= b̃(g)

b̃(g0)
∈

mR.

Moreover, x̃(g,h0)
x̃(g0,h0)

= b̃(g)

b̃(g0)
is invariant by τ , so that it belongs to mRτ=1 . Hence,

η/φσ|GHwσ
0

= 0, so η/φσ|GH
∈ H1(H, Q̄p)

Gal(H/F )
GHwσ

0

.
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On the other hand, the restriction inflation exact-sequence yields the following iso-

morphism H1(H, Q̄p)
Gal(H/F )
GHwσ

0

≃ H1(F, φ/φσ)GFvσ
, hence η/φσ ∈ H1(F, φ/φσ)GFvσ

.

(iii) Observe that ρτ=1 is conjugate to ρord|GF
by the matrix

(
1/b̃(g0) 0

0 1

)
, so the repre-

sentation ρτ=1 ⊗K is ordinary at vσ.

Since the representation ρ̃|GFvσ
splits (η/φσ ∈ H1(F, φ/φσ)GFvσ

), Rτ=1 contains the

eigenvalues of ρτ=1(σ
−1γ0σ) and ρτ=1 ⊗ L is ordinary at vσ, then by using similar ar-

guments to those already used to proof [3, Prop.5.1] we deduce that ρτ=1 is ordinary at

vσ. �

Lemma 4.2. Let πǫ = (ãǫ, d̃ǫ, ǫx̃ǫ) be an element of tRτ=1 and w be a place of H above

vσ, then :

(i) For any g in GF , the restriction of the function h→ x̃ǫ(h, g) to the decomposition

group GHw is trivial.

(ii) The function x̃ǫ(., ∗) is trivial when one of its components belongs to Gal(Q̄/H∞).

Proof. (i) Let g be any element of GF and w be any place of H above vσ, then (iii) of

Proposition 4.1 implies that x̃(h, g) ∈ m2
Rτ=1

when h ∈ GHw (since η|GHw
= 0). Hence,

the function h→ x̃ǫ(h, g) is necessarily trivial on the decomposition group GHw .

(ii) Let Mv (resp. Mvσ) be the maximal abelian unramified outside v (resp. vσ) pro-p

extension of H. By class field theory, H∞,v (resp. H∞,vσ) is the fixed field by the torsion

part of Gal(Mv/H) (resp. Gal(Mvσ/H)). Since x̃ǫ(., ∗) is bilinear on GH × GH , the

assertion follows immediately from the fact that any homomorphism of Hom(GH , Q̄p)

unramified outside v (resp. vσ) factors through Gal(H∞,v/H) (resp. Gal(H∞,vσ/H)).

�

The purpose of the following two lemmas is to explain the ordinariness of the elements

of tRτ=1 at all prime places of H lying over vσ and v.

Lemma 4.3. Let α : Rτ=1 ։ Rτ=1/m
2
Rτ=1

be the canonical projection, π′ǫ = (a′, d′, x′)

be the pseudo-deformation obtained by the composition α◦πRτ=1, w
′ be a place of H above

vσ, and Iw′ be the inertia group at the place w′, then for any h′ in Iw′ ∩ Gal(Q̄/H∞),

a′(h′) = 1.

Proof. Let ρτǫ be the representation obtained by the composition α ◦ ρτ=1 and ρτǫ (g) =(
a′(g) b′(g)
c′(g) d′(g)

)
be the realization of ρτǫ in a basis (u1, u2) of MQ̄p[ǫ].

We have b′(g) = α(x̃(g, h0)/x̃(g0, h0)) and x
′(g0, g) = c′(g).

On the other hand, as a result of (iii) of Lemma 4.1, ρ̃|GFvσ
= φ ⊕ φσ in the basis

(e′1, e
′
2) of MQ̄p

, and that ρτǫ is ordinary at vσ in a basis (u1, v2) of MQ̄p
[ǫ] lifting (e′1, e

′
2).
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Let h be an element of Iwσ
0
∩ Gal(Q̄/H∞) and

(
a′′(h) b′′(h)
c′′(h) d′′(h)

)
be the realization of ρτǫ

in the basis (u1, v2), then a
′′(h) = 1 and b′′(h) = 0. According to Lemma 4.2, we state

c′(h) = 0, and hence a direct computation shows that a′′(h) = a′(h) = 1.

Now, if w′ is another place above vσ such that g(wσ0 ) = w′ for g ∈ Gal(H/F ), then

the assertion follows by using a similar argument for the basis (u1, (ρ
τ
ǫ )

−1(g)v2).

�

Lemma 4.4. Let w be a place of H above v and π′ǫ = (a′, d′, x′) be an element of tRτ=1,

then for any g in Gal(H∞/F ) and h
′ in Gal(Q̄/H∞), d′(gh′g−1) = d′(h′) and d′ is trivial

on Iw ∩Gal(Q̄/H∞), where Iw is the inertia group at the place w.

Proof. (i) Let h denote the element gh′g−1. Since x′(., .) is trivial when one of its com-

ponent belongs to Gal(Q̄/H∞) (see Lemma 4.2), we obtain:

d′(h) = d′(gh′g−1) = d′(g)d′(h′g−1) + x′(h′g−1, g)(3)

= d′(g)d′(h′)d′(g−1) + φ(h′)x′(g−1, g)(4)

A direct computation shows that d′(gg−1) = 1 = d′(g)d′(g−1) + x′(g−1, g) and φ(h′) =

φσ(h′). Hence, d′(h) = d′(h′)(1− x′(g−1, g)) + φ(h′)x′(g−1, g) = d′(h′).

As the Galois group Gal(H/F ) acts transitively on the places of H above v, the

assertion stems directly from the above discussion and the fact that d′|Iw0
= 1.

�

4.2. Tangent space of Rτ=1/mΛ and proof of Theorem 1.2.

Let πǫ = (ãǫ, d̃ǫ, x̃ǫ) be the pseudo-deformation induced by the canonical projection

π′ : Rτ=1 ։ Rτ=1/(mΛ,m
2
Rτ=1

).

We have seen in Lemma 4.2 that x̃ǫ is trivial when one of its component belongs to

Gal(Q̄/H∞); so on Gal(Q̄/H∞) the pseudo-deformation πǫ is equal to (ãǫ, d̃ǫ, 0), where

ãǫ, d̃ǫ are characters on Gal(Q̄/H∞). Let N∞ denote the splitting field over Gal(Q̄/H∞)

of ãǫ ⊕ d̃ǫ.

Theorem 4.5. Let πǫ = (ãǫ, d̃ǫ, x̃ǫ) be the pseudo-deformation induced by the projection

π′ : Rτ=1 ։ Rτ=1/(mΛ,m
2
Rτ=1

), then :

(i) N∞ is an unramified abelian p-extension of H∞ and the action by conjugation

of Gal(H∞/F ) on Gal(N∞/H∞) is trivial.

(ii) Assume that (GGG) holds, then the pseudo-deformation πǫ = (ãǫ, d̃ǫ, x̃ǫ) is trivial.

(iii) Assume that the rank of the finite type Zp-module Gal(L0/H∞) is zero (i.e

Gal(L0/H∞) is a finite group), then the pseudo-deformation πǫ = (ãǫ, d̃ǫ, x̃ǫ)

is trivial.
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(iv) Assume that (GGG) holds or Gal(L0/H∞) is a finite group, then the morphism

κ# : Λ→ Rτ=1 is an isomorphism and the ramification index e of C over W at

f is exactly 2.

Proof. (i) Let g be an element of Gal(H∞/F ) and h be an element of Gal(Q̄/H∞).

Since detπǫ = detπ and x̃ǫ is trivial when one of its component belongs to Gal(Q̄/H∞),

Lemma 4.4 implies that ãǫ(ghg
−1) = ãǫ(h) and d̃ǫ(ghg

−1) = d̃ǫ(h). Hence the action of

the Galois group Gal(H∞/F ) on Gal(N∞/H∞) is also trivial.

Since detπǫ = detπ, it follows from lemmas 4.3, 4.4 that the restriction of both ãǫ and

d̃ǫ to Iw ∩ Gal(Q̄/H∞) is necessarily trivial, where w is any place of H above p. Thus,

the algebraic extension N∞/H∞ is unramified at the primes above p.

In addition, [3, Prop.7.1] implies that the image of Iℓ ∩Gal(Q̄/H∞) by ãǫ is finite (so

trivial), where ℓ 6= p is a prime number. Therefore, the extension N∞/H∞ is everywhere

unramified.

(ii) Since the abelian p-extension N∞/H∞ is everywhere unramified, N∞ is a subfield

of L∞ and since Gal(H∞/F ) acts trivially on Gal(N∞/H∞), N∞ is contained in the

subfield L0. Moreover, by assumption L0 is an abelian extension of F ′′, hence N∞ is an

abelian extension of F ′′.

It follows that (πǫ)|Gal(Q̄/F ′′) factors through Gal(N∞/F
′′) which is abelian group.

Thus, ãǫ(gh) = ãǫ(hg) and implying that x̃ǫ is symmetric bilinear and trivial if one of its

components belongs to any inertia group Iw (w is any place of H above p).

Since the Galois group Gal(H∞/F
′′) can be expressed as the product of all its in-

ertia subgroups for the places of H above p, the function x̃ǫ is necessarily trivial on

Gal(H∞/F
′′)×Gal(H∞/F

′′).

In addition, the number field F ′′ is a finite abelian extension of H, then x̃ǫ is trivial

on GH × GH . If the pseudo-deformation πǫ is not trivial, then πǫ is a generator of the

tangent space of Rτ=1 (since the tangent space of a discrete valuation ring is always of

dimension one). However, this contradicts the fact that x̃ǫ defines a nonzero bilinear

map of GH × GH (see (i) of Proposition 2.5), since there exist two elements g0 and h0

such that x̃ǫ(g0, h0) is non zero (x̃(g0, h0) has order 1 in the discrete valuation associated

to Rτ=1). Hence, πǫ is necessarily trivial and the assertion follows immediately.

(iii) By assumption and referring to the discussion above, N∞ is a finite extension of

H∞, so N∞ = H∞ (since Q̄p is a torsion-free group). Therefore, we can conclude using

a similar argument as above.

(iv) Since the tangent space of Rτ=1/(mΛ) is trivial, the local homomorphism κ# :

Λ → Rτ=1 is unramified. On the other hand, the local homomorphism κ# : Λ → Rτ=1

is flat, and hence it is an étale morphism between complete local rings having the same

residue field, then it is necessarily an isomorphism. �
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5. Pseudo-deformations of ρ̄ and base-change F/Q

Let hQ be the p-ordinary Hecke algebra of tame level N constructed by Hida in [21],

pf be the closed point of SpechQ[1/p] corresponding to the system of eigenvalues for

Hecke operators associated to f .

Denote by hQ,pf the completed local ring for the étale topology of Spec hQ[1/p] at a

geometric point corresponding to pf . Let h
′
Q be the sub-algebra of hQ generated by the

Hecke operators Up, Tℓ and < ℓ > for primes ℓ not dividing Np.

Proposition 5.1. There exists an isomorphism between T and hQ,pf .

Proof. The weight one form f corresponds to a point x ∈ Cord,0, where Cord,0 is the

cuspidal locus of the ordinary locus of Cord (Cord,0 is a Zariski closed subset of Cord). It

is known that h′Q is an integral model of Cord,0 (i.e Cord,0 = Spm h′Q[1/p]). Denote by

h′Q,pf for the completed local ring for the étale topology of Spec h′Q at a geometric point

corresponding to pf ∩h′Q. Hence, the results of [17, §7] and [3, Prop.7.2] imply that there

exists an isomorphism h′Q,pf ≃ T and an isomorphism h′Q,pf ≃ hQ,pf .

�

Remark 5.2. If A is a Noetherian complete local ring, then A is a Nagata ring and

hence any localization of A is also a Nagata ring. Moreover, the completion of a reduced

Noetherian local Nagata ring with respect to its maximal ideal is always reduced. On

the other hand, if A is reduced (resp. Nagata), then the strict henselization Ash of A is

reduced (resp. Nagata).

Hence, hQ,pf , h
′
Q,pf

, Tn.ord and Tord are reduced local rings.

Proof of Theorem 1.3. The representation ρ associated to f is dihedral, so the invo-

lution ω fixes the height one primes pf of hQ,m associated to f . In addition, after the

identification R ≃ T , the action of ω on T coincides with the involution τ (see [18, §3]
and [24, §2]).

There exists a pseudo-character PshQ : GQ,Np → hQ such that PshQ(Frobℓ) = Tℓ for

all primes ℓ ∤ Np (see [21]). Let q ∤ Np be a prime ideal of OF , then the base-change

morphism β : hF → hQ sends the Hecke operator Tq to PshQ(Frobq).

Let n denote the height one prime ideal β−1(pf ) of hF , so the morphism β induces a

morphism of complete local rings βf : Tord → T and the values of βf are in T+, where
T+ is the subring of T fixed by τ .

On the other hand, there exists a pseudo-character PshF : GF → hF of dimension two

such that PshF (Frobq) = Tq for all prime ideals q ∤ p of OF (see [23]). Let

PsTord : GF → Tord
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be the pseudo-character given the composition of PshF with the localization homomor-

phism hF → Tord. It is apparent that PsTord lifts the pseudo-character φ + φσ and

βf (PsTord) = Tr(ρT )|GF
(since β(PshF ) = (PshQ)|GF

).

Let S be the total quotient ring of the reduced local ring Tord ( Tord ⊂ S), then

S =
∏

Tordpi
, where pi runs over the set of minimal prime ideals of Tord, and it is known

that each pi corresponds to a Hida family passing through E1(φ, φ
σ) (since Tord is a

noetherian ring, Tord has a finite number of minimal prime ideals).

A result of Wiles [37] indicates the existence a unique semi-simple Galois representation

ρS : GF → GL2(S) ordinary at v and vσ, and such that Tr(ρS) = PsTord . Since φ(γ0) 6=
φσ(γ0), Hensel lemma’s implies that the eigenvalues of ρS(γ0) are distincts (they belong

to Tord). Thus, we can find a basis BS of MS in which ρS(γ0) is diagonal and (ρS)|GFv

is upper triangular with an unramified quotient.

In fact, Lemma 3.3 implies that the coefficients of the matrix of the realization of ρS

in the basis BS rise to an ordinary pseudo-deformation πTord = (a, d, bc) : GF → Tord of

π.

Note that the action of ∆ fixes n and denote by πTord
∆

the push-forward of πTord via

the canonical surjection Tord ։ Tord∆ .

Subsequently, the trace of πTord
∆

is invariant by the action of ∆ and πTord
∆

is a point of

G(Tord∆ ). Thus, there exists a unique morphism h : Rps
red → Tord∆ inducing the pseudo-

deformation πTord
∆

.

By construction, we have h(Trπps(Frobq)) = Tq for q ∤ p, so the homomorphism h is

surjective since the topological generator {Tq}q∤p, Up and Upσ over Λ of Tord∆ are in the

image of h (the fact that φ|GFv
6= φσ|GFv

implies that Up, Upσ ∈ imh).

According to Theorem 1.1, we have the isomorphisms

T+ ≃ Rτ=1 ≃ Rps
red.

Moreover, according to Lemma 3.3, Rps is topologically generated over Λ by Trπps(g),

where g runs over the elements of GF . Therefore, the morphism βf : Tord → T+ is

surjective (since the morphism βf sends Tq to Tr ρT (Frobq)).

Since the trace of (ρT )|GF
is invariant by the action of σ, βf factors through Tord∆ , so

the Krull dimension of Tord∆ is ≥ 1. In addition, the Krull dimension of the Hecke algebra

hF is two, hence Tord is of dimension 1 and Tord∆ is also of dimension 1.

It follows from Theorem 1.1 that the tangent space of Rps
red is of dimension 1, and since

Tord∆ is equidimensional of dimension 1, the surjection h : Rps
red ։ Tord∆ is necessarily an

isomorphism of regular local rings of dimension 1. �
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Let O be the ring of integers of a p-adic field containing the image of φ. After an

extension of scalars, one can assume that the p-ordinary Hecke algebra hQ,m contains O,

and hence hQ,m is an obejct of the category CNLO.

Assume until the end of this section that :

(i) p > 2 and the restriction of ρ̄ to Gal(Q̄/Q(
√
(−1)(p−1)/2p)) is absolutely irre-

ducible.

(ii) There exists an element γ0 ∈ GFv such that φ̄(γ0) 6= φ̄σ(γ0).

(iii) The character φ̄ is everywhere unramified.

Thus, we are able to use the results of Taylor-Wiles [38] to claim that the p-ordinary

Hecke algebra hQ,m is isomorphic to an universal ring Rord, representing the p-ordinary

minimally ramified deformations of ρ̄ to the objects of CNLO.

Definition 5.3. Let A be a ring in CNLO, Σ be the set of primes of F lying over p,

ã, d̃ : GF,Σ → A and x̃ : GF,Σ × GF,Σ → A be continuous functions forming a pseudo-

representation. We say that πA is a pseudo-deformation of π̄ = (φ̄, φ̄σ, 0) if and only if

πA mod mA = π̄. Let GO : CNLO → Set denote the functor of all pseudo-deformations

πA = (ãA, d̃A, x̃A) of π̄ which satisfy the following conditions:

(i) For all h ∈ GFv , h
′ ∈ GF,Σ, x̃A(h

′, h) = 0.

(ii) d̃A(g) = 1 if g ∈ Iv.

(iii) TrπA(t
−1gt) = TrπA(g) for each t in GQ and g ∈ GF,Σ.

Lemma 5.4. One always has:

(i) Let A be an object of CNLO, and πA = (ãA, d̃A, x̃A) be a pseudo-deformation of

π̄, then πA depends only on the trace TrπA = ã(g) + d̃(g) and the determinant

detπA = ã(g)d̃(g)− x̃(g, g) as follow:

ãA(g) =
TrπA(γ0g)− λ2TrπA(g)

λ1 − λ2

d̃A(g) =
TrπA(γ0g)− λ1TrπA(g)

λ2 − λ1

(5)

where λ1 = ã(γ0) and λ2 = d̃(γ0) are the unique roots of the polynomial X2 −
TrπA(γ0)X + detπA(γ0).

(ii) The functor GO is representable by (Rps, πRps).

Proof.

i) The same proof as in Lemma 3.3.

ii) The functor GO satisfies Schlesinger’s criteria, the only non-trivial point is the

finiteness of the dimension of the tangent space of GO, and this is provided by the same

argument of [34, Lemma 2.10] (since H1(GF,Σ, φ̄/φ̄
σ) has a finite dimension).
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�

Hensel lemma’s implies that there exists a basis BRord ofMRord such that the universal

p-ordinary deformation satisfies the following properties :

ρRord(γ0) = ( ∗ 0
0 ∗ ) , and (ρRord)|GQp

= ( ∗ ∗
0 ∗ ) in this basis.

Therefore, by using similar arguments to those already applied to prove Lemma 3.7,

there exists a morphism α : Rps → hQ,m which factors through hω=1
Q,m and inducing the

pseudo-deformation of π̄ associated to (ρRord)|GF
in the basis BRord .

The local ring Rps is isomorphic to the completed local ring for the étale toplogy of

SpecRps at a Q̄p-point corresponding to the pseudo-deformation π of π̄.

Remark 5.5. It follows directly from Lemma 5.4 that Rps is generated over the Iwasawa

algebra ΛO ≃ O[[T ]] by the Trace of the universal pseudo-deformation (see [37], p564 for

more details).

Now, Theorem 1.3 and the exact same arguments that are already used to proof [9,

3.10], we deduce that the morphism α : Rps → hω=1
Q,m is unramified at non maximal prime

ideals. Hence we obtain the following corollary without assuming that φ̄2|Iv 6= 1 as in

Theorem [9, B].

Corollary 5.6. Assume that the following conditions holds for ρ̄:

(i) The character φ̄ is everywhere unramified.

(ii) ρ̄ is p-distinguished and the restriction of ρ̄ to Gal(Q̄/Q(
√

(−1)(p−1)/2p)) is ab-

solutely irreducible.

Then the image of the base-change morphism β : hF → hω=1
Q,m has a finite index, and

the image of the morphism α : Rps → hω=1
Q,m is contained in imβ and has also a finite

index in hω=1
Q,m .

6. Deformation of a reducible Galois representation and proof of

theorem 1.5

The Hecke algebra hF is reduced, since it specializes to level 1 Hecke algebras (which

are reduced) for an infinitely weights k ≥ 3 (see [24, p.279] for more details).

Lemma 6.1. The ring Tn.ord is equidimensional of dimension 3.

Proof. Since the reduced nearly ordinary Hecke algebra hn.ordF is a finite torsion-free

module over the Iwasawa algebra of three variables Λn.ordO = O[[T1, T2, T3]] (see p.119 of

[23]), every irreducible component of Spechn.ordF has Krull dimension equal to 4. Thus,

Tn.ord is an equidimensional ring of dimension 3. �
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Let A be an object of the category C and ρA : GF → GL2(A) be a deformation of ρ̃,

then we state that ρA is a nearly-ordinary deformation at p, if

(ρA)|GFv
≃

(
ψ′

v,A ∗

0 ψ′′

v,A

)
and (ρA)|GFvσ

≃
(
ψ′′

vσ,A 0

∗ ψ′

vσ,A

)
,

where ψ′′
v,A is a character lifting φσ|GFv

and ψ′′
vσ ,A is a character lifting φ|GFvσ

. Moreover,

if ψ′′
v,A and ψ′′

vσ ,A are unramified, then we say that ρA is ordinary at p.

Definition 6.2. Let Dn.ord : C → SETS be the functor of strict equivalence classes of

deformation of ρ̃ =
(
φ η
0 φσ

)
which are nearly ordinary at p, and let Dord be the subfunctor

of Dn.ord of deformations which are ordinary at p.

Since ρ̃ is not semi-simple and φ(Frobv) 6= φσ(Frobv), Schlesinger’s criterions imply

that Dn.ord (resp. Dord) is representable by (Rn.ord, ρRn.ord) (resp. (Rord, ρRord)). The

determinant det ρRord is a deformation of the determinant detπ, so Rord is endowed

naturally with a structure of Λ-algebra (since the quadratic real field F has a unique

Zp-extension).

6.1. Nearly ordinary deformation of a reducible representation.

There exits a pseudo-character Pshn.ord
F

: GF → hn.ordF of dimension two such that for

all prime ideals q ∤ p of OF , Pshn.ord
F

(Frobq) is the Hecke operator Tq. Pshn.ord
F

is the trace

of a representation of dimension 2 with coefficients in the total quotient ring of hn.ordF (see

[23] for more details). Let PsTn,ord : GF → Tn,ord be the pseudo-character of dimension

2 obtained by composing Pshn.ord
F

with the localization morphism hn,ordF → Tn,ord. It

appears that PsTn,ord lifts the pseudo-character Tr ρ̃ = φ⊕ φσ.

Let Q(Tn,ord) :=
∏
S′
i be the total quotient ring of the reduced noethrian ring Tn,ord(

Tn,ord ⊂ Q(Tn,ord)), so Q(Tn,ord) =
∏

Tn,ordFi
, where Fi runs over the minimal prime

ideals of Tn,ord. It is known that each Fi corresponds to a nearly ordinary p-adic family

passing through the weight one form E1(φ, φ
σ).

Moreover, there exists a unique semi-simple Galois representation

ρQ(Tn,ord) : GF → GL2(Q(Tn,ord))

satisfying Tr(ρQ(Tn,ord)) = PsTn,ord .

Since Up(E1(φ, φ
σ)) = φσ(Frobp).E1(φ, φ

σ) and Upσ(E1(φ, φ
σ)) = φ(Frobpσ).E1(φ, φ

σ)

(see Lemma 4.1), it follows from the results of Hida ([23]) that (ρQ(Tn,ord))|GFv
(resp.

(ρQ(Tn,ord))|GFσ
v
) is the extension a character ψ′′

Tn,ord,v
(resp. ψ′′

Tn,ord,vσ
) lifting φσ|GFv

(resp. φ|GFvσ
) by a character ψ′

Tn,ord,v
(resp. ψ′

Tn,ord,vσ
).
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Let γ′0 ∈ GFvσ
such that φ(γ′0) 6= φσ(γ′0). Hensel lemma’s implies that the eigenvalues

of ρQ(Tn,ord)(γ
′
0) are distinct and belong in Tn,ord. Hence there exists a basis (e′′1, e

′′
2) of

MQ(Tn,ord) such that ρord
Q(Tn,ord)

(γ′0) = ( ∗ 0
0 ∗ ) and (ρQ(Tn,ord))|GFvσ

= ( ∗ 0
∗ ∗ ) in this basis.

Let a, b, c, d be the coefficients of the realization of ρQ(Tn,ord) by matrix in the basis

(e′′1, e
′′
2) of MQ(Tn,ord), B and C be the Tn,ord-sub modules of Q(Tn,ord) generated re-

spectively by the coefficients b(g) and c(g′), where g and g′ run over the elements of

GF .

Let mTn,ord be the maximal ideal of Tn,ord and Ext1
Q̄p[GF ]

(φσ, φ)GFvσ
be the subspace

of Ext1
Q̄p[GF ]

(φσ, φ) given by the extensions of φσ by φ which are trivial at GFvσ
.

The following proposition is a generalization of [2, Prop.2].

Proposition 6.3. One always has :

(i) HomTn,ord(B, Q̄p) injects Tn,ord-linearly in Ext1
Q̄p[GF ]

(φσ, φ)GFvσ
.

(ii) B is an Tn,ord-module of finite type and the annihilator of B is zero.

Proof.

i) Since Tn,ord is a complete local ring and φ(γ′0) 6= φσ(γ′0), a(γ
′
0) and d(γ′0) are the

unique roots of the polynomial X2−Tr ρQ(Tn,ord)(γ
′
0)X+det ρQ(Tn,ord)(γ

′
0). Hence, a(γ

′
0)

and d(γ′0) belong to Tn,ord. Thus, as in Lemma 3.3, the coefficients a, d and b(g).c(g′)

can be obtained exclusively from the trace PsTn,ord and the determinant det ρQ(Tn,ord).

Moreover, the reduction of PsTn,ord is φ + φσ. Hence, (a, d, bc) : GF → Tn,ord is a

pseudo-deformation of π = (φ, φσ, 0), and a− φ, d− φσ and b(g)c(g′) are in mTn,ord .

Denote by b̄ the image of b in B̄ = B/mTn,ordB. We have a group homomorphism:

G→
(

Q̄p B̄

0 Q̄p

)
, given by g →

(
φ b̄(g)
0 φσ

)

Since the restriction of b to GFvσ
is trivial in our basis, we obtain a morphism

j : HomTn,ord(B/mTn,ordB, Q̄p) → Ext1Q̄p[GF ](φ
σ, φ)GFvσ

which associates to a homomorphism f : B/mTn,ordB → Q̄p the cohomology class of

the cocycle g → f(b̄(g)) (since b(g)c(g′) ∈ mTn,ord). The choice of the basis (e′′1, e
′′
2) of

MQ(Tn,ord) implies that the cocycle g → f(b̄(g)) is trivial on GFvσ
.

Subsequently, we will prove that j is injective. First of all, a direct computation

demonstrates that

b̄(γ′0gγ
′−1
0 g−1) =

b̄(g)

φσ(g)
(
φ(γ′0)

φσ(γ′0)
− 1)

and implies that B/mTn,ordB is generated over Tn,ord by the elements b̄(g), when g runs

over GH = kerφ/φσ (γ′0gγ
′−1
0 g−1 ∈ GH since H/F is cyclic).
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Now, let f be an element of HomTn,ord(B/mTn,ordB, Q̄p) such that f(b̄) is equal to zero

in Ext1
Q̄p[GF ]

(φσ, φ)GFvσ
, then f(b̄) is a coboundary and the restriction of f(b̄) to GH

is trivial (since H is the splitting field of φ/φσ). However, B/mTn,ordB is generated by

{b̄(g), g ∈ GH}, therefore f is necessarily trivial.

ii) Since the representation ρQ(Tn,ord) is semi-simple, Lemma [2, 4] implies that B is a

finite type Tn,ord-module.

The pseudo-character Pshn.ord
F

rise to a totally odd representation

ρhn.ord
F

: GF → GL2(Q(hn.ordF )),

where Q(hn.ordF ) is the total fraction field of hn.ordF . We have Q(hn.ordF ) =
∏

Ii, where

Ii runs over the fields given by the localization of hn.ordF at the minimal prime ideals of

hn.ordF (each Ii corresponds to a nearly ordinary Hida family). There exists a basis of

MQ(hn.ord
F ) in which ρhn.ord

F
(c) = ( ∗ 0

0 ∗ ); and let a′, b′, c′, d′ be the entries of the realization

of ρhn.ord
F

by a matrix in this basis. The functions a′, d′ and b′c′ depend only on the trace

Pshn.ord
F

and the determinant det ρhn.ord
F

, and the values the functions a′, d′ and b′c′ are

in hn.ordF .

Since the non critical classical cuspidal Hilbert modular forms are Zariski dense on each

irreducible component of Spechn.ordF , for each field Ii there exist gi, g
′
i in GF , such that

the image by projection of b′(gi)c
′(g′i) is not trivial in Ii. Thus, all the representations ρS′

i

given by composing ρQ(Tn,ord) with the projections
∏

Tn,ordFj
→ S′

i = Tn,ordFi
are absolutely

irreducible, so the image of B is each S′
i is non zero. Hence, we may conclude that the

annihilator of B in Tn,ord is zero. �

Corollary 6.4. One always has:

(i) The Tn,ord-module B is free of rank one and there exists an adapted basis (e′′1, e
′′
2)

of MQ(Tn,ord) such that B is generated over Tn,ord by 1.

(ii) In the basis (e′′1, e
′′
2), the realization ρQ(Tn,ord)(γ

′
0) is diagonal and the represen-

tation ρQ(Tn,ord) : GF → GL2(T
n,ord) is a nearly ordinary deformation of ρ̃.

Proof.

i) Since Ext1
Q̄p[GF ]

(φσ, φ)GFvσ
≃ H1(F, φ/φσ)GFvσ

, Propositions 2.5 (or [4, Prop.5.1])

and 6.3 attest that the dimension of Ext1
Q̄p[GF ]

(φσ, φ)GFvσ
is one and dimQ̄p

B ⊗ Q̄p ≤ 1.

Since we proved in Proposition 6.3 that B is a non zero finite type Tn,ord-module,

Nakayama’s lemma implies that B is a monogenic Tn,ord-module.

Moreover, the fact that the annihilator of B in Tn,ord is zero yields that B is a free

Tn,ord-module of rank one. Thus, by rescaling the basis (e′′1, e
′′
2), the representation

ρQ(Tn,ord) takes values in GL2(T
n,ord).
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ii) Since any representation isomorphic to an extension of φσ by φ trivial on GFvσ

is necessarily isomorphic to ρ̃ (i.e dimQ̄p
Ext1

Q̄p[GF ]
(φσ, φ)GFvσ

= 1), (i) implies that

ρQ(Tn,ord) : GF → GL2(T
n,ord) is a deformation of ρ̃, and by construction ρQ(Tn,ord) is

nearly ordinary at vσ.

On the other hand, the deformation ρQ(Tn,ord) : GF → GL2(Q(Tn,ord)) is nearly ordi-

nary at v and φ(Frobv) 6= φσ(Frobv). Thus, by using the exact same arguments that are

already applied to prove [3, Prop 5.1], we deduce that ρQ(Tn,ord) : GF → GL2(T
n,ord) is

ordinary at v.

�

6.2. Tangent space of Dn.ord.

Let tDn.ord (resp. tDord) denote the tangent space of Dn.ord (resp. Dord). The choice

of the basis (e′1, e
′
2) of MQ̄p

defined in Lemma 4.1 identifies EndQ̄p
(MQ̄p

) with M2(Q̄p).

Since ρ̃|GFvσ
splits completely in the basis (e′1, e

′
2), we obtain the following decomposition

of Q̄p[GFvσ
]-modules

(ad ρ̃)|GFvσ
= Q̄p ⊕ φ/φσ ⊕ φσ/φ⊕ Q̄p

(
a b
c d

)
−→ (a, b, c, d)

(6)

Let Wρ̃ be the subspace of ad ρ̃ given by the following elements

Wρ̃ = {g ∈ EndQ̄p
(MQ̄p

) | g(e1) ⊂ (e1)}.

By composing the restriction morphism H1(F, ad ρ̃) → H1(Fvσ , ad ρ̃) and the morphism

b∗ : H1(Fvσ , ad ρ̃) → H1(Fvσ , φ/φ
σ) (obtained by functoriality from (6)), we obtain the

natural map:

(7) H1(F, ad ρ̃)
B∗

−→ H1(Fvσ , φ/φ
σ)

Let P = Q̄p[φ
σ/φ] be the Q̄p[GF ]-module of dimension one over Q̄p and on which GF

acts by φσ/φ. Since ρ̃ is reducible, Wρ̃ is preserved by the action of ad ρ̃ and we have a

natural GF -equivariant map given by the quotient of ad ρ̃ by Wρ̃:

ad ρ̃
C−→ Q̄p[φ

σ/φ]
(
a b
c d

)
7→ c

(8)

Let r : H1(F, φσ/φ) → H1(Fv, φ
σ/φ) denote the natural morphism given by the re-

striction of the cocycles to GFv , and C
∗ : H1(F, ad ρ̃)

C∗

−→ H1(F, φσ/φ) be the morphism

obtained by functoriality from (8). By using a standard argument of the deformation

theory, we achieve the following result.
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Lemma 6.5. We have the following isomorphism:

tDn.ord = ker

(
H1(F, ad ρ̃)

(r◦C∗,B∗)−→ (H1(Fv, φ
σ/φ)⊕H1(Fvσ , φ/φ

σ))

)

We have an exact sequence of Q̄p[GF ]-modules :

(9) 0 →Wρ̃ → ad ρ̃→ P → 0

Since φσ/φ 6= 1, H0(GF , P ) = {0}, we have the following long exact sequence of groups

cohomology:

(10) 0 → H1(F,Wρ̃) → H1(F, ad ρ̃) → H1(F, P ) → H2(F,Wρ̃)

We will show that H2(F,Wρ̃) is trivial. First, we start by computing the dimension

of H1(F,Wρ̃) in order to use the Global Euler characteristic formula to deduce that

H2(F,Wρ̃) vanishes.

Under the identification EndQ̄p
(MQ̄p

) ≃ M2(Q̄p), Wρ̃ is the subspace of the upper

triangular matrices of M2(Q̄p). Since ρ̃ is reducible, the space

W 0
ρ̃ := {g ∈ EndQ̄p

(MQ̄p
) | g(e1) = 0, g(e2) ⊂ (e1)} ⊂Wρ̃

is stable by the action of GF , and the adjoint action on this sub-space is given by φ/φσ.

Under the identification EndQ̄p
(MQ̄p

) ≃M2(Q̄p), W
0
ρ̃ is the subspace of M2(Q̄p) given

by the strict upper triangular matrices, and it is isomorphic to Q̄p[φ/φ
σ] as Q̄p[GF ]-

module.

Therefore, we obtain the following exact sequence of Q̄p[GF ]-modules:

0 → Q̄p[φ/φ
σ] →Wρ̃ → Q̄2

p → 0

Hence, there exists a long exact cohomology sequence:

(11)

0 → H0(F,Wρ̃) → H0(F, Q̄2
p)

δ−→ H1(F, φ/φσ) → H1(F,Wρ̃) → H1(F, Q̄2
p) → H2(F, φ/φσ)

Lemma 6.6.

(i) The cohomology group H2(F, φ/φσ) is trivial.

(ii) One always has dimQ̄p
H1(F,Wρ̃) = 3.

Proof. It follows from Global Euler characteristic formula that :
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dimH0(F, φ/φσ)− dimH1(F, φ/φσ) + dimH2(F, φ/φσ)

=
∑

v|∞

dim(Q̄p)
GFv − [F : Q](12)

Since φ/φσ is a totally odd character, the relation above yields that:

− dimQ̄p
H1(F, φ/φσ) + dimQ̄p

H2(F, φ/φσ) = −2

It follows from (ii) of [4, Prop.5.2] that dimQ̄p
H1(F, φ/φσ) = 2, and as such H2(F, φ/φσ)

is trivial. Finally, F is a real quadratic field, so F has a unique Zp-extension and

dimQ̄p
H1(F, Q̄2

p) = 2. dimQ̄p
Hom(GF , Q̄p) = 2. Thus, the long exact sequence (11) im-

plies that dimQ̄p
H1(F,Wρ̃) = 3. �

Corollary 6.7.

(i) The cohomology group H2(F,Wρ̃) is trivial.

(ii) There exists an exact sequence

0 → H1(F,Wρ̃) → H1(F, ad ρ̃)
C∗

−→ H1(F, φσ/φ) → 0

Proof. i) It follows from Global Euler characteristic formula that:

dimQ̄p
H0(F,Wρ̃)− dimQ̄p

H1(F,Wρ̃) + dimQ̄p
H2(F,Wρ̃)

=
∑

v|∞

dimQ̄p
(Wρ̃)

GFv − [F : Q] dimQ̄p
Wρ̃

(13)

Thus, the assertion results directly from the fact that ρ̃ is a totally odd representation

and dimQ̄p
H1(F,Wρ̃) = 3.

ii) Since H2(F,Wρ̃) = 0, the longue exact sequence (10) is unobstructed.

�

Theorem 6.8. One always has dimQ̄p
tDn.ord ≤ 3 and dimQ̄p

tDord ≤ 1.

Proof. The proposition 6.6 and the long exact sequence (11) generate the following exact

sequence :

(14) H0(F, Q̄2
p)

δ→ H1(F, φ/φσ) → H1(F,Wρ̃)
i→ H1(F, Q̄2

p) → 0

A direct computation shows that the image of δ is of dimension one over Q̄p.

Now, we will add the local conditions at v and vσ arising from nearly ordinary defor-

mations to (14):



RAMIFICATION OF THE EIGENCURVE AT CLASSICAL RM POINTS 31

H0(F, Q̄2
p)

δ−→ H1(F, φ/φσ)
i−→ H1(F,Wρ̃)

i−→ H1(F, Q̄2
p) −→ 0yr′

yB∗

H1(Fvσ , φ/φ
σ)

=−→ H1(Fvσ , φ/φ
σ),

(15)

where r′ is the map given by restriction of the cocycles to GFvσ
.

First, we will prove that the composition of B∗ with i is not trivial by proceeding by

absurd :

Let ρ1 be a cocycle representing a cohomology class of H1(F,Wρ̃) lying in the image of

i. Subsequently, we can modify ρ1 by a coboundary in the aim that ρ1(g) =
(
0 b
0 0

)
. The

function b→ b(g) is a cocycle and its cohomology class belongs to H1(F, φ/φσ). Suppose

that cohomology class of
(
0 b
0 0

)
is non trivial (i.e

(
0 b
0 0

)
isn’t a coboundary) and belonging

to ker(H1(F,Wρ̃)
B∗

→ H1(Fvσ , φ/φ
σ)); following this scenario, b can be modified by a

coboundary so that b = λη/φσ, where λ ∈ Q̄×
p (see Lemma 4.1). A direct computation

demonstrates that the cocycle ρ1(g) is the coboundary given by

g → ρ̃(g)Aρ̃(g)−1 −A , where A :=
(
−λ 0
0 0

)
.

As a consequence, there is a contradiction since we assumed that ρ1 is not a cobound-

ary. Therefore, we obtain that

dimQ̄p
ker(H1(F,Wρ̃)

B∗

→ H1(Fvσ , φ/φ
σ)) = 2.

The exact sequence presented below follows from Corollary 6.7, Lemma 6.5 and the

above discussion :

(16) 0 → (ker(H1(F,Wρ̃)
B∗

→ H1(Fvσ , φ/φ
σ)))

i→ tDn.ord
C∗

−→ H1(F, φσ/φ)GFv

Since dimH1(F, φσ/φ)GFv
= 1, it follows from (16) that dimQ̄p

tDn.ord ≤ 3.

To compute the dimension of tDord , the extra conditions of ordinariness at p need to

be added to tDn.ord , which appear in the filtration Wρ̃ as follow:

We have a natural map of Q̄p[GFvσ
]-modules (see (6))

ad ρ̃ −→ Q̄p
(
a b
c d

)
−→ a

(17)

and inducing by functoriality a map

A∗ : H1(F, ad ρ̃) → Hom(GFvσ
, Q̄p).
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The following inclusion results

tDord ⊂W = ker

(
H1(F, ad ρ̃)

(r◦C∗,B∗,A∗)−→ (H1(Fv, φ
σ/φ)⊕H1(Fvσ , φ/φσ)⊕Hom(GFvσ , Q̄p))

)

Let W0 denote ker(H1(F,Wρ̃)
(B∗,A∗)−→ H1(Fvσ , φ/φ

σ) ⊕ Hom(GFvσ
, Q̄p)); the exact se-

quence below emerges

(18) 0 →W0
i→W

C∗

−→ H1(F, φσ/φ)GFv

Therefore, the isomorphism ker(H1(F,Wρ̃)
B∗

→ H1(Fvσ , φ/φ
σ)) ≃ H1(F, Q̄2

p) (coming

from the above discussion) implies thatW0 is of dimension one over Q̄p and dimQ̄p
W ≤ 2.

Any cocycle ρ1 ∈ W0 satisfies the condition of ordinariness at p is necessarily an

homomorphism in H1(F, Q̄p), which is unramified at v, so trivial (since F is a real

quadratic extension of Q, F has a unique Zp-extension). Thus, the exact sequence (18)

yields that dimQ̄p
tDord = dimQ̄p

W − 1 ≤ 1.

�

Proof of the theorem 1.5.

The p-nearly ordinary deformation

ρQ(Tn,ord) : GF → GL2(T
n,ord)

of ρ̃ yields a canonical morphism :

(19) Rn.ord → Tn.ord

Let n1 := nn.ord ∩ Λn.ordO and Λ̂n.ord(1) be the completed local ring for the étale topology

of SpecΛn.ordO at a geometric point corresponding to n1. Since hn.ordF is a torsion-free

Λn.ordO -module of finite type, we gain (after localization) a finite torsion-free morphism

w : Λ̂n.ord(1) → Tn.ord. On the other hand, the local ring Tord is endowed naturally with

structure of Λ-algebra originating from the finite flat morphism ΛO → hF (see [23]).

The ring Rn.ord has a canonical structure of Λ̂n.ord(1) -algebra (see [4, §6.2]), and the

morphism (19) is a morphism of Λ̂n.ord(1) -algebras.

Moreover, the ring Rord
det ρ := Rn.ord/m

Λ̂n.ord
(1)

Rn.ord represents the largest p-ordinary

quotient of Rn.ord of determinant equal to det ρ̃ (see [4, §6.2]).

Proposition 6.9.

(i) The morphism (19) yields an isomorphism of regular rings Rn.ord ≃ Tn.ord.

(ii) There exists an isomorphism between local regular rings Rord ≃ Tord.

(iii) There exists an isomorphism Rord ≃ Rτ=1.
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(iv) There exists an isomorphism Rord
det ρ ≃ Tord/mΛT

ord ≃ Tn.ord/m
Λ̂n.ord
(1)

Tn.ord.

Proof.

i) First of all, it needs to be demonstrate that the morphism (19) is surjective. By

construction, the Hecke algebra Tn.ord is generated of Λ̂n.ord(1) by the Hecke operators Tq

with q ∤ p, Up and Upσ . The morphism (19) sends the trace of ρRn.ord(Frobq) to Tq

when q ∤ p. Otherwise, the restriction of ρRn.ord to GFpi
for all primes pi | p of F is an

extension of the character ψ′′
i,Rn.ord by the character ψ′

i,Rn.ord , where the image of the

character ψ′′
i,Rn.ord in Tn.ord is just the character δpi which sends [y, Fpi ] on the Hecke

operator T (y), where [., Fpi ] : F̂
×
pi → GabFpi

is the Artin symbol. Thus, Upi = [πpi , Fpi ] in

the image of the morphism (19) for some uniformizing parameter πpi of the local field

Fpi . Hence, the morphism (19) is surjective and the Krull dimension of Rn.ord is at least

3 (since the Krull dimension of Tn.ord is 3).

Finally, Proposition 6.8 implies that Rn.ord is a regular ring of dimension 3, because

the Krull dimension of a local ring is less or equal to the dimension of its tangent space.

Therefore, the surjection (19) is necessarily an isomorphism of regular local rings of

dimension 3 (since the Krull dimension of Tn.ord is 3).

ii) It derives from (i) and the relation [4, (20)] that Rord ≃ Tord. On the other hand,

Theorem 6.8 implies that the dimension of mRord/m2
Rord is one over Q̄p. Moreover, the

Krull dimension of Tord is equal to one and the tangent space of Tord is of dimension

one, hence Tord is a regular local ring of dimension one.

iii) The deformation ρτ=1 of ρ̃ (see lemma 4.1) induces by functoriality an homomor-

phism Rord → Rτ=1. Since Rτ=1 is generated over Λ by the trace of ρτ=1 (Rps
red ≃ Rτ=1),

this homomorphism Rord → Rτ=1 is necessarily surjective. Finally, both Rord and Rτ=1

are discrete valuation rings, then this surjection rises to an isomorphism.

iv) It follows from i), ii) and the relations of the section [4, §6.2].
�

Let S†
1(1, Id)/F denote the space of p-ordinary p-adic cuspidal Hilbert modular forms

over F of weight 1, tame level 1, of trivial Nybentypus character and with coefficients in

Q̄p; and let S†
1(1, Id)/F [[E1(φ, φ

σ)]] be the generalised eigenspace attached to E1(φ, φ
σ)

inside S†
1(1, Id)/F . By construction of the universal p-ordinary Hecke algebra hF and the

Hida duality between cuspidal p-adic modular forms and Hecke algebras, the following

isomorphism is a generalization of [12, Prop.1.1] :

HomQ̄p
(Tord/mΛT

ord, Q̄p) ≃ S†
1(1, Id)/F [[E1(φ, φ

σ)]].

We have the following consequence of Proposition 6.9, summarizing the overall results

of this paper.
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Corollary 6.10. Assume that φ is unramified everywhere and φ(Frobv) 6= φσ(Frobv),

then the following conditions are equivalents:

(i) Tn.ord is étale over Λ̂n.ord(1) .

(ii) Tord is étale over Λ.

(iii) T+ is étale over Λ.

(iv) The ramification index e of C over W is exactly 2.

(v) The Q̄p-vector space S†
1(1, Id)/F [[E1(φ, φ

σ)]] is of dimension one and it is gen-

erated by E1(φ, φ
σ).

Remark 6.11.

In case hypothesis (GGG) holds, the equivalence of the above corollary holds as well, and

every overconvergent form of S†
1(1, Id)/F [[E1(φ, φ

σ)]] is necessarily classical.

7. examples where the ramification index e of C over W at f is 2

Cho, Dimitrov and Ghate provided several examples for Hida families F containing

a classical RM cuspform and such that the field generated by the coefficients of F is

a quadratic extension of the fraction field of the Iwasawa algebra ΛO. Thus, we have

several numerical examples for which the ramification index e of C over W at f is 2.

7.1. Examples provided by Dimitrov-Ghate [16, §7.3].
Denote by Tnew

N,ρ̄ the N -New-quotient of hQ,m acting on the space of ΛO-adic ordinary

cuspforms of tame level N which are N -New. Dimitrov and Ghate studied in [16, §7.3]
the Hida families specializing to classical RM forms, and they give a couple of examples

for which the rank of Tnew
N,ρ̄ over the Iwasawa algebra ΛO is two. In this case, if F denote

a p-adic Hida family specializing to the classical RM form f , then the field generated by

the coefficients of F is obtained by adjoining to Frac(ΛO) a square-root of an element in

ΛO.

Their method of computation is based on the study of the specializations in weights

two or more; specifically, they showed that the p-adic completions of the Hecke fields of

modular forms fk for the first few weights k are all quadratic extensions of Qp (see Table

1 and Table 2 of [16, §7.3]).

7.2. Examples provided by Cho [8, §7].
The method of computation of S.Cho in [8, §7] includes the study of the unramifiedness

specializations of hω=1
Q,m of higher weight in the aim to prove that hω=1

Q,m ≃ ΛO in many

examples.
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LetHk be the Hecke algebra over Q for the space of cusp forms of weight k, Nybentypus

character ǫF and level N , H+
k be the maximal real sub-algebra of Hk and, moreovoer,

D+ be the discriminant of H+
k .

A direct computation illustrates that the Atkin-Lehner involution acts on Hk as the

complex conjugation. Therefore, when p ∤ D+, the specialization of hω=1
Q,m at the weight

k is unramified over O, and hence hω=1
Q,m ≃ ΛO by [19, Prop.8].

Thus, it is sufficient to detect examples such that the specialization of hω=1
Q,m at higher

weight k is unramified overO, and Cho checked this unramifiedness from the discriminant

table from [18, Table 1].
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