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Particle-fluid flows with free-surfaces are commonly encountered inmany industrial processes, such as wet ball
milling, slurry transport andmixing. Accurate prediction of particle behaviors in these systems is critical to estab-
lish fundamental understandings of the processes, however the presence of the free-surface makes modelling
thema challenge formost traditional, continuum,multi-phasemethodologies. Coupling of smoothed particle hy-
drodynamics and discrete element method (SPH-DEM) has the potential to be an effective numerical method to
achieve this goal. However, practical application of this method remains challenging due to high computational
demands. In thiswork, a general purposed SPH-DEMmodel that runs entirely on aGraphic ProcessingUnit (GPU)
is developed to accelerate the simulation. Fluid-solid coupling is based on local averaging techniques and, to
accelerate neighbor searching, a dual-grid searching approach is adapted to a GPU architecture to tackle the
size difference in the searching area between SPH and DEM. Simulation results compare well with experimental
results on dam-breaking of a free-surface flow and particle-fluid flow both qualitatively and quantitatively,
confirming the validity of the developedmodel. More than 10million fluid particles can be simulated on a single
GPU using double-precision floating point operations. A linear scalability of calculation time with the number of
particles is obtained for both single-phase and two-phase flows. Practical application of the developed model is
demonstrated by simulations of an agitated tubular reactor and a rotating drum, showing its capability in han-
dling complex engineering problems involving both free-surfaces and particle-fluid interactions.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Understanding particle behaviors in free-surface flows is crucial to
many natural phenomena and industrial processes, such as debris
flow [1], wet ball milling [2, 3], slurry transport [4], mixing and separa-
tion in chemical andmineral processing [5–7] and additivemanufactur-
ing [8]. Despite wide popularity, application of traditional grid-based
methods, such as coupled computational fluid dynamic (CFD) and dis-
crete element method (DEM), to handle particles in free-surface flows
is still challenging due to the presence of free-surfaces, especially
splashing and fragmentations [9–11]. Additional detection algorithms
are required to track the free surfaces for grid-based Eulerian methods,
such as volume of fluid [9], marker-and-cell [10] and level-set method
[11]. In addition, numerical diffusion may arise due to advection
terms. On the other hand, grid-based Lagrangian methods face prob-
lems of mesh distortion, which requires expensive mesh re-generation.
The presence of splashing and fragmentations requires a numerical
method which can handle the discrete nature of the free-surface
flows. SPH, as ameshlessmethod, shows strong potentials in this regard
. This is an open access article under
as it discretize the fluid into a set of particles, thus allowing the dynam-
ics of the free-surface flows to be readily captured. Since the pioneer
work of Gingold and Monaghan [12], SPH has been widely used to
model free-surface flows in many fields [13]. It has been recently
extended to deal with solid particles in free-surface flows by coupling
SPH with DEM [7, 14–17]. Nevertheless, application of this method to
engineering problems remains limited due to associated high computa-
tional cost. This is especially the casewhen complexmoving boundaries
are present. Thus, a high performance implementation of the SPH-DEM
method is necessary for applications in engineering practice.

Coupling of SPH and DEM enables a unified Lagrangian particle-
based method, well suited for applications where free-surfaces and
strong fluid-particle interactions coexist. Approaches for coupling the
momentum transfer between the fluid and particles can be classified
into two groups: resolved and unresolved methods. In the resolved
method the SPH particles are significantly smaller than the solid parti-
cles and the flow around the solid particles is explicitly resolved. In
the unresolved method the SPH particles are of a comparable size of
the solid particles and empirical force correlations are used to capture
the momentum transport between phases. For resolved simulation, a
variety of methods have been developed to enable no-slip conditions
at solid surfaces. Potapov et al. [18] coupled SPH with DEM to simulate
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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shear flow of neutrally buoyant particles, where no-slip boundary
condition is enabled by placing SPH particles inside large solid particles
[19]. Densities of the interior SPH particles are updated in the same
manner as the fluid SPH particles while moving the interior SPH parti-
cles with the solid particles. This approach was verified with experi-
mental results on the drag force and size of the wake for fluid flow
around a circular cylinder. Canelas et al. [20] coupled SPH with a
so-called distributed contact DEM, where the solid body is represented
by a set of small particles with fixed relative position. The interaction
between fluid and solid particles are calculated in a manner similar to
themethodology of dynamic boundary conditions [21]. The interactions
among solid bodies are calculated through the small constituent parti-
cles by means of soft-sphere collision model. This model shows good
comparison with experiments on tracking blocks subjected to a dam-
break wave [20] and on a debris flow [22]. Ren et al. [23] also reported
a similar method to study stability of 2D blocks on a slope due to
wave-structure interaction. Since the fluid resolution has to be
sufficiently small to resolve flow structure around the particle, high
computational demand is thus inevitable when dealing with a large
number of solid particles. The requirement of a larger size of solid parti-
cles than the fluid particles further limits their range of applicability,
especially considering a wide size distribution of solid particles is com-
monly encountered in practical systems.

On the other hand, phase interaction in the unresolved simulation is
handled by empirical force correlations. Both one-way and two-way
coupled SPH-DEM methods have been reported. For example,
Komoroczi et al. [24] combined SPH with DEM by treating either DEM
particles as SPH particles or treating SPH particles as DEM particles.
Cleary et al. [4, 5] treated the solid bed as a dynamic porousmedia by av-
eraging the velocities and porosities of the DEM particles, through
which the SPH fluid is able to flow. This one-way coupled method has
been applied to predict slurry transport in SAG mills [4] and to model
slurry flow on a double deck vibrating banana screen [5] in mineral
processing. Sun et al. [6] reported a two-way coupled SPH-DEMmethod
in which a boundary model based on variational approach is explicitly
included in the momentum equation. A unified boundary representa-
tion is enabled for both phases, eliminating the redundantwall particles
for the fluid phase. Similarly, Robinson et al. [17] developed a coupled
SPH-DEM method based on the locally averaged Navier-Stokes equa-
tions. The model showed good agreement with sedimentation test
cases with increasing complexity, namely, settling of single sphere,
constant block of particles and multiple particles. The fully coupled
SPH-DEMmethod is gainingpopularity in different engineering applica-
tions, including fluid-particle-structure interaction problem with
free-surface flow [14, 15] and landslide generated surge waves [16]
and particle separation due to density difference in waste recycling
[7]. To date, however, most of these studies are concernedwith 2D sim-
ulation [14–16] or limited to a very small scale [7, 17], therefore, devel-
oping a general SPH-DEMmodel capable of accelerating simulation is of
great importance for practical problems in engineering applications.

Computational efficiency of numerical methods is closely related to
the progress of hardware architecture. GPU-based parallelism has
been increasingly applied to speedup simulations of particle-based nu-
merical methods due to high memory bandwidth and instruction
throughput offered by GPU processors, such as Molecular Dynamics
[25, 26], Lattice Boltzmann Method [27–29], SPH [30, 31] and DEM
[32–36]. GPU-based implementations show orders of magnitude faster
than their serial counterparts, making it very attractive for schemes
that can make use of the single instruction multiple data architecture.
Due to the locality of particle interactions, both SPH and DEM schemes
require identification of neighboring particles. In pure SPH models the
interaction length is greater than twice the particle diameter, where in
pure DEM simulations there is no longdistance force and the interaction
search area is approximately the solid particle diameter. In coupled
SPH-DEM systems, the interactions between different particle types
leads to increased complexity. To accelerate neighbor searching on
GPU, different algorithms have been reported, including the k-d tree
method [37] and spatial subdivision approaches, such as the bounding
volume hierarchy method [38, 39] and the uniform grid method [35].
The k-d tree structure needs to be reconstructed at every time step,
thus not suitable for discrete methods while the spatial subdivision
approaches are limited by the fact that the grid size needs to be large
enough to host the largest particles. Application of these searching
methods mentioned above to SPH-DEM is thus not straightforward,
especially on a GPU platform. A general purpose SPH-DEM program
also needs to be efficient at GPU memory management. To the best of
our knowledge, coupling of SPH and DEM methods that run entirely
on a GPU platform has yet to be reported.

Starting from the theoretical background, this work will address the
development of a general purposed GPU-based SPH-DEM method in
detail. A dual-grid searching approach is incorporated to handle the dif-
ference in the particle interacting range between SPH and DEM. Model
validation and performance analysis of the GPU-based model will be
evaluated for both the single phase and the particle-fluid flows, respec-
tively. Practical application of the GPU-based model to chemical
engineering will be illustrated by the simulating free-surface flows in
an agitated tubular reactor and particle-fluid flows in a rotating drum.
The paper is organized as follows: the model formulation is first
presented in Section 2 followed by a detailed description of the GPU
implementation, including the neighbor searching method, memory
management and program flow. Then, the validation, engineering
application and performance of the developed model in handling both
single-phase flow and particle-fluid flow with free-surfaces are
addressed separately in Section 3.

2. Model description and GPU implementation

To achieve unresolved simulation, different approaches to couple
DEM to SPH have been reported [6, 14–17], which are essentially
solving governing equations of the conventional Two Fluid Model
(TFM) [40] in the framework of SPH, which are given as,

∂ ερ fð Þ
∂t

þ ∇∙ ερ fuð Þ ¼ 0 ð1Þ

∂ ερ fuð Þ
∂t

þ ∇∙ ερ fuuð Þ ¼ −∇P−Sp þ ∇∙ ετ fð Þ þ ερ fg ð2Þ

with ρf the fluid density, P pressure acting on the fluid phases, τf the
viscous stress tensor and g the acceleration due to gravity. ε is the vol-
ume fraction of fluid in each cell. Sp is the source term due to the rate
of momentum exchange between the fluid phase and the solid phase.
The coupling strategy adopted here is similar to that proposed by
Robinson et al. [17]. In this section, an overview of the SPH and the
DEM methods used to discretize the governing equations and the
strategy of phase coupling are provided. A detailed description of the
force models used in DEM can be found elsewhere [41–43]. For ease of
reading, the fluid particles are labeled as particle a and b while the
solid particles are labeled as particle i and j.

2.1. Fluid phase: SPH

The methodology behind SPH is based on the theory of integral
interpolants, the interpolated value of a function A(r) at position r is
expressed as,

A rð Þ ¼
Z

A r0ð ÞW r−r0j j;hð Þdr0 ð3Þ

where the kernel function W(|r− r′|,h) tends to delta function when
the interpolation domain is infinitely small. The size of the interpolation
domain is characterized by a smoothing length h. In SPH, fluid is
discretized into individual particles with each carrying a set of
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Fig. 1. Boundary treatment used in SPH calculation: boundary particles acting as both
dummy fluid particles and repulsive particles.
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associated properties, such as density, pressure and momentum. The
fluid particles follow the flow due to pressure gradient, viscous shear
and body force while acting as interpolation points for their neighbors.
The integral interpolant at the position of the particle is approximated
by,

A rað Þ ¼
X
b

Ab
mb

ρb
W rabj j;hð Þ ð4Þ

withmb and ρb themass and density of particle b, |rab| being thedistance
between two fluid particles. The summation is taken over all particles
within the support domain of particle a.

The kernel function W(|rab|,h)must obey a number of mathematic
constraints, including positivity, monotonically decreasing, compact
support and normalization. In this study, theWendland kernel function
is used since it can achieve a good balance between numerical accuracy
and computational cost [44].

W rabj j;hð Þ ¼ αD 1−
q
2

� �4
1þ 2qð Þ 0≤q≤2 ð5Þ

where αD is 7/8πh3 in 3D. q = |rab|/h. In practice, the kernel function
vanishes when the particle separation is greater than 2h to achieve a
compact support domain.

2.1.1. Continuity equation
Applying the SPH particle approximation, the continuity equation of

Eq. (1) can be written as,

dρa

dt
¼
X
b

mbvab∇aWab rabj j;hð Þ ð6Þ

with ∇aW(|rab|,h) the gradient of the kernel function at the position of
particle a, and vab = va − vb is the velocity vector. ρ denotes the super-
ficial fluid density defined as ρa ¼ ερ f , with ε the volume fraction of
fluid and ρf the intrinsic fluid density.

2.1.2. Equation of state
In the weakly compressible SPH schemes [45], fluid particles are

driven by local pressure gradient. Pressure is expressed as a function
of the fluid density, giving a quasi-incompressible equation of state as
follows:

P ¼ B
ρa

ερ0

� �γ

−1
� �

ð7Þ

with γ=7 and ρ0 reference density of the fluid. B is a pressure constant
determines the speed of sound by cs2 = γB/ρ0. The density fluctuation in
fluid flow is proportional to M2 where M is the Mach number. By
limiting the Mach number, the flow can be considered practically in-
compressible. To limit the density variation within 1%, the coefficient
B can be calculated as,

B ¼ 100ρ0

γ
v2max ð8Þ

2.1.3. Momentum equation
The momentum equation of Eq. (2) in SPH form is given by,

dva
dt

¼ −
X
b

mb
Pa

ρ2
a

þ Pb

ρ2
b

þ Rab

" #
∇aWab rabj j;hð Þ þΠab þ Sa þ g ð9Þ

with P the pressure due tofluid phase,Πab the viscosity term and Rab the
term due to tensile instability and Sa the couple term due to solid parti-
cles. The symmetrical form of the pressure gradient term is taken in
order to reduce error arising from particle inconsistence. The stress
termsΠab representing the viscous diffusion derived by [19] is incorpo-
rated into the momentum equation,

Πab ¼
X
b

mb μa þ μbð Þrab∙∇aWab rabj j; hð Þ
ρaρb r2ab þ 0:01h2

� � vab ð10Þ

where μ is the dynamic viscosity. In the weakly compressible SPH,
tensile instability is often attributed as the cause of unphysical particle
clumping. This phenomenon is especially significant in materials with
an equation of state which can give rise to negative pressures, which
reduces numerical accuracy due to the uneven particle distribution. To
remove the instability, [46] introduced an additional pressure between
particles to prevent particle from forming small clumps. This artificial
pressure term Rab is added to the momentum equation, given as,

Rab ¼ 0:01
Pa

ρ2
a

þ Pb

ρ2
b

 !
W rabj j;hð Þ
W Δp;hð Þ

� �4

ð11Þ

where Δp is the initial particle spacing.

2.1.4. Moving the particles
To keep an orderly flow of particle, the particles aremoved using the

XSPH variant,

dra
dt

¼ va−ϵ
X
b

mb

ρab
vabWab rabj j;hð Þ ð12Þ

where ρab ¼ ðρa þ ρbÞ=2 and ϵ is a problem-dependent constant,
ranging from 0 to 1. It moves a particle at a velocity close to the average
velocity of its neighbors. In this study, ϵ is set to 0.3.

2.1.5. Boundary treatment
When a SPH particle approaches a rigid boundary, the support

domain of its kernel will be truncated by the boundary. Ideally, the
boundary treatment should compensate for the lack of particles beyond
the boundary and provide enough repulsive force to prevent particles
from penetration. Different treatments have been proposed to this
end, including kernel re-normalization [47], ghost particles [48], layers
of fixed fluid particles, repulsive particles [45] and dynamic particles
[49–51]. Sun et al. [6] introduced a correction to the SPH approximation
where the boundary information are explicit included without using
extra wall particles. Together with level-set functions, a unified bound-
arywas enabled for both the solid phase and thefluid phase. In the pres-
ent study, a generalized wall boundary treatment that is capable of
handling arbitrarily shaped geometries was adopted [52]. As shown in
Fig. 1, solid wall is discretised into dummy particles whose properties
do not evolve with time. These wall particles provide support for the
kernel interpolants of the fluid particles. The pressure and velocity at
the position of a wall particle is interpolated from surrounding fluid
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particles to ensure a non-slip boundary condition of the solid walls,
which are given by,

vw ¼ 2va−

X
b

vbWab rabj j; hð Þ
X
b

Wab rabj j;hð Þ ð13Þ

Pw ¼

X
f

P fWwf rwfj j; hð Þ þ g−awð Þ
X
f

ρ frwfWwf rwfj j; hð Þ
X
f

Wwf rwfj j; hð Þ ð14Þ

ρw ¼ ρ0
Pw

B
þ 1

� �1
γ

ð15Þ

with va the prescribedwall velocity, aw the acceleration of thewall and |
rwf| being the distance between fluid particle and wall particle. In prac-
tice, however, wall penetration cannot be fully avoid where violent
fluid-wall interactions exist. Therefore, in this study, the repulsive
force proposed byMonaghan [45] is combinedwith the above boundary
treatment to fully prevent wall penetration.

2.2. Solid phase: DEM

In DEM, the motion of solid particles is tracked by Newton’s second
law of motion, written as,

m
dv
dt

¼ F f þ Fc þmg ð16Þ

I
dω
dt

¼ T f þ Tc ð17Þ

where m, I, v and ω are, the mass, inertia, translational and rotational
velocities of the element, respectively. The force and torques acting on
each particle consists of several contributions, including the hydrody-
namic components, Ff and Tf, arising from fluid-particle interaction,
the collision components, Fc and Tc, due to solid-solid interaction and
mg the gravity. The collisions between particles are handled by a
soft-sphere model that allows for inter-particle overlap. The collision
force includes the normal contact force Fn, normal damping force Fd,n,
tangential contact force Ft and tangential damping force Fd, t. The
normal contact is described by Hertz theory while tangential elastic
frictional contact is based on Mindlin and Deresiewicz theory [53]. The
normal and tangential contact forces are given as,

Fn ¼ 4
3
E�R�1=2δ3=2n n̂ ð18Þ

Ft ¼ −
δtμt Fnj jδtj j 1− 1−

min δtj j; δt; max
� �
δt; max

� �3=2" #
ð19Þ

in which the R∗, E∗and δt, max are calculated as,

1
R� ¼

1
Ri

þ 1
R j

ð20Þ

1
E�

¼ 1−ν2
i

Ei
þ
1−ν2

j

E j
ð21Þ

δt; max ¼ 2−νð Þ
2−2ν

μtδn ð22Þ

with Ri and Rj being the radius of two particles in contact. E and ν are the
Young’s Modulus and Poisson’s ratio of solid particles, respectively. δn
and δt represent the overlap in normal and tangential directions and μt
is the sliding friction.
The equations used to calculate damping in normal and tangential
directions are given by,

Fd;n ¼ −cn 8m�E�
ffiffiffiffiffiffiffiffiffiffi
R�δn

p� �1=2
vn ð20Þ

Fd;t ¼ −ct 6μtmE� Fnj j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− δtj j=δt; max

p
δt; max

 !1=2

� vt ð21Þ

where cn and ct are the normal and tangential damping coefficient,
respectively. The normal damping coefficient can be directly linked to
the restitution coefficient e in the normal direction by,

cn ¼ − lne=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
π2 þ ln2e

q
ð23Þ

Thenormal restitution coefficient e is defined as the ratio of post-col-
lisional contact velocity to pre-collisional contact velocity.

The collision torque Tc is composed of the torque due to the tangen-
tial force Tt and the torque Tr due to particle rolling friction resulting
from the elastic hysteresis losses or viscous dissipation [54], calculated
as,

Tt ¼ Ft þ Fd;t
� �� R ð24Þ

Tr ¼ μrR Fnj jω̂n ð25Þ

where μr is the rolling friction and ω̂n ¼ ωn=jωnj with ωn the angular
velocity.

2.3. Phase coupling

The local porosity at the position of fluid particle a is calculated by a
summation over neighboring DEMparticles within a coupling length hc,
given as,

εa ¼ 1−
X
j

Waj hcð ÞV j ð26Þ

with Vj the volume of DEM particle j,Waj( hc) the SPH kernel and hc the
coupling length for the interaction between two phases. The coupling
length should be larger than the diameter of solid particle but small
enough to capture local feature of the porosity field. Here, the coupling
length is set to be same as the SPH smoothing length.

For the solid particles, forces due tofluidflowaremodelled. The total
fluid force can be split into a pressure gradient force and a drag force.

Fi ¼ −V i −∇P þ ∇∙τð Þ þ Fd ð27Þ

with Vi the particle volume, ∇P the pressure gradient and Fd the drag
force. The pressure gradient is evaluated at solid particle i using a
Shepard corrected SPH interpolation [55], given as,

−∇P þ ∇∙τð Þi ¼
1X

b

mb

ρb
Wab hbð Þ

X
b

mb

ρb
θbW ib hbð Þ ð28Þ

θa ¼ −
X
b

mb
Pa

ρ2
a

þ Pb

ρ2
b

 !
∇aWab hbð Þ þΠab ð29Þ

Thefluid-particle drag force Fd depends on the local porosity and rel-
ative velocity between fluid and particle. For the dense particle fluid
flow, the drag model of Ergun and Wen & Yu [56, 57] is used, which is
based on experimental measurements.

Fd ¼ βV i

1−ε
u−vð Þ ð30Þ
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with β the interphase momentum exchange coefficient, which is given
by,

β ¼
150

μ 1−εð Þ2
εd2i

þ 1::75
1−εð Þρ f

di
u−vij j ε < 0:8ð Þ

3
4
CD

ε 1−εð Þ
di

ρ f u−vij jε−2:65 ε > 0:8ð Þ

8>>><
>>>:

ð31Þ

where CD is the drag coefficient. It can be calculated as,

CD ¼
24 1:0þ 0:15Re0:687p

� �
Rep

Rep ≤1000
� �

0:44 Rep > 1000
� �

8><
>: ð32Þ

in which the particle Reynolds number Rep is defined as Rep = ρdpε|u
− vp|/μ.

The rate ofmomentumexchange in the right hand of Eq. (2) for each
SPH particle is calculated by a weighted average of fluid-particle
coupling force acting on the surrounding DEM particles within the cou-
pling length hc, so that Newton’s third law of motion is satisfied, which
is given by,

Sa ¼ −
ma

ρa

X
j

1X
b

mb

ρb
Wab hbð Þ

FiWaj hcð Þ ð33Þ
(a) (b)

(d)

Level 1
Level 2

Level

Fluid particle

Solid particle
Targeted solid particle

Identified neighboring solid particles

Targeted fluid particle

Identified neighboring fluid particles

Level

Fig. 2. Schematic demonstrating neighbor searching algorithm used in coupled SPH-DEM appro
grid, (c) searching fluid neighbors for fluid particle, (d) searching fluid neighbors for solid part
2.4. GPU implementation

2.4.1. Neighbor searching
The locality of interaction in both SPH and DEMmethods highlights

the importance of an efficient neighbor searching algorithm. Neighbor
searching is often regarded as themost time demanding aspect of a par-
ticle-basedmethod. Although extensive studies have been conducted to
optimize the searching process, implementation of a searching algo-
rithm on the GPU platform is still not straightforward for the coupled
SPH-DEM method. The reason is attributed to the size difference be-
tween the support domain, 2h, of the SPH particles and the diameter,
d, of the DEM particles. DEM calculations are mainly concerned with
particles in direct contact or with short-range interactions, whilst
long-ranged interactions are present in the SPH calculations. If the size
of the search grid is set as the smoothing length of the SPH particles,
2h, it would inevitably include redundant DEM particles. A dual-grid
searching approach was therefore implemented to reduce the size of
the search domain for the solid phase and thus accelerate the neighbor
searching process. Fig. 2 shows a schematic view of the dual-grid
searching approach applied to a coupled system where particles of
two phases are of the same size. The hollow circles represent the DEM
particles while the solid circles represent the SPH particles. Based on a
traditional linked-cell method, the implemented searching method
consists of two steps: particle mapping and all-level searching.

Firstly, particles are mapped onto different grids according to
their type: solid particles are mapped onto Level 1 while fluid
particles are mapped onto Level 2. A radix sort algorithm from the
Thrust library is performed on the resulting array to sort the particles ac-
cording to their cell indices [58]. The cell size for the SPH particles is set
(c)

(e)

2

Level 1

1

Level 2

ach, in which (a) dual-grid system, (b) searching solid neighbors for solid particle in DEM
icle and (e) searching solid neighbors for fluid particle.
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Fig. 3. Flow chart of the algorithm of the coupled SPH-DEM method. The steps in the
shaded boxes are conducted on the GPU.
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as 2h + ΔSPH while it is set as dmax + ΔDEM for the DEM particles, in
which dmax is the maximum particle diameter. Consequently, only par-
ticles in the neighboring cells contribute to the update of a same phase
(Fig. 2(b) and 2(c)). The searching area is shaded for illustration
purposes in Fig. 2. The purpose of introducing an extra searching gap
Δ is to avoid conducting the particle mapping and searching at every
time step. A large value of Δ means more time are needed to conduct
neighbor searching for each time. It is thus a balance between the fre-
quency of searching and the time cost of each searching routine. Its
value depends on factors like the particle velocities and solid concentra-
tion, but normally smaller than the particle size. In this study, it is set as
0.3 times of the particle size. Potential neighbors are then identified by
looping through all levels of the searching grid. For SPH particles, the
fluid neighbors are detected from Level 2 while its solid neighbors are
searched on Level 1. For the DEM particles, the contact detection
between solid particles is conducted on Level 1 while the interaction
with fluid particles is performed on Level 2. For interactions between
phases, the search area depends on the size ratio between the size of
the SPH particle support domain and the DEM particle size. To find
neighboring DEM particles, the SPH particle is mapped into Level 1, as
shown in Fig. 2(e). In this illustrative example, ⌈2h/d⌉= 3 (where the
nomenclature ⌈x⌉ returns the smallest integer larger than x). Searching
is therefore conducted by looping through the three surrounding layers
of the DEM cells. On the other hand, to find neighboring SPH particles
for a given DEM particle, searching is only performed within the sur-
rounding SPH cells and the mapped cell itself as ⌈d/2h⌉= 1, as shown
in Fig. 3(d).

2.4.2. Memory management
A unique feature of the DEM calculation is the need to record the

contact status between two contacted particles. It is used to determine
the friction status, either in static friction or in dynamic friction. If plastic
deformation or inter-particle bonding is considered, a large amount of
memory is required to keep the contact history information [43].
Additionally, double-precision floating point accuracy is required to
minimize numerical errors. Consequently to enable the efficient solu-
tion of large-scale problems, it is important to optimize the algorithm
to balance memory consumption and computing efficiency. To this
end, a neighbor list is only constructed for the DEM particles as each
SPH particle can host a large amount of neighbors due to its large size
of support domain. Instead, the step of particlemapping for the SPHpar-
ticles is conducted occasionally while the step of all-level searching is
conducted at every time step. The reconstruction of DEM neighbor list
and the particle mapping step for SPH particles are triggered when ac-
cumulated displacement of any particles exceeds a specified threshold:
ΔDEM/2 for DEM particles and ΔSPH/2 for SPH particles, respectively.

In this study, both the neighbor list and associated contact history in-
formation are saved in the global memory on the GPU. Each time step,
neighbor searching and force calculations require frequent access to
this data. The memory layout has therefore been optimized to boost
the efficiency of data fetching. GPU threads are grouped into warps of
32 threads and each memory operation is issued per warp, meaning
that one memory fetch can return a cache line of 128 bytes. Conse-
quently to promote coalesced memory access, and therefore maximize
the efficiency of each fetch, the neighbor index and contact history
data arrays of each DEM particle are organized in a column-major
pattern.

2.4.3. Program flow
The coupled SPH-DEM method was implemented using C++ and

Compute Unified Device Architecture (CUDA) developed by NVIDIA.
The GPU program was formulated using a single-program multiple-
data (SPMD) technique, where the same program is executed by multi-
ple threads simultaneously. Due to the discrete nature of the particle
methods, GPU threads are assigned to each particle (either DEM or
SPH particle). As a result, neighbor searching, force calculation and
time integration of the equation of motion can be carried out
independently for each particle using different GPU kernel functions.
For efficient use of the GPU memory, parameters that remain the
same during simulation, such as material properties, are stored in the
constant memory (a type of read-only memory on the GPU with fast
data fetching) while other particle-related information, including posi-
tions, velocities, forces and contact histories, are stored in the global
memory on the GPU.

Fig. 3 shows the flow chart of the algorithm that runs on a single
GPU. The whole program can be divided into two major parts: DEM
calculation and SPH calculation. For each type of calculation, there are
three major components: i) neighbor searching (DEM) or particle
mapping (SPH), ii) force computation and iii) time integration of the



Fig. 4.Particle representation of thedam-break test case.Wdenotes thewidthof thewater
column. Blue particles represent the solid wall while red particles represents the fluid.
(The side wall and moving gate wall are not shown for clarity.)
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equation of motion using an explicit time integration method (forward
Euler method). The time step for time integration in SPH is limited by
the CFL-condition based on the artificial sound speed and themaximum
flow speed and viscous condition [13] while the time step used for
DEM calculation is determined based on a Rayleigh wave propagation
criteria [59].

The program starts by reading pre-defined initial positions and the
associated properties of the SPH particles from files generated from a
pre-processing step. The solid particles are subsequently randomly
generated and allowed to settlewithin the required region or the geom-
etry. Once this initialization is complete the DEM and SPH calculations
are started. During each step, the DEM calculation are first performed
following an order of searching neighbors, updating contact histories,
calculating forces and updating the particle velocities and positions.
The DEM calculation iterates multiple times until the DEM time is syn-
chronized with the SPH time. The SPH calculation is then started by
mapping the fluid particles onto the searching grid, namely assigning
thefluid particles into axially-aligned cells, ready for neighbor searching
in the following steps. The porosity at the position of each fluid particle
is calculated from surrounding solid particles (Eq. (26)). The pressure of
fluid particles is updated using the equation of state based on the fluid
superficial density (Eq. (7)). Then, the interaction between fluid parti-
cles is calculated by solving the continuity (Eq. (6)) and momentum
equations (Eq. (9)). The phase coupling is achieved by calculating the
fluid force acting on the solid particles (Eq. (27)) and then the reaction
force on the fluid particles is calculated using a weighted-average of the
forces from the solid particles (Eq. (33)). Finally, the fluid particles’
density, velocity and position are updated. These calculations are re-
peated over the simulation time. It should be noted that the bandwidth
between CPU and GPU limits the efficiency of memory transfer.
Therefore, we only retrieve simulation data occasionally back to the
CPU for data recording. With the exception of the data transfer all the
calculations are performed on the GPU by means of issuing a set of
CUDA kernel functions.

3. Results and discussion

In this section, validation, application and performance evaluation of
the GPU-based models are carried out. The model validation is focused
on the SPH model and the coupled SPH-DEM model as the GPU
execution of the DEMmodel has been validated and applied in previous
studies of powderflowand compaction [41–43]. Dambreak simulations
with single and two-phase flow are chosen for this purpose due to their
simplicity andwide acceptance as validation tests for free-surfaceflows.
The validated models are then applied to two systems: a novel tubular
reactor where the fluid flow is agitated by a perforated tube and a
quasi-steady solid-liquid flow in a rotating cylindrical drum. These
were selected to examine the capability of the models in handling
complex systems encountered in engineering practice.

3.1. Single phase flow

3.1.1. Model validation: single phase dam break

3.1.1.1. Validation and effect of fluid resolution.
The single phase dam break system modelled here has been widely

used for SPHmethod validation [6, 7, 14, 16] by comparisonwith the ex-
perimental results of Koshizuka et al. [60]. The fluid particles are set up
initially on a Cartesian lattice, as shown in Fig. 4.

The predicted flow patterns were compared with those from the
experiments at a series of time instants, as shown in Fig. 5. Particles
are colored by the velocity magnitude. A wedge-shaped water front is
generated and moves rapidly towards the right after the sudden
removal of the confinement (Fig. 5(a)). The water front starts to deflect
and deform once hitting on the vertical wall, a significant amount of
water is deflected vertically (Fig. 5(b)) and then falls back due to gravity,
generating a plunging surface wave which travels back towards the left
side of the tank (Fig. 5(c) and (d)). The flow patterns agree well with
those observed experimentally, indicating that the present model is ca-
pable of qualitatively capturing the flow behavior in the dam-breaking.

The effect of thefluid particle size on thepredictedflowpatternswas
investigated by comparing the results form 2, 3 and 4 mm fluid
particles. The overall flow patternswere very similar howevermore de-
tailed structure was seen with smaller particles. This is illustrated in
Fig. 6, which compares the flow patterns seen at 0.8 s. It can be seen
that the size of the void formed under the leading front of the water
wave increases with the smaller particle size.

A quantitative estimate of themodel accuracy is made by comparing
predicted and experimental propagation of the wave front before
hitting the right side vertical wall. To this end, two dimensionless
numbers are defined: the position of the leading wave front x∗and the
characteristic time t∗, which are given as,

x� ¼ x=a ð30Þ

t� ¼ t
ffiffiffiffiffiffiffiffiffiffiffi
2g=a

p
ð31Þ

x is the position of the wave front in the horizontal direction; a is the
width of the water column before collapsing; t is the physical time
and g is gravitational acceleration. As shown in Fig. 7, the SPH slightly
underpredict the position of the leading front at the initial stage while
a better agreement can be seen after t∗ > 1.5. The fair agreement of
the results gives a difference within 5% of the predicted value, demon-
strating that the model is able to provide accurate quantitative data
for single phase free-surfaceflows. Fig. 7 also shows the effect of particle
resolution on the position of the wave front, with decreasing particle
size, the wave front propagates slightly quicker, indicating that a better
agreement can be reached when using finer particle resolution.

3.1.1.2. Performance evaluation.
The performance and scalability of the GPU-based SPHmethodwere

evaluated by increasing the dam width in the simulation above from
200mm to 12,800 mm, while other dimensions remain the same. This
increased the particle number to 14.142 million in the largest



Fig. 5. Flow pattern during single-phase dam break: experiments [60] (top) and simulation (bottom) at time (a) 0.2 s, (b) 0.4 s, (c) 0.6 s and (d) 0.8 s. Fluid particle size 4 mm.
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simulation. The calculation time required for these simulations is shown
in Fig 8. A comparison of the same implementation run on two different
Nvidia GPU cards, Tesla K80 and P100, is also shown. Themean calcula-
tion time per iteration was found to scale linearly with the number of
particles (R2 > 0.99). It shows that more than 10 million particles can
be simulated on both cards. The performance of the P100 card is consis-
tently better than that of the K80 card in both the procedures of particle
mapping and a calculation cycle. The ratio of the scalability (defined as
the slope of the linear fit) between K80 and P100 is 1.83 for the process
of particle mapping and 3.19 for a calculation cycle. This is primarily be-
cause the P100 card provides 1.6 timesmore GFLOPS (double precision)
and 3 times more memory bandwidth than the K80 card.

3.1.2. Application of SPH: agitated tubular reactor
The validated model was applied to an agitated tubular reactor

(ATR), a novel, intensified, reactor used for continuous chemical
processing. The ATR system consists of a series of tubes with free-mov-
ing internal agitators, which are mounted on a shaking platform. The
internal agitators have a cylindrical shape with caps attached to both
ends to prevent direct contact with the tube surface, thus reducingmill-
ing of the catalyst particles. Compared with conventional mechanically
agitated reactors, such as stirred tank reactors, the ATR has no driving
shafts and baffles. Instead, the lateral shaking of the system drives the
agitator motion. The resulting radial mixing is independent on the
axial flow rate. The flexibility to independently control axial flow and
Fig. 6. Effect of particle resolution on the flow pattern at time of 0.8 s during single-pha
mixing make it well suited for handling slurries, gas/liquid mixture
and catalysed reactions [62, 63].

3.1.2.1. Flow system.
In the present study, a periodic section of a single external tube is

subjected to a sinusoidal oscillation. The passive internal agitator that
drives the flow is a perforated tube with ellipse-shaped surface holes.
Fig. 9(a) shows a schematic view of the geometrical and particle repre-
sentation of the modelled system in SPH.

The collision of the agitator with the external tube is modelled using
an approachwhich is analogous to a soft-sphere collisionmodel used in
DEM calculations; the agitator is treated as a single element whose
motion is tracked byNewton's second law ofmotion [64]. Factors deter-
mining its motion include gravity and forces due to collision with the
external tube. The contact between the agitator and the tube wall only
occurs at the end caps, consequently the collision contact diameter is
set as the cap size. For simplicity, however, fluid forces are not consid-
ered in the present model due to the fact that themotion of the agitator
is dominated by the collision between structures. The temporal velocity
of the tube is described as a sinusoidal motion, given by,

U tð Þ ¼ 2πfA cos 2πftð Þ ð32Þ

with f the shaking frequency and A the shaking amplitude. As a result,
the computational domain is not stationary but constantly changing
se dam break, with different particle size (a) 4 mm, (b) 3 mm and (c) 2 mm.



Fig. 7. Comparison of the propagation of thewave front as a function of characteristic time
between SPH results and experiments [61].

Fig. 8. Computational cost of a calculation cycle as a function of the number of particles on
different GPU cards. The results are shown in the formof thewall clock time per simulated
time step averaged over 1000 timesteps.

(a) (b)

Agitator

End cap

Lateral shaking

Fig. 9. (a) Schematic of the cross-section of the reactor tube in the Coflore ATR1 reactor (co
representation of the simulated ATR system, in which the size of the fluid particle is 0.2mm.

556 Y. He et al. / Powder Technology 338 (2018) 548–562
with the shaking of the external tube, which would complicate the
model implementation and data analysis. In order to enable a stationary
domain, simulations are performed in the reference frame of the shak-
ing tube. To this end, an acceleration is imposed to both the agitator
and the fluid, given by,

a tð Þ ¼ −4π2 f 2A sin 2πftð Þ ð33Þ

with a direction opposite to the shaking. Computationally, it is prohibi-
tive to model the whole length of the reactor, a section of ATR system is
thus modelled with periodic boundary condition applied in the axial
direction. The working fluid is water. Other modelling parameters are
summarized in Table 1, which are typical operational parameters. A
total physical time of 5s is simulated.

3.1.2.2. Motion of the agitator.
The agitator presents a well-behaved periodic motion due to the si-

nusoidal oscillation of the reactor tube. The motion of the agitator
quickly reaches a stable state after the first two periods. The behaviour
of the agitator in a typical period are shown in Fig. 10. From phase 0
to 0.5π, the reactor tube moves toward the right hand side with a de-
creasing velocity, while the agitator accelerates towards the bottom of
the tube followed by a deceleration when it moves upwards. The
(c)

Fluid

Internal agitator
External tube

urtesy AM Technology), (b) Geometrical representation of the agitator and (c) particle

Table 1
Parameters used in simulation.

External tube
Amplitude, A (mm) 7.1
Frequency, f (Hz) 4.06
Diameter, D (mm) 25.4

Internal agitator
Inner diameter, Di (mm) 13.8
Outer diameter, Do (mm) 14.4
Density, ρs (kg/m3) 7800
Cap size, Scap (mm) 1.5
Moment of Inertia, I (kg·m2) 2.516 × 10-7

Young’s modulus, E (Pa) 1.0 × 108

Poisson ratio, ν 0.3
Sliding friction coefficient, μt 0.3
Restitution coefficient, e 0.6

Fluid particles
Fluid density, ρf(kg/m3) 1000
Viscosity, μ (kg/m·s) 0.001



Fig. 10. Evolution of (a) position, (b) translational velocity, (c) velocity magnitude, (d) angular velocity of the agitator in the reference frame of the shaking tube and (e) an illustration of
the motion of the agitator in the global reference frame, in which phase A=0.581π, B=0.906π, C=1.150π, D=1.393π and E=1.637π.
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agitator reaches the highest point around phase A shortly after the tube
reverses its moving direction at 0.5π. At this stage, the tube continues to
move to the left hand side at an increasing speed while the agitator
slides down towards the bottom at an increasing speed. The maximum
velocity of the agitator is around 0.076m/s which corresponds to 42% of
themaximumshaking velocity (0.181 m/s). After the tubepass themid-
dle point of its moving region (>1.0π), the agitator reaches the bottom
of the tube at phase C. After that, the agitator start to move upward at a
decreasing speed.
3.1.2.3. Agitated flow field.
Fig. 11(b) shows the contours of fluid velocity magnitude at the five

selected phases marked in Fig. 10(a). Combining the information from
Fig. 10(a)-(d), an illustration of the agitator’s motion and the position
of the shaking tube in the global reference frame are given in Fig. 11
(a). In general, the motion of the fluid is mainly driven by the shaking
of the reactor tube as suggested by the rotation of the fluid as a whole.
However, local variations can still be seen due to the presence of the ag-
itator. For example, at phase A, local maximum of the fluid particles are
found located at the interstice between the agitator and the reactor,
similar to that of the phase E. This is primarily due to the small relative
velocity between the agitator and the reactor tube at these phases. The
fluid particles at the contact region are being squeezed out by the agita-
tor. Due to the presence of the surface holes, a repeated pattern of the
fluid velocity along the axial direction can be observed at the free sur-
face. The complex dynamics captured in the ATR system shows the
strong potential of applying the developed GPU-based SPH in
understanding and further optimizing the design and the operational
conditions of chemical reactors where the free-surface flows present.

3.2. Particle-fluid flow

3.2.1. Model validation: two-phase dam break
To validate the coupling between SPH and DEM, a two-phase

dam break is simulated and is compared with the experimental re-
sults reported by Sun et al. [6]. This test case has also been adopted
to validate coupled SPH-DEM approaches in other studies [7, 15].
The water tank has overall dimensions: 200 mm × 150 mm × 150
mm, and is split into two volumes by a movable gate 50 mm
from one end. Water with a depth of 100 mm along with a packed
particle bed are blocked by the gate. The dam break is initiated
by moving the gate upward at a constant speed of 0.68 m/s. The
initial particle configuration of the SPH-DEM simulation is shown
in Fig. 12.

For the solid phase, a total mass of 200 g spherical particles are first
randomly generated behind the moving gate. Then, they are allowed to
settle under gravity until the total kinetic energy essentially vanishes.
For the fluid phase, SPH particles with material properties of water are
orderly distributed behind the gate. Other modelling parameter can be
found in Table 2.

Fig. 13 compares the simulation with the experiments at a time in-
terval of 0.5 s. The SPH particles are colored by volume fraction while
the DEM particles are colored by the velocity magnitude. The dam
break is initiated by moving the gate upward at a constant velocity of
0.68 m/s. With restriction of the vertical gate, particles are driven by



Fig. 11. Velocity profile in a half-filled ATR system at different phases, in which phase A=0.581π, B=0.906π, C= 1.150π, D=1.393π and E=1.637π. Fluid particles are colored by
velocity magnitude in the reference frame of the tube.
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the fluid drag to move along with the flow direction. In comparison,
both the fluid and the solid phase observed in experiments are well
reproduced, indicating qualitatively comparable simulation results.
The minimum fluid volume fraction produced by the simulation is
around 0.33 which is close to the packing fraction of random
loose packing (0.64). In the simulation, however, the wave front of the
water lags the experiment very slightly, this can be seen in Fig. 13d; in
the experiment the water has reached the left hand wall, where as in
the simulation the water wave has not quite made impact.

Quantitative comparisons of the extent of propagation of the leading
front of both the fluid and the solid phases are shown in Fig. 14. The
same dimensionless numbers are used as the previous single phase
case. It can be seen that the simulation matches well with the experi-
ments. Discrepancies, however, are seen at initial stage of the dam
break for the fluid phase (0.015 s to 0.035 s) and at the later stage for
Fig. 12. Particle configuration of the two-phase dam break test case for SPH-DEM, solid
particles are not shown. Fluid particles are colored by volume of fraction.
the solid phase (>0.14 s). Several factorsmay contribute to the discrep-
ancy, including the use of uncalibrated DEM parameters, such as the
friction coefficient and the restitution coefficient, as also noted by
Markauskas et al. [7], and the lack of the lubrication mechanism in the
present simulation which would also lead to an underestimation of
the position of the solid front.
3.2.2. Application of coupled SPH-DEM: rotating drum
In mineral and chemical processing, rotating drums are often used

for mixing or grinding. Water is added to suppress dust or to modify
the operational conditions, leading to a typical slurry flow. In this
section, the GPU-based coupling method is applied to model the parti-
cle-fluid flow in a rotating cylindrical drum. The setup is the same as
reported in thework of Sun et al. [6]. The predicted results are first com-
pared with experiments in terms of the bed shape and dimensions.
Table 2
Modelling parameters used in the simulation.

Solid phase
Number of particles 7762
Density (kg/m3) 2500
Young's modulus (Pa) 1.0 × 108

Friction coefficient 0.2
Rolling friction coefficient 0.01
Restitution coefficient 0.9
Time step (s) 2.5 × 10-6

Fluid phase
Density (kg/m3) 1000
Viscosity (Pa·s) 8.9×10-4

Fluid resolution (mm) 3.0
Boundary particle separation (mm) 2.1
Smoothing length, h (mm) 3.9
Time step (s) 5×10-6



Fig. 13. Comparison of flow patterns in two-phase dam break at different time: experiments [6] (left), fluid phase (middle) and solid phase (right).
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Fig. 14. Normalized leading front as a function of scaled time: comparison between
simulation and experiments [6].

Table 3
Comparison of the bed dimensions between simulation and results of Sun et al. [6].

Bed dimensions (standard
deviation)

Experiment
[6]

Simulation of
[6]

Current
study

Width, mm 73.41 (1.25) 71.45 (0.79) 73.78
(0.708)

Height, mm 62.18 (1.71) 59.80 (0.61) 56.93 (0.86)
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Then, the performance of the GPU implementation is evaluated by
scaling up the device.

3.2.2.1. Model validation.
In this study, the diameter and the length of the drum are both 100

mm. The drum rotates at a constant speed of 104 rpm, with half of it
filledwithwater. A quasi-steady state of the solid particle bed is reached
at this speed. In the simulation, a total of 7755 solid particles with a di-
ameter of 2.7 mm are used, replicating the simulation reported by Sun
et al. [6]. The rest of the parameters are the same as summarized in
Table 2. Fig. 15(a) shows the initial configuration of the SPH particles.
A single layer of wall particles are used. The randomly generated solid
particles are allowed to settle down in the drum without the influence
of fluid force to form a packed bed. Then the drum starts to rotate.
After reaching a steady state, a particle bed with bilinear slope is ob-
served. As shown in Fig. 15(b) and (c), the present simulation is capable
of qualitatively reproducing the bilinear slope close to that observed in
the experiment.

Quantitative comparisons are made of both the average height and
the width of the bed. The dimensions are obtained by averaging over
50 equally spaced sample times over a period of 10 s. The comparisons
with experimental results are given in Table 3, together with a compar-
ison to the simulation results of Sun et al. [6]. The present simulation
Fig. 15. (a) Particle representation of the simulated rotating drum, in which the size of the fl
simulation, inwhich the solid particles are representedby yellow sphereswhile thefluid particle
accurately captured the width of the bed, with a difference smaller
than 1%. However, the height of the bed is slightly under-predicted
with a difference around 8% compared to the experiment. Compared
to the simulation of Sun et al. [6], the difference is about 4.8%. This dis-
crepancy seems to arise from differences in contact models and no
proper calibration of the parameters. For example, we used the Hertz
model for the normal contact force and the Mindlin and Deresiewicz
theory for the tangential elastic frictional contact while [6] used a
spring-dashpot model.

3.2.2.2. Performance evaluation.
The rotating drum is scaled to evaluate the performance of the

coupled SPH-DEM on the Tesla P100 card. Four different diameters of
the drum, 100 mm, 200 mm, 300 mm and 400 mm, are tested. The
length of the drum is the same as its diameter in all cases. The water
and article volume fractions were kept constant across all simulations.
The computational time cost for the DEM calculations and the SPH cal-
culations were recorded and are shown in Fig. 16. The elapsed time
per step is calculated by averaging over 10,000 steps. It can be seen
that the time cost of the SPH part is consistently more than an order
ofmagnitude higher than that of the DEMpart. Moreover, the computa-
tional cost for both parts increase linearly with increasing number of
particles.

4. Conclusion

A GPU-based program has been developed to accelerate the simula-
tions of single phase fluid flow and particle-fluid flow involving free-
surfaces, with the goal of an efficient technique for application to
multi-phase chemical processes. The free-surface fluid flow is resolved
using SPH, while DEM is adopted to track the motion of solid particles
if present, thus a unified particle-based modelling framework was
established. The coupling between the two phases is achieved using
local averaging techniques. A dual-grid neighbor searching method
was proposed to handle coupling between phases, due to the difference
uid particle is 3 mm and the typical snapshot of (b) experiment [6] and (b) the present
s are represented byblue cubes. The bilinear slope is indicated by the red lines in thefigure.



Fig. 16. Comparison of computational time for four drum sizes, presented as a function of
(a) the number of DEM particles and (b) the number of SPH particles on the Tesla P100
GPU card.
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in the size of influencing area between solid particles and fluid particles.
The algorithm and the memory management was specifically designed
to suit the GPU platform.

For the single phase flow, a single-phase dam break flow was simu-
lated to validate the SPH model. The model accuracy was evaluated in
terms of the flow pattern and evolution of the position of the wave
front, all showed good agreement with published experimental results.
A sensitivity test indicatesmore detailed flow structure can be obtained
using finer fluid particle resolution. The performance of the SPH algo-
rithm implemented on GPU was evaluated by changing the width of
the dam. A linear scalability was obtained between the averaged calcu-
lation time per step and the number of particles. The overall perfor-
mance achieved on the Tesla P100 card was about 2 times faster than
that on the Tesla K80 card. The model’s ability to predict free-surface
flows in complex engineering problems was demonstrated by a novel
tubular reactor with a free-moving perforated agitator.

For particle-fluid flow, validation was conducted on a similar exam-
ple case, this timewith particles present. A good agreement with exper-
imental results was obtained for the temporal evolution of both the
solid particle bed and the fluid wave front. A typical application to
chemical process was demonstrated by a simulation of a quasi-steady
particle-fluid flow in a rotating drum. The obtained results have
shown satisfactory predictions in terms of bed shape and bed
dimensions. The performance of the coupled SPH-DEMmodel was eval-
uated by scaling up the size of the rotating drum. The SPH related calcu-
lations consumedmore time than those of the DEM. The computational
time for both the DEM and the SPH particle scales linearly with the par-
ticle number.

With the reliable results and acceptable scalability obtained from the
GPU platform, the coupled SPH-DEM model has demonstrated its po-
tential to contribute to an improved understanding of the practical
problems encountered in chemical processing. Future work on extend-
ing the implementation to multiple GPUs by means of Message Passing
Interface is on course to further enhance the computational capabilities.
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